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This study investigates the impact of molecular thermal fluctuations on compressible
decaying isotropic turbulence using the unified stochastic particle (USP) method,
encompassing both two-dimensional (2-D) and three-dimensional (3-D) scenarios. The
findings reveal that the turbulent spectra of velocity and thermodynamic variables follow
the wavenumber (k) scaling law of k(d−1) for different spatial dimensions d within the
high wavenumber range, indicating the impact of thermal fluctuations on small-scale
turbulent statistics. With the application of Helmholtz decomposition, it is found that
the thermal fluctuation spectra of solenoidal and compressible velocity components (us
and uc) follow an energy ratio of 1 : 1 for 2-D cases, while the ratio changes to 2 : 1 for
3-D cases. Comparisons between 3-D turbulent spectra obtained through USP simulations
and direct numerical simulations of the Navier–Stokes equations demonstrate that thermal
fluctuations dominate the spectra at length scales comparable to the Kolmogorov length
scale. Additionally, the effect of thermal fluctuations on the spectrum of uc is significantly
influenced by variations in the turbulent Mach number. We further study the impact of
thermal fluctuations on the predictability of turbulence. With initial differences caused by
thermal fluctuations, different flow realizations display significant disparities in velocity
and thermodynamic fields at larger scales after a certain period of time, which can be
characterized by ‘inverse error cascades’. Moreover, the results suggest a strong correlation
between the predictabilities of thermodynamic fields and the predictability of uc.
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1. Introduction

According to the classical physical understanding of turbulence, turbulent kinetic energy
(TKE) is transferred from the largest scales to successively smaller ones. The Kolmogorov
length scale η is the characteristic length scale below which TKE is dominantly dissipated
into heat by viscosity. It is defined as η = (ν3/ε)

1/4, where ν is the mean kinematic
viscosity and ε is the mean dissipation rate per unit mass. The corresponding Kolmogorov
time scale τη can be defined as τη = (ν/ε)1/2 (Pope 2000).

As the characteristic scales of turbulence decrease, it becomes crucial to assess the
influence of molecular effects on turbulent motions. For a turbulent gas flow characterized
by turbulent Reynolds number Ret and turbulent Mach number Mt, the ratios of the
Kolmogorov scales to the molecular scales can be estimated as (Corrsin 1959; Moser 2006)

η

λmic
= C1

Ret
1/4

Mt
,

τη

τmic
= C2

Ret
1/2

Mt
2 , (1.1a,b)

where λmic and τmic denote the molecular mean free path and the molecular mean collision
time, respectively, and C1 and C2 are two constants of order 1. Equation (1.1a,b) indicates
that, for low Mt and high Ret, the Kolmogorov scales are considerably larger than the
molecular scales. As a result, it is widely believed that the microscopic molecular motions
have negligible effects on the macroscopic turbulent motions, and that the Navier–Stokes
(NS) equations can accurately describe the turbulent fluctuations at all scales (Moser
2006).

However, several studies have suggested that spontaneous thermal fluctuations (Zhang
& Fan 2009; Ma et al. 2021) resulting from molecular motions could have considerable
impacts on turbulence. In terms of the statistical properties of turbulence, Betchov
(1957, 1964) hypothesized that thermal fluctuations could significantly impact the
turbulence statistics in the dissipation range. This hypothesis was recently confirmed
by Bell et al. (2022), who numerically solved the incompressible Landau–Lifshitz
Navier–Stokes (LLNS) equations of fluctuating hydrodynamics (Landau & Lifshitz
1959). These equations incorporate additional stochastic fluxes to model the effect of
thermal fluctuations. The study revealed that, below length scales comparable to η,
the thermal fluctuations profoundly alter the exponentially decaying TKE spectrum
(Buaria & Sreenivasan 2020) predicted by the deterministic NS equations. Additionally,
by calculating the probability distribution functions for higher-order derivatives of the
velocity, the study reported that the extreme intermittency in the far-dissipation range
(Kraichnan 1967; Chen et al. 1993) predicted by the deterministic NS equations is replaced
by Gaussian thermal equipartition (Bell et al. 2022). To investigate the effects of thermal
fluctuations on turbulence under higher Reynolds number conditions, Bandak et al. (2022)
numerically solved the stochastic shell model equations, which can be considered as
surrogates of incompressible LLNS equations. They not only revealed the impact of
thermal fluctuations on the turbulent energy spectrum in the dissipation range but also
investigated the interactions between thermal fluctuations and turbulent intermittency.

Since thermal fluctuations are inherently caused by molecular motions, the molecular
simulation methods, such as the molecular dynamics (Smith 2015) and the direct
simulation Monte Carlo (DSMC) (Bird 1994), can provide a direct way to investigate
the role of thermal fluctuations in turbulence. Unlike the simulation methods based
on fluctuating hydrodynamics, molecular simulation methods do not assume local
thermodynamic equilibrium (McMullen et al. 2022b). As a result, they are more suitable
for simulating highly compressible turbulence with local non-equilibrium effects.
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Thermal fluctuations in compressible isotropic turbulence

In recent years, the DSMC method has been extensively employed to simulate
compressible turbulent gas flows (Gallis et al. 2017, 2018, 2021; McMullen et al.
2022a,b; Ma et al. 2023; McMullen, Torczynski & Gallis 2023), with several studies
focusing on the effect of thermal fluctuations on turbulence statistics. McMullen et al.
(2022b, 2023) employed the DSMC method to simulate the three-dimensional (3-D)
Taylor–Green vortex flow, revealing significant influences of thermal fluctuations on both
the turbulent energy spectra and velocity structure functions at dissipation length scales.
Our recent work (Ma et al. 2023) employed DSMC to simulate the two-dimensional (2-D)
decaying isotropic turbulence, indicating that thermal fluctuations impacted both energy
spectra and thermodynamic spectra in the dissipation range. By applying the Helmholtz
decomposition (Samtaney, Pullin & Kosović 2001; Wang et al. 2012) to the 2-D velocity
field, the effects of thermal fluctuations on the solenoidal and compressible velocity
components were studied separately under different Mt conditions (Ma et al. 2023).

In this study, one of our objectives is to explore whether the conclusions we previously
drew for 2-D cases can be extended to 3-D cases. It should be noted that simulating
3-D turbulence using DSMC requires a huge computational cost (Gallis et al. 2017,
2021) due to certain limitations of the method. Specifically, the cell sizes and time steps
need to be smaller than λmic and τmic, respectively (Alexander, Garcia & Alder 1998;
Hadjiconstantinou 2000). To address this challenge, several multiscale particle simulation
methods have been proposed (Jenny, Torrilhon & Heinz 2010; Fei et al. 2020b; Fei &
Jenny 2021; Fei 2023). One promising method is the unified stochastic particle (USP)
method (Fei et al. 2020b; Fei & Jenny 2021). In comparison with DSMC, USP can
be implemented with much larger time steps and cell sizes by coupling the effects of
molecular movements and collisions. Hence, exploring 3-D turbulence through the USP
method becomes intriguing, given its inherent inclusion of thermal fluctuations as a
particle method and its superior efficiency compared with DSMC.

In addition to influencing turbulent statistics, thermal fluctuations may also play an
important role in the predictability of turbulence (Betchov 1961; Ruelle 1979). Due to
the chaotic nature of turbulent flows, even small disturbances in the flow field may lead
to the gradual loss of predictability in large-scale turbulent structures over time (Qin &
Liao 2022). The predictability of incompressible turbulence has historically been studied
based on the deterministic NS equations (Lorenz 1969; Métais & Lesieur 1986; Kida,
Yamada & Ohkitani 1990; Boffetta et al. 1997; Boffetta & Musacchio 2017; Berera & Ho
2018), focusing on the divergence of velocity field trajectories which initially differ due to
artificial perturbations. Given that thermal fluctuations are inherent disturbances in fluids,
there is considerable interest in numerically investigating their effects on the predictability
of turbulence using particle methods.

In this work, we employ the USP method to simulate compressible decaying isotropic
turbulence (CDIT), aiming to investigate the effects of thermal fluctuations on turbulent
spectra and predictability. The rest of the paper is organized as follows. Section 2
introduces the basic theories of thermal fluctuations, followed by an overview of the USP
method in § 3. In § 4, the applicability of the USP method is validated by comparing
its results with those obtained using the DSMC method for 2-D decaying turbulence.
Subsequently, in § 5, the USP method is employed to simulate 3-D decaying turbulence.
By comparing the results obtained using the USP method with those predicted by the
deterministic NS equations (Wang et al. 2010), the impact of thermal fluctuations on
turbulent spectra is studied under different Mt conditions. Section 6 discusses the effect of
thermal fluctuations on the predictability of turbulence. Section 7 discusses other essential
aspects of CDIT as future research directions. Conclusions are drawn in § 8.
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2. Spatial correlation of thermal fluctuations

In general, the fluctuation of a given macroscopic property A is defined as the difference
between its instantaneous local value and its mean value, i.e. δA(r, t) = A(r, t) − 〈A〉
(Pope 2000). In the following discussions, we assume that the macroscopic velocity u
has zero mean, so δu = u.

According to the theory of statistical physics, for gases in global thermodynamic
equilibrium, the mean square value of the x-component velocity fluctuations measured
in a volume V is given as (Landau & Lifshitz 1980; Hadjiconstantinou et al. 2003)

〈(uth
x )

2〉 = kB〈T〉
V〈ρ〉 , (2.1)

where the superscript ‘th’ stands for thermal fluctuations, kB is the Boltzmann constant,
〈T〉 and 〈ρ〉 are the mean temperature and mass density, respectively. Note that, in the
equilibrium state, the velocity components are independent and identically distributed, so
(2.1) also applies to uth

y and uth
z (Landau & Lifshitz 1980). The total kinetic energy of

thermal fluctuations per unit mass is then calculated as

Kth =

⎧⎪⎪⎨
⎪⎪⎩

2D :
1
2
〈(uth

x )
2 + (uth

y )
2〉 = kB〈T〉

V〈ρ〉

3D :
1
2
〈(uth

x )
2 + (uth

y )
2 + (uth

z )
2〉 = 3

2
kB〈T〉
V〈ρ〉

. (2.2)

For thermal fluctuations of temperature, number density and pressure, their mean square
values are given as (Landau & Lifshitz 1980; Hadjiconstantinou et al. 2003)

(Tth
rms)

2 = 〈(δTth)
2〉 = kB〈T〉2

cvV〈ρ〉 , (2.3)

(nth
rms)

2 = 〈(δnth)
2〉 = κTkB〈T〉〈n〉2

V
, (2.4)

(Pth
rms)

2 = 〈(δPth)
2〉 = γ kB〈T〉

VκT
, (2.5)

respectively, where 〈n〉 is the mean number density, κT = 1/〈P〉 is the isothermal
compressibility, 〈P〉 is the mean pressure, γ denotes the specific heat ratio and cv denotes
the isochoric specific heat. In (2.3)–(2.5), the subscript ‘rms’ stands for the root mean
square value of fluctuations.

For fluctuations satisfying spatial homogeneity, the two-point autocorrelation function
〈δA(r1)δA(r2)〉 of fluctuations only depends on the relative distance l = r2 − r1 (Pope
2000). Providing that |l| is much larger than the interatomic distances, the equilibrium
thermal fluctuations at different positions are uncorrelated. The two-point autocorrelation
functions of uth

x , δTth, δnth and δPth are given as (Lifshitz & Pitaevskii 1980)

Rth
ux

(l) = 〈uth
x (r1)uth

x (r2)〉 = kB〈T〉
〈ρ〉 δ(l), (2.6)

Rth
T (l) = 〈δTth(r1)δTth(r2)〉 = kB〈T〉2

cv〈ρ〉 δ(l), (2.7)

Rth
n (l) = 〈δnth(r1)δnth(r2)〉 = κTkB〈T〉〈n〉2δ(l), (2.8)

Rth
P (l) = 〈δPth(r1)δPth(r2)〉 = γ kB〈T〉

κT
δ(l), (2.9)
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respectively, where δ(l) denotes the Dirac delta function. In (2.6)–(2.9), we have taken the
limit as the volume V approaches zero.

The energy spectrum E(k) can be expressed as the Fourier transform of the two-point
velocity autocorrelation function (Pope 2000)

E(k) = E(|k|) =

⎧⎪⎪⎨
⎪⎪⎩

2D :
1
2
(F{Rux} + F{Ruy}) × 2πk

3D :
1
2
(F{Rux} + F{Ruy} + F{Ruz}) × 4πk2

, (2.10)

where F{A} = ∫ +∞
−∞ A(r)exp(−ik · r) dr denotes the spatial Fourier transform of A with

respect to the wave vector k. The terms 2πk and 4πk2 appear in (2.10) due to the
integration of the spectrum over the wavenumber circle or sphere surface in 2-D or 3-D
cases. By substituting (2.6) into (2.10), one can yield the energy spectrum of thermal
fluctuations as

Eth(k) =

⎧⎪⎪⎨
⎪⎪⎩

2D :
kB〈T〉
〈ρ〉 × 2πk

3D :
3
2

kB〈T〉
〈ρ〉 × 4πk2

. (2.11)

Therefore, it can be concluded that, for gases in equilibrium, the 2-D energy spectrum
grows linearly with the wavenumber k (Ma et al. 2023), while the 3-D energy spectrum
grows quadratically with k (Bandak et al. 2022; Bell et al. 2022; McMullen et al. 2022b).

Similarly, the spectra of fluctuating thermodynamic variables can be expressed as

Eg(k) =
{

2D : F{Rg} × 2πk
3D : F{Rg} × 4πk2 , (2.12)

where g represents the temperature T , number density n or pressure P. Substituting
(2.7)–(2.9) into (2.12) leads to the same conclusion that the equilibrium spectra of
thermodynamic variables grow linearly with k for 2-D cases, while they grow quadratically
with k for 3-D cases.

For compressible fluids, the Helmholtz decomposition (Samtaney et al. 2001; Wang
et al. 2012) is always applied to the fluctuating velocity field as u = us + uc, where the
solenoidal component us and the compressible component uc satisfy conditions ∇ · us =
0 and ∇ × uc = 0, respectively. In wavenumber space, the Helmholtz decomposition can
be applied as (Pope 2000)

uck = k(k · uk)/k2, (2.13)

usk = uk − uck, (2.14)

where uk, uck and usk denote the spatial Fourier transforms of u, uc and us, respectively.
Equations (2.13)–(2.14) indicate that usk is perpendicular to k, while uck is parallel to k
(see figure 1).
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O
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kz
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O

G
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uk = (uk,x, uk,y, uk,z)

(a) (b)

Figure 1. Sketch (in wavenumber space) showing the decomposition of the fluctuating velocity field uk =
(uk,i) into the solenoidal component usk and the compressible component uck, for 2-D (a) and 3-D (b) cases. In
(b), usk lies in the plane G, which is perpendicular to k.

To calculate the energy spectra of uth
c and uth

s , note that, in wavenumber space, each
independent velocity component uth

k,i shares the same amount of energy, given as

|uth
k,i|

2 = F{Rth
ui
} = kB〈T〉/〈ρ〉. (2.15)

Therefore, it follows that |uth
sk|

2 = |uth
ck|

2 for 2-D cases, while |uth
sk|

2 = 2|uth
ck|

2 for 3-D
cases. The energy spectra of uth

c and uth
s can then be calculated from Eth(k) as{

2D :Eth
c (k) = Eth

s (k) = 1
2 Eth(k)

3D :Eth
c (k) = 1

2 Eth
s (k) = 1

3 Eth(k)
. (2.16)

3. Simulation method

In this work, the USP method is employed to simulate the compressible decaying isotropic
turbulence. Here, we provide a brief description of the theoretical background and the
basic algorithm of USP, and we refer readers to the original papers (Fei et al. 2020b; Fei
& Jenny 2021; Fei et al. 2021) for details.

3.1. Governing equations
According to the gas-kinetic theory, the state of a gas can be described by the velocity
distribution function (VDF) f (c; r, t), which is defined as the number density of molecules
with velocity c at position r and time t. The evolution of VDF can be described by the
Boltzmann equation (Bird 1994)

∂f
∂t

+ c · ∇f = Q(Boltzmann), (3.1)

where the term c · ∇f describes the change of VDF due to the convection of molecules,
and Q(Boltzmann) is an integral that describes the intermolecular collisions. Due to the
challenges associated with directly solving the Boltzmann equation, most numerical
works are based on its model equations like the Bhatnagar–Gross–Krook (BGK) model
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(Bhatnagar, Gross & Krook 1954) or the Shakhov-BGK (S-BGK) model (Shakhov 1968).
These models simplify the Boltzmann collision integral with a linear relaxation term, i.e.

∂f
∂t

+ c · ∇f = ft − f
τr

, (3.2)

where the right-hand side of (3.2) describes the relaxation of VDF towards a target
distribution function ft with the relaxation time τr comparable to the molecular mean
collision time τmic. In the BGK and S-BGK models, the target distribution functions are
given by the local macroscopic quantities as (Yao et al. 2023)

ftBGK = fM = n
(

1
2πRT

)3/2

exp
(

− C2

2RT

)
, (3.3)

ftS-BGK = fM

[
1 + (1 − Pr)

2Ciqi

5PRT

(
C2

2RT
− 5

2

)]
, (3.4)

where C = c − u is the molecular thermal velocity, R is the specific gas constant, Pr is
the Prandtl number and qi is the heat flux. Compared with the original BGK model with a
fixed Pr of 1, the S-BGK model can be applied to gas flows with arbitrary Pr (Yao et al.
2023).

3.2. Unified stochastic particle method
So far, the DSMC method (Bird 1994) is still the most commonly used molecular method
for simulating rarefied gas flows, and it has recently been employed to investigate the
effect of thermal fluctuations on turbulence (McMullen et al. 2022b, 2023; Ma et al.
2023). A typical DSMC simulation tracks an appropriate number of ‘particles’ (simulated
molecules) in the computational domain. Each particle statistically represents a fixed
number F of identical real molecules, and F is the so-called simulation ratio (Gallis et al.
2017; McMullen et al. 2022b). The domain is divided into computational cells where local
macroscopic quantities are obtained by sampling particle information.

The key point of the DSMC method is that the effects of molecular movements
and collisions are assumed to be uncoupled within a computational time step �t.
Specifically, the simulated particles move ballistically first, then the particles within the
same cell are randomly chosen as collision pairs to assign new velocities according to the
phenomenological collision models (Bird 1994). DSMC can be regarded as an operator
splitting scheme to solve the Boltzmann equation (Wagner 1992; Feng et al. 2023), i.e.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂f
∂t

]
convection

= −c · ∇f ,

[
∂f
∂t

]
collision

= Q(Boltzmann).

(3.5)

The same procedure can also be applied to (3.2), resulting in the governing equations of
the stochastic particle (SP) method based on the BGK model (Gallis & Torczynski 2000;
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Pfeiffer 2018), given by ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂f
∂t

]
convection

= −c · ∇f ,

[
∂f
∂t

]
collision

= ft − f
τr

.

(3.6)

In the SP method, the process of molecular movements is the same as that in the
DSMC method, while the process of intermolecular collisions in DSMC is replaced by
a ‘redistribution phase’ where a fraction (1 − exp(−�t/τr)) of particles in each cell are
randomly selected to assign new velocities according to ft. The velocities of the remaining
fraction of particles are unchanged.

Theoretically, it has been proved that DSMC and SP will produce unphysical momentum
and energy transport if the time step �t and cell size �Lcell exceed τmic and λmic,
respectively (Alexander et al. 1998; Hadjiconstantinou 2000; Fei et al. 2020b). To address
this issue, the USP method supplements the effect of intermolecular collisions in the
convection step. The corresponding governing equations based on the S-BGK model can
be written as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
∂f
∂t

]
convection

= −c · ∇f + Q∗,

[
∂f
∂t

]
collision

= ftS−BGK − f
τr

− Q∗,

(3.7)

where Q∗ is a modified collision term closed by the Grad’s 13 moment distribution
function (Fei et al. 2020b). To make the USP method easier to be implemented, (3.7)
can be further rewritten as (Fei & Jenny 2021)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂f
∂t

]
convection

= −c · ∇f ,

[
∂f
∂t

]
collision

= fU − f
τr

,

(3.8)

where fU is a new target distribution function given as

fU = fM

[
1 + Ψ1

σijC<iCj>

2PRT
+ Ψ2

2Ciqi

5PRT

(
C2

2RT
− 5

2

)]
, (3.9)

where σij = ∫
mC<iCj>f dc is the shear stress tensor, and C<iCj> denotes the symmetric

and trace-free part of the tensor CiCj. In (3.9), Ψ1 and Ψ2 are related to �t as Ψ1 = 1 −
�t/2τr coth(�t/2τr) and Ψ2 = 1 − Pr�t/2τr coth(�t/2τr), respectively. Based on (3.8),
it follows that the implementation of USP is quite similar to that of SP. Theoretically, it
has been demonstrated that the USP method has second-order temporal accuracy when
�t � τmic (Fei & Jenny 2021). Furthermore, the second-order spatial accuracy can be
achieved by a spatial interpolation procedure for macroscopic variables (Fei et al. 2021).

In this work, we simulate turbulent flows of the dilute argon gas with Pr = 2/3 and
γ = 5/3. The bulk viscosity μb is assumed to be zero, and the shear viscosity μ is assumed
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to depend on the temperature with a power-law exponent ω, i.e.

μ = μref

(
T

Tref

)ω

, (3.10)

where μref is the reference viscosity at the reference temperature Tref . Specifically
for argon gas, ω, μref and Tref are set to 0.81, 2.117 × 10−5 Pa s and 273.15 K,
respectively (Bird 1994). The USP simulations are performed using the open-source code
SPARTACUS (Feng et al. 2023), which has been recently developed by the authors within
the framework of a widely used DSMC solver SPARTA (Plimpton et al. 2019). The
performance of SPARTACUS has been evaluated over a series of test cases covering 1-D
to 3-D flows with a wide range of Knudsen numbers and Mach numbers (Feng et al. 2023).

4. Two-dimensional turbulence

In a recent study (Ma et al. 2023), we employed the DSMC method to investigate
the effect of thermal fluctuations on the spectra of 2-D decaying isotropic turbulence.
In this section, we use the DSMC results as benchmarks to validate the applicability
of the USP method. The simulations begin with argon gas flows at T0 = 300 K and
P0 = 1 bar, with the number density calculated as n0 = P0/(kBT0). Based on these
initial conditions, the molecular mean collision time τmic0 and the molecular mean free
path λmic0 are estimated using the variable hard sphere model parameters specific to
argon (Bird 1994). The side lengths of the simulation domain are set to (Lx, Ly, Lz) =
(4000λmic0, 4000λmic0, 40λmic0), and the domain is divided into uniform computational
cells along the x and y directions for 2-D simulations.

The initial turbulent velocity field is generated as follows. First, a divergence-free
velocity field uNS

0 with a prescribed energy spectrum is randomly generated using the
transfer procedures provided by Ishiko et al. (2009). The initial energy spectrum is
specified as

ENS(k, t = 0) = as

2
U2

0
kp

(
k
kp

)2s+1

exp

[
−

(
s + 1

2

)(
k
kp

)2
]

, as = (2s + 1)s+1

2ss!
,

(4.1)

where U0 = 〈(uNS
0 )

2〉0.5
is the root mean square value of uNS

0 , s is a shape parameter of the
spectrum and kp is the wavenumber at which the spectrum has peak value. In this work,
we take s = 3 and kp = 9kmin, where kmin = 2π/L is the minimum wavenumber, and L =
Lx = Ly. Based on (4.1), the initial enstrophy is calculated as Ω0 = ∫ ∞

0 k2ENS(k) dk. The
enstrophy dissipation rate and the corresponding dissipation length scale are calculated
as εΩ0 = 2ν0

∫ ∞
0 k4ENS(k) dk and ηΩ0 = (ν3

0/εΩ0)
1/6, respectively (Herring et al. 1974),

with ν0 representing the kinematic viscosity at T0 and P0. The integral length scale is
defined as Lf 0 = U0/(

√
2εΩ0

1/3) (Herring et al. 1974), and the large eddy turnover time
is then calculated as Te0 = √

2Lf 0/U0.
The initial turbulent Mach number and the Taylor Reynolds number are given by

(Terakado & Hattori 2014)

Mt0 = U0

〈√γ RT〉 , Reλ0 = Ω0
1.5/εΩ0, (4.2a,b)
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Case Resolution (N2
c ) 〈Np〉 �t/τmic0 �Lcell/λmic0 kmaxηΩ0 Total computation time (hours)

DSMC 81922 25 0.2 0.49 94.3 31.00
USP 40962 100 0.5 0.98 47.1 10.50
USP 20482 400 1.0 1.95 23.6 4.97
USP 10242 1600 2.0 3.91 11.8 2.79

Table 1. Simulated parameters for 2-D decaying isotropic turbulence. All the simulations are performed with
the initial conditions of T0 = 300 K, P0 = 1 bar, Mt0 = 1 and Reλ0 = 23.4.

respectively. Note that the definition of the 2-D Taylor Reynolds number varies among
different references. For instance, Pushkarev & Bos (2014) adopted the definition
commonly used for 3-D turbulence.

The macroscopic velocity uNS
0 generated for each computational cell can be considered

as the initial solution of deterministic NS equations without thermal fluctuations. The
velocities c0 of USP particles in each cell are then generated based on the relation
c0 = uNS

0 + C0, where the particle thermal velocities C0 are randomly sampled from the
Maxwell distribution function at (T0, n0). This procedure enables the initial velocity field
in the USP simulation to be expressed as uUSP

0 = uNS
0 + uth

0 (McMullen et al. 2023), where
uth

0 represents the thermal velocity fluctuation measured at each cell.
In this section, all simulation cases commence with the same turbulent velocity field

with Mt0 = 1 and Reλ0 = 23.4. The other simulated parameters are shown in table 1.
The DSMC simulation is conducted using SPARTA with �t = 0.2τmic0 and �Lcell =
0.49λmic0. In contrast, the USP simulations are conducted with larger �t and �Lcell. The
average number of simulated particles within each cell (〈Np〉) increases with �Lcell to
maintain the total number of particles unchanged, resulting in the same simulation ratio of
F = 1549. Based on �Lcell, we further calculate the resolution parameter kmaxηΩ0 , where
kmax = π/�Lcell = πNc/L denotes the largest wavenumber corresponding to the half of
Nc (Wang, Gotoh & Watanabe 2017). Each simulation case is run on 1024 CPU cores
with the total computation time shown in table 1, corresponding to the same physical time
of t = 25.4Te0. Compared with the DSMC method, the USP method shows a significant
improvement in computation efficiency due to the increases in �t and �Lcell.

In addition to the DSMC and USP simulations, we obtained results for 2-D deterministic
compressible NS equations using the direct numerical simulation (DNS) method. The gas
thermodynamic properties in DNS are identical to those in USP simulations. The initial
values of ρ, T and P are uniformly set within the DNS domain, and the initial velocity
field is directly obtained from uNS

0 generated during the USP initialization procedures. The
numerical scheme we employed is the high-order gas-kinetic scheme (HGKS) proposed
by Pan et al. (2016). The gas-kinetic scheme (GKS) is an accurate NS solver (Xu 2001),
and HGKS has been applied for the numerical simulation of compressible turbulence
(Cao, Pan & Xu 2019). In the current DNS simulations, a grid resolution of 20482

(kmaxηΩ0 = 23.6) is employed, and the time step is carefully chosen to maintain a fixed
Courant–Friedrichs–Lewy number of 0.4.

To investigate whether the USP method can correctly reflect the effect of thermal
fluctuations on turbulence, we calculate the energy spectra E(k) and the thermodynamic
spectra Eg(k), where g represents temperature, number density or pressure. The results
for different simulation cases are shown in figure 2, corresponding to the time points of
t = 7.3Te0 and t = 21.8Te0. Note that the USP and DSMC spectra should be calculated
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based on the instantaneous flow field with thermal fluctuations fully preserved (McMullen
et al. 2022b). As shown in figure 2, the USP spectra agree well with the DSMC and DNS
spectra in the low wavenumber range, suggesting that the USP method can yield consistent
large-scale turbulent statistics with the DSMC and DNS method. In the high wavenumber
range, the DNS spectra exhibit a continuous decrease, whereas the DSMC and USP spectra
exhibit a linear growth with k, indicating the effect of thermal fluctuations. In figure 2,
both the spectra obtained from DSMC and USP simulations align well with the theoretical
spectra of thermal fluctuations, as described by (2.11) and (2.12) at high wavenumbers.
Note that the theoretical spectra should be multiplied by the simulation ratio F, as the
magnitude of thermal fluctuations in simulations depends on the number of simulated
particles (Hadjiconstantinou et al. 2003; McMullen et al. 2022b).

We define kc and kg as the cross-over wavenumbers (Bell et al. 2022; McMullen
et al. 2022b; Ma et al. 2023) for E(k) and Eg(k), respectively. The cross-over
length scales are then defined as lc = 2π/kc and lg = 2π/kg, below which thermal
fluctuations dominate the turbulent spectra. As shown in figure 2, the USP simulations at
different resolutions yield identical cross-over wavenumbers to those obtained by DSMC
simulations. The normalized cross-over wavenumbers (kcηΩ and kgηΩ ) lie between 3.6
and 5, corresponding to the normalized cross-over length scales (lc/ηΩ and lg/ηΩ ) ranging
from 1.26 to 1.75. This observation indicates that thermal fluctuations dominate the
turbulent spectra at spatial scales slightly larger than ηΩ . Furthermore, when comparing
the results at t = 7.3Te0 and t = 21.8Te0, it becomes evident that the normalized cross-over
wavenumbers remain relatively constant over time. This arises from the simultaneous
increase in both lc (lg) and ηΩ as turbulence decays.

Using the Helmholtz decomposition (Samtaney et al. 2001), we can further investigate
the effect of thermal fluctuations on the solenoidal and compressible velocity fields.
Figure 3 presents the energy spectra of the velocity field u and its two components uc
and us at t = 7.3Te0. The USP results correspond to the simulation resolution of 10242.
As can be seen from figure 3(a), the USP spectra coincide with the DSMC spectra over the
full wavenumber range. More importantly, the energy spectra of uc and us overlap in the
high wavenumber region, which corroborates the conclusion drawn in § 2 that uth

c and uth
s

satisfy the equipartition of energy in the 2-D wavenumber space (see discussions before
(2.16)). Compared with the USP spectra, the DNS spectra decrease continuously in the
high wavenumber range (see figure 3b). To summarize, the USP method can accurately
capture the effect of thermal fluctuations on turbulence even with significantly larger time
steps and cell sizes compared with the DSMC method.

Finally, it is noteworthy that, for 2-D molecular gases, certain studies suggest a
logarithmic dependence of viscosity μ on the system size (Kadanoff, McNamara &
Zanetti 1989). This phenomenon is attributed to the long-time tail effect in the stress
autocorrelation function of the fluid (Dorfman & Cohen 1970). For stochastic particle
methods based on the Boltzmann equation or its model equations, the assumption of
molecular chaos holds (Gallis et al. 2017; Fei et al. 2020a). Consequently, the stress
autocorrelation functions computed by both DSMC and USP exhibit no long-time tail
effect (Fei et al. 2020a), resulting in the viscosity being independent of the system size. To
investigate the impact of the long-time tail effect on 2-D turbulence, further refinements
to the DSMC or USP methods are necessary in future research.

5. Three-dimensional turbulence

In this section, we employ the USP method to simulate 3-D decaying isotropic turbulence.
The simulations begin with argon gas flows at T0 = 273.15 K and P0 = 1 bar. The
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Figure 2. Energy spectra E(k) and thermodynamic spectra (ET (k), En(k), EP(k)) of 2-D decaying turbulence
at t = 7.3Te0 (a,c,e,g) and t = 21.8Te0 (b,d, f,h). The spectra of thermal fluctuations calculated from (2.11) and
(2.12) are also displayed with F = 1549.
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Figure 3. (a) Two-dimensional energy spectra for the velocity field and its two components obtained by DSMC
and USP (10242) at t = 7.3Te0. The theoretical spectrum of thermal fluctuations is also displayed with F =
1549. (b) Two-dimensional energy spectra for the velocity field and its two components obtained by DNS and
USP (10242) at t = 7.3Te0.

simulation domain is a cubic box with the side length of L = 2000λmic0, and the periodic
boundary conditions are applied in all three directions. Similar to the 2-D turbulence
simulations, the initial macroscopic velocity field uUSP

0 is randomly generated following
the relation uUSP

0 = uNS
0 + uth

0 , where uNS
0 is a divergence-free velocity field which satisfies

the deterministic NS equations, and uth
0 represents the thermal fluctuations.

In this work, uNS
0 follows the special form of the energy spectrum as

ENS(k, t = 0) = Ak4 exp

[
−2

(
k
kp

)2
]

, A = 32

3
√

2π

U2
0

k5
p

, (5.1)

where kp is the peak wavenumber, and U0 is the root mean square value of uNS
0 , i.e.

U0 = 〈(uNS
0 )

2〉0.5
. In this work, we take kp = 4kmin, where kmin = 2π/L is the minimum

wavenumber. Based on (5.1), the longitudinal integral length scale and the large eddy
turnover time are given by (Chen et al. 2020)

Lf 0 = 3π

2U2
0

∫ ∞

0

ENS(k)
k

dk, Te0 =
√

3Lf

U0
, (5.2a,b)

respectively. The initial dissipation rate and the Kolmogorov length scale are calculated as

ε0 = 2ν0

∫ ∞

0
k2ENS(k) dk, η0 = (ν3

0/ε0)
1/4

, (5.3a,b)

respectively. The initial turbulent Mach number Mt0 is calculated using (4.2a), and the
initial Taylor microscale λ0 and the corresponding Reynolds number are given by

λ0 =
√

5ν0U2
0

ε0
, Reλ0 = U0λ0√

3ν0
, (5.4a,b)

respectively. The initial turbulent Reynolds number is defined as Ret0 = U0
4/(4ε0ν0)

(Pope 2000).
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Resolution (N3
c ) Mt0 Reλ0 Ret0 Lf 0/η0 〈Np〉 �t/τmic0 �Lcell/λmic0 kmaxη0

5123 0.6 68.8 710.9 20.5 100 1 3.9 7.84
5123 0.75 86.1 1110.8 22.9 100 0.8 3.9 7.01
5123 0.9 103.3 1599.6 25.1 100 0.8 3.9 6.40

Table 2. The USP simulation parameters for 3-D decaying isotropic turbulence. All the simulations are
performed with the initial conditions of T0 = 273.15 K and P0 = 1 bar.

Table 2 shows the parameters of USP simulations, where Mt0 ranges from 0.6 to 0.9,
and Reλ0 increases with Mt0. Based on the discussions in § 4, the USP simulations are
performed with larger time steps and cell sizes compared with those typically used in
DSMC simulations. The average number of simulated particles per cell is 100, resulting in
a total of 13.42 billion particles, each of which represents 1838 real molecules.

In addition to the USP simulations, we numerically solved the 3-D deterministic
compressible NS equations using the DNS method. The effect of thermal fluctuations
on turbulence can then be analysed by comparing the USP and DNS results. For the
numerical scheme of DNS, considering that Mt0 is high, we utilize a hybrid scheme
proposed by Wang et al. (2010), which combines an eighth-order compact central finite
difference scheme (Lele 1992) for smooth regions and a seventh-order weighted essentially
non-oscillatory scheme (Balsara & Shu 2000) for shock regions. The time steps for all the
DNS cases are smaller than 0.001Te0. The grid resolutions for DNS simulations match
those of USP simulations in cases with Mt0 of 0.6 and 0.75 (see table 2), while a higher
grid resolution of 10243 (kmaxη0 = 12.8) is employed for the case with Mt0 of 0.9.

In this section, our primary focus is on the small-scale spectral behaviours, which
require numerical simulations with sufficiently high grid resolutions to achieve convergent
results. Consequently, we carried out grid-independence tests for both USP and DNS
simulations. Our findings reveal that a grid resolution of 5123 is adequate for all the USP
simulations. For DNS simulations, a grid resolution of 5123 is sufficient for cases with Mt0
of 0.6 and 0.75, while a higher grid resolution of 7683 (kmaxη0 � 9.6) is necessary for the
case with Mt0 = 0.9.

5.1. Basic turbulent statistics
In previous studies employing the DSMC method (McMullen et al. 2022b, 2023),
researchers have demonstrated the statistical independence between thermal fluctuations
and turbulent fluctuations predicted by the deterministic NS equations. Consequently, it is
anticipated that the mean square fluctuations in USP simulations at a given time can be
expressed as 〈(δaUSP)

2〉 = 〈(δaDNS)
2〉 + 〈(δath)

2〉, where δaDNS represents the turbulent
fluctuations predicted by the DNS method.

To illustrate this relation, figure 4 presents the simulation results for the turbulent kinetic
energy K and the mean square pressure fluctuations (Prms)

2 in the case of Reλ0 = 103.3
and Mt0 = 0.9. Here, K is normalized by the initial value of DNS, and (Prms)

2 is
normalized by the square of initial pressure. As observed in figure 4, the results obtained
from USP simulations (solid lines) are notably larger than those obtained from DNS
(dotted lines), indicating the presence of thermal fluctuations, and the corresponding
results (Kth and (Pth

rms)
2) can be obtained at each time point using (2.2) and (2.5) with

F = 1838. By subtracting Kth and (Pth
rms)

2 directly from the USP results, we obtain results
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Figure 4. Time evolution of (a) normalized turbulent kinetic energy, and (b) normalized mean square value
of pressure fluctuations, for the case with Reλ0 = 103.3 and Mt0 = 0.9.

(dash-dotted lines) that perfectly align with those obtained from DNS. Note that the effects
of thermal fluctuations can also be reduced by averaging the USP flow field over time
intervals that are long compared with the simulation time step �t but short compared with
the Kolmogorov time scale τη (Gallis et al. 2021). The USP results obtained after this
short-time average procedure are also shown in figure 4 (dashed lines), which are in good
agreement with the DNS results.

Figure 5(a–c) shows the temporal evolutions of K/K0, (Prms/P0)
2 and Mt obtained from

both USP and DNS simulations for cases with different Mt0. The USP results correspond
to the short-time average flow field. In figure 5(a), since the time histories of K/K0 for
different Mt0 almost overlap, only the results for Mt0 = 0.6 and Mt0 = 0.9 are presented.
As observed from figure 5(a–c), the USP results exhibit excellent agreement with the
DNS results throughout the entire time range. For cases with higher Mt0, the fluctuations
of thermodynamic variables are amplified to greater magnitudes due to the increase of
compressibility. To further validate the accuracy of USP simulations, we compare the
probability density functions (PDFs) of the local Mach number Maloc obtained from both
the USP and DNS simulations. Here, Maloc is defined as (Samtaney et al. 2001; Chen et al.
2020)

Maloc = (u · u)1/2
√

γ RT
. (5.5)

Figure 5(d) shows the PDFs at t = 1.4Te0, where the USP results exhibit good agreement
with the DNS results across all three cases.

5.2. Effect of thermal fluctuations on spectra
In previous relevant numerical studies on 3-D turbulence (Bell et al. 2022; McMullen
et al. 2022b, 2023), researchers mainly focused on the effect of thermal fluctuations on the
spectra of the velocity field u. By employing the Helmholtz decomposition, we can further
consider the effect of thermal fluctuations on spectra of the solenoidal and compressible
velocity components (i.e. us and uc). Figure 6 presents the USP and DNS spectra of u,
uc and us at t = 1.4Te0, for the case of Mt0 = 0.9. The spectra are plotted against the
dimensionless wavenumber kη. Except for being slightly noisy, the USP spectra agree
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Figure 5. Panels (a–c) display the time evolutions of normalized turbulent kinetic energy, normalized mean
square pressure fluctuations and turbulent Mach number, respectively. Panel (d) displays the PDFs of the local
Mach number at t = 1.4Te0. All the USP results are obtained based on the short-time average flow field without
thermal fluctuations.

well with the DNS spectra at small wavenumbers. In the high wavenumber range, the DNS
spectra exhibit a continuous decrease, whereas the USP spectra exhibit a quadratic growth
with respect to k, which corresponds to the effect of thermal fluctuations (Bandak et al.
2022; Bell et al. 2022; McMullen et al. 2022b). In figure 6, we further compare E(k), Ec(k)
and Es(k) obtained by USP at large wavenumbers (see the inset), illustrating the relation of
E(k) = 1.5Es(k) = 3Ec(k). The USP results support the conclusion drawn in § 2 that the
energy of uth

s is twice the energy of uth
c in the wavenumber space (see discussions before

(2.16)).
In figure 7, we present E(k), Es(k) and Ec(k) obtained from USP and DNS simulations at

t = 1.4Te0 under different Mt0 conditions, in order to study the effect of compressibility on
the spectra. According to the discussions in § 4, the thermal fluctuation spectra obtained by
USP simulations are overestimated due to the use of a simulation ratio F > 1. By setting
F = 1, we can obtain the spectra of thermal fluctuations corresponding to the real gases.
The cross-over wavenumbers (kc, ks

c and kc
c) for the real gas flows are further estimated as

the intersections of E(k), Es(k) and Ec(k) obtained by DNS with the thermal fluctuation
spectra (McMullen et al. 2022b).

987 A29-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.342


Thermal fluctuations in compressible isotropic turbulence

k2

10–1

10–14

10–12

10–12

2 3 4 5

E (USP)
1.5Es (USP)

E (USP)

Es (USP)

E (DNS)

Es (DNS)

Ec (DNS)

Ec (USP)

3Ec (USP)

10–11

10–10

10–8

100

kη

E
n
er

g
y
 s

p
ec

tr
u
m

Figure 6. Energy spectra for the velocity field and its two components obtained from USP and DNS
simulations at t = 1.4Te0, for the case of Reλ0 = 103.3 and Mt0 = 0.9. The inset shows the relationship between
E(k), Ec(k) and Es(k) obtained from USP simulations at large wavenumbers.

As observed from figure 7(a), kcη lies between 2.3 and 3.1 for F = 1, corresponding
to η/lc in the range of 0.37 to 0.49 (lc = 2π/kc), indicating that thermal fluctuations
dominate E(k) at spatial scales slightly larger than the Kolmogorov length scale. The
similar results were also reported by McMullen et al. (2022b) and Bell et al. (2022) in
their simulations of 3-D turbulence, where they found η/lc ≈ 0.5. More interestingly,
with the increase of Mt, it is noteworthy that ks

cη remains relatively stable around 2.3
(see figure 7b), whereas kc

cη changes significantly from 2.1 to 3.4 (see figure 7c). This
observation suggests that the influence of thermal fluctuations on uc is more responsive
to changes in compressibility compared with that on us. Despite the USP simulations
being performed with a large simulation ratio (F = 1838), the trends of the cross-over
wavenumbers predicted by USP are completely consistent with those observed in real
gases.

Since compressible turbulent flows own significant features of the fluctuations in
thermodynamic variables, it is of interest to study their spectra under the presence of
thermal fluctuations. Figure 8 shows the spectra of T , n and P obtained by USP and DNS
simulations at t = 1.4Te0 for different cases, where the USP spectra grow quadratically
with k in the high wavenumber range, indicating the effect of thermal fluctuations.
Following the previous discussions, we calculate the thermal fluctuation spectra with
F = 1 to obtain the cross-over wavenumbers kT , kn and kP for the real gas flows. It is
interesting to observe that, as Mt increases, the ranges of variation for kTη, knη and kPη

are (2.1, 3.3), (2.1, 3.4) and (2.1, 3.7), respectively, which are close to the aforementioned
trend observed for kc

cη. To further verify the coupling relationship between the spectra of
thermodynamic variables and the spectrum of uc, in figure 9 we present the corresponding
USP results for the cases with Mt0 = 0.6 and Mt0 = 0.9, following the normalization rules
that the integral of the spectrum over the entire wavenumber range is equal to 1. It can be
seen that the spectra of all the thermodynamic variables show good agreement with Ec(k),
indicating that the spatial correlations of thermodynamic fluctuations are dominated by the
compressible mode of the velocity field. It is worth noting that this phenomenon was also
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Figure 7. Values of E(k) (a), Es(k) (b) and Ec(k) (c) obtained from USP and DNS simulations at t = 1.4Te0,
for cases with different Mt0. The thermal fluctuation spectra with F = 1 are also shown for comparison. The
insets are the enlarged views showing the intersection points between thermal fluctuation spectra and DNS
spectra (i.e. the cross-over wavenumbers for the real gases).

reported in our previous work, where we simulated the 2-D decaying isotropic turbulence
using the DSMC method (Ma et al. 2023).

6. Thermal fluctuations and the turbulence predictability

Our research above indicates that thermal fluctuations have a significant impact on the
turbulent spectra at length scales comparable to the turbulent dissipation length scale. On
the other hand, this suggests that the large-scale turbulence statistics are unaffected by
thermal fluctuations. However, if we shift our focus to the turbulent flow field structures,
the situation may be quite different. Considering the current experimental challenges in
directly measuring thermal fluctuations in turbulent flows (Bandak et al. 2022), the initial
state of thermal fluctuations remains unknown when we attempt to predict the subsequent
evolution of turbulence. Due to the chaotic nature of turbulent flows, even tiny deviations
in the initial thermal fluctuations may lead to the unpredictability of large-scale turbulence
structures after a certain period of time (Betchov 1961; Ruelle 1979; Bandak et al. 2022).
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Case Kn0 Re0 Mt0 Resolution 〈Np〉 F �t/τmic0 �Lcell/λmic0 kmaxηΩ0 (kmaxη0)

2-D 0.00025 795 1.0 10242 400 6194 2 3.9 11.8
2-D 0.000125 1590 1.0 20482 400 6194 2 3.9 18.7
2-D 0.000083 2385 1.0 30722 400 6194 2 3.9 24.5
3-D 0.00025 954 1.2 10243 25 7354 2 3.9 7.84

Table 3. The USP simulation parameters for the study of turbulence predictability.

In this section, we employ the USP method to study the predictability of compressible
decaying isotropic turbulence for both 2-D and 3-D cases. The initial temperature and
pressure of the simulation cases are consistent with those in the previous sections, and
the other simulated parameters are shown in table 3. Note that the initial Taylor Reynolds
number has different definitions for 2-D and 3-D turbulent flows, as shown in (4.2b) and
(5.4b), respectively. Therefore, in table 3 we provide the initial global Reynolds number
Re0, which is given as

Re0 = U0L
2πν0

, (6.1)

where L is the side length of the simulation domain. Based on L, one can also calculate
the initial global Knudsen numbers as Kn0 = λmic0/L. Given the significantly higher
computational cost of 3-D simulations compared with 2-D simulations, our current focus
is limited to a single 3-D case with Kn0 = 0.00025. In contrast, for the 2-D case, we
consider three distinct conditions with Kn0 ranging from 0.000083 to 0.00025.

To investigate the effect of thermal fluctuations on the predictability of turbulence, note
that the velocity field in a USP simulation is initialized as uUSP

0 = uNS
0 + uth

0 . Therefore, for
both 2-D and 3-D cases, we can create an ensemble of realizations starting with the same
uNS

0 , but with different uth
0 generated using independent random number streams. This

approach ensures that each realization initially differs from others solely due to thermal
fluctuations.

Figure 10 shows the temporal evolution of the vorticity fields for two realizations of 2-D
decaying turbulence with Re0 = 1590. Since we focus on the predictability of large-scale
structures in turbulent flows, the contours are plotted based on ‘coarse-grained’ cells with
a lower resolution, i.e. the length of coarse-grained cells L/Ng is much larger than the
original cell length �Lcell. As seen in figure 10(a,d), the vorticity fields of two realizations
are identically the same at t = 0, indicating that the thermal fluctuations have no effect
on the initial large-scale turbulent structures. At t = 23Te0, the vorticity fields of two
realizations show slight differences (see figure 10b,e), and finally the vorticity fields
show significant divergence at t = 34.6Te0 (see figure 10c, f ). For the 3-D case, a similar
phenomenon is observed in figure 11, where we compare the velocity magnitudes Umag of
two realizations. At t = 16.9Te0, which corresponds to the ending time of 3-D simulations,
the velocity fields of the two realizations show observable differences (see figure 11c, f ).
Therefore, it can be concluded that the initial differences in thermal fluctuations will lead
to the unpredictability of large-scale structures of turbulence after a certain period of time.
Note that our observations in figures 10 and 11 align with findings reported by Gallis et al.
(2021), who employed the DSMC method to simulate the 3-D Taylor–Green (T-G) vortex
flow. During the latter stages of the T-G flow decay, the velocity field predicted by DSMC
shows great differences compared with the prediction of the deterministic DNS method,
which can be attributed to thermal fluctuations.
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Figure 10. Temporal evolution of the vorticity field for 2-D decaying turbulence with Re0 = 1590 and Mt0 =
1. Panels (a–c) and (d–f ) correspond to two realizations. The contours are plotted based on coarse-grained cells
with a lower resolution (N2

g ).

To quantify the divergence between different flow realizations, we define the local error
velocity field as (Boffetta et al. 1997; Boffetta & Musacchio 2017)

uerror(r, t) = 1√
2
(u1(r, t) − u2(r, t)), (6.2)

where u1 and u2 represent the velocity fields of two independent realizations. In figure 12,
we compare the energy spectra of original velocity fields and error velocity fields at
different time points for both 2-D and 3-D cases. The 2-D results are averaged over
five independent realizations, while the 3-D results are averaged over three independent
realizations. Since uth

0 in each pair of realizations can be considered as two sets of
independent Gaussian random variables (Landau & Lifshitz 1980), the initial error velocity
field can be regarded as a new thermal fluctuation field with the same Gaussian statistics.
As shown in figure 12, the error spectra Eerr at t = 0 grow linearly/quadratically with k for
2-D/3-D cases, reflecting the basic features of thermal fluctuations. As time progresses,
Eerr is still dominated by thermal fluctuations in the high wavenumber region, while
gradually approaching E in the low wavenumber region. This indicates that the initial
errors of thermal fluctuations propagate to the larger scales. It is worth noting that, the
‘inverse cascade’ of the error velocity field has also been observed in the previous studies
based on the deterministic NS equations (Métais & Lesieur 1986; Boffetta et al. 1997;
Boffetta & Musacchio 2017; Berera & Ho 2018), where the divergence of velocity field
trajectories is achieved by initially introducing an artificial perturbation. Compared with
these works, in our current research, the initial errors originate from thermal fluctuations,

987 A29-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.342


Q. Ma, C. Yang, S. Chen, K. Feng, Z. Cui and J. Zhang

Umag (m s–1)

1.1 × 103

7.3 × 102

3.7 × 102

0

Umag (m s–1)

4.5 × 102

1.5 × 102

0

3.0 × 102

Umag (m s–1)

1.4 × 102

9.3 × 101

4.7 × 101

0

1.1 × 103

7.3 × 102

3.7 × 102

0

4.5 × 102

1.5 × 102

0

3.0 × 102
1.4 × 102

9.3 × 101

4.7 × 101

0

Umag (m s–1) Umag (m s–1) Umag (m s–1)

z

x y

z

x y

z

x y

z

x y

z

x y

z

x y

(a) (b) (c)

(d ) (e) ( f )

t = 4.2Te0, Ng
3 = 643 t = 16.9Te0, Ng

3 = 643t = 0, Ng
3 = 643

t = 4.2Te0, Ng
3 = 643 t = 16.9Te0, Ng

3 = 643t = 0, Ng
3 = 643

Figure 11. Temporal evolution of the velocity field for 3-D decaying turbulence with Re0 = 954 and Mt0 =
1.2. Panels (a–c) and (d–f ) correspond to two realizations. The contours are plotted based on coarse-grained
cells with a lower resolution (N3

g ).

(a) (b)

10–8

10–10

10–12

E
n
er

g
y
 s

p
ec

tr
u

m
 (

2
-D

)

E
n
er

g
y
 s

p
ec

tr
u
m

 (
3
-D

)

10–14

10–16

10–6

10–8

E (t = 0)
E (t = 11.5Te0)
E (t = 34.6Te0)
Eerr (t = 0)
Eerr (t = 11.5Te0)
Eerr (t = 34.6Te0)

k1

k/kmin k/kmin

E (t = 0)
E (t = 4.2Te0)
E (t = 16.9Te0)
Eerr (t = 0)
Eerr (t = 4.2Te0)
Eerr (t = 16.9Te0)

10–10

10–12

10–14

100 101 102 103 100 101 102

k2

Figure 12. Energy spectra of the original velocity field and the error velocity field at different time points, for
2-D case with Re0 = 1590 (a) and 3-D case with Re0 = 954 (b).

which are inherent properties of fluids. Furthermore, the influence of thermal fluctuations
persists throughout the turbulent evolution process, rather than being limited to the initial
moment.

In §§ 4 and 5, we study the impact of thermal fluctuations on turbulence spectra by
evaluating the cross-over wavenumbers associated with thermal fluctuations. Similarly,
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Length scale ratio t = 0 t = 11.5Te0 t = 34.6Te0

ηΩ/λ 23.24 34.57 53.22
ηΩ/lc,err — 0.52 0.50

Table 4. Ratios of different length scales for the 2-D case presented in figure 12(a). Here, ηΩ , λ and lc,err
represent the enstrophy dissipation length scale, molecular mean free path and cross-over length scale for Eerr,
respectively.

Length scale ratio t = 0 t = 4.2Te0 t = 16.9Te0

η/λ 9.75 10.39 26.09
η/lc,err — 0.18 0.22

Table 5. Ratios of different length scales for the 3-D case presented in figure 12(b). Here, η, λ and lc,err
represent the Kolmogorov length scale, molecular mean free path and cross-over length scale for Eerr,
respectively.

we can determine the cross-over wavenumber kc,err for the error velocity spectrum Eerr,
and the cross-over length scale can be further calculated as lc,err = 2π/kc,err. In tables 4
and 5, we present the ratios of the dissipation scales (ηΩ for two dimensions, η for three
dimensions) to the molecular free path λ and the cross-over length scale lc,err. These ratios
correspond to the USP results at various time points discussed in figure 12. Note that the
results for ηΩ/lc,err (η/lc,err) are not shown for t = 0, as Eerr is initially dominated by
thermal fluctuations over the full wavenumber range. As depicted in tables 4 and 5, λ
is approximately one order of magnitude lower than ηΩ (η), and the ratios of ηΩ (η)
to λ increase over time. This phenomenon is a direct result of the substantial growth in
dissipation length scales as turbulence decays. In contrast, lc,err remains comparable to
ηΩ (η) throughout the turbulence decay process, aligning with the conclusions drawn in
§§ 4 and 5.

Based on the 2-D cases with varying Kn0, we can further analyse the error growth
behaviours across different Reynolds numbers. Based on the error velocity field uerror, we
define the error kinetic energy as

Kerror = 0.5〈|uerror|2〉. (6.3)

In figure 13(a), we present the temporal evolution of Kerror and Kth for 2-D cases
with different Re0, where Kth denotes the kinetic energy of thermal fluctuations. It can
be observed that Kerror initially equals Kth, as the initial error between different flow
realizations results solely from thermal fluctuations. As time progresses, Kth increases
slowly due to rising temperatures, while Kerror exhibits a more rapid increase compared
with Kth, reflecting the chaotic nature of turbulent flows. Moreover, as Re0 increases, it
becomes apparent that the error growth occurs earlier, leading to a higher Kerror. It is
noteworthy that a similar trend was observed by Kida et al. (1990), who employed the
DNS method to investigate the error growth in 2-D decaying isotropic turbulence.

We further calculate the relative error energy r as the ratio of Kerror to the energy of
the original velocity field K. The results of r correspond to different Re0 are shown in
figure 13(b), revealing a similar trend to that of Kerror. It is worth noting that, in prior
investigations of turbulence predictability, researchers found that the growth of r may
conform to the formula r(t) = r(0) exp(2λLyt), where λLy is the (effective) Lyapunov
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Figure 13. (a) Displays the temporal evolution of error kinetic energy Kerror and thermal fluctuation energy
Kth for 2-D cases with different Re0, and (b) displays the corresponding results of relative error energy r =
Kerror/K. The y-axis of the figure is plotted on a logarithmic scale.

exponent (Boffetta et al. 1997). However, we do not observe a clear exponential growth
pattern in r from figure 13(b). This is primarily due to the fact that, in our simulations,
the initial velocity error due to thermal fluctuations cannot be treated as an infinitesimal
perturbation (Boffetta & Musacchio 2017). Furthermore, considering the relatively low
Reynolds number in our current simulations, the phenomenon of exponential growth may
not be readily observable (Kida et al. 1990).

In figure 14, we conduct a comparative analysis of the energy spectra of the original
velocity field E and the error velocity field Eerr at t = 27Te0 for 2-D cases with different
Re0. It is evident that with an increase in Re0, the velocity error propagates more rapidly
to larger scales, leading to a closer alignment between E and Eerr in the low wavenumber
range. Moreover, as the increase of Re0, both E and Eerr show a more distinct inertial
range, with their scaling laws approaching the k−3[ln(k)]−1/3 limit, consistent with the
Kraichnan-Batchelor-Leith (KBL) theory (Kraichnan 1971).

In addition to the turbulent velocity field, we further investigate the effect of thermal
fluctuations on the predictability of the turbulent thermodynamic field, and this aspect has
not been reported in the literature. We define the local error fields of the thermodynamic
variables as

gerror(r, t) = 1√
2
(g1(r, t) − g2(r, t)), (6.4)

where g stands for T , n and P. Figure 15 presents a comparison between the spectra of the
original temperature fields and the error temperature fields for both 2-D and 3-D cases.
Similar comparisons can also be made for number density and pressure. At the beginning
of USP simulations, the fluctuations of thermodynamic variables are solely attributed to
thermal fluctuations, resulting in a complete coincidence between ET and ET,err. Then, the
compressibility of turbulence causes a rapid amplification of ET to a high magnitude in
the low wavenumber region, while ET,err requires a considerably longer time to approach
ET . In figures 16(a,d) and 17(a,d), we present the temperature fields of two realizations
during the late stage of turbulence decay for 2-D and 3-D cases, respectively. Compared
with the 3-D cases, the differences between the two realizations are more pronounced for
the 2-D cases, which can be supported by figure 15(a) where ET,err almost coincides with
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Figure 14. Energy spectra of the original velocity field and the error velocity field at t = 27Te0, for the 2-D
cases with different Re0.

ET at t = 34.6Te0. In figures 16 and 17, we further present the contours of density fields
and pressure fields, showing similarities to those of temperature fields.

In § 5, we have discussed the coupling relationship between turbulent thermodynamic
variables and the compressible velocity component (see figure 9). To see whether
this relationship holds for the turbulent error field, we compare the corresponding
area-normalized spectra for both 2-D and 3-D cases in figure 18. It is evident that
the error spectra of all the thermodynamic variables are in good agreement with the
spectrum of the compressible component of the error velocity field. This suggests that
in compressible decaying turbulence, the predictabilities of the thermodynamic variables
are closely related to the predictability of the compressible velocity component.

7. Discussion

In § 5, we employed the USP method to simulate 3-D compressible decaying isotropic
turbulence (CDIT) with an initial solenoidal velocity field, focusing on the influence of
molecular thermal fluctuations. In recent years, other researchers have examined this case
using alternative numerical approaches, with a specific emphasis on the pressure-dilatation
behaviours (Cao et al. 2019; Qi et al. 2022). For instance, Qi et al. (2022) employed the
discrete unified gas-kinetic scheme to simulate CDIT at low and moderate Mt0. Based
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Figure 15. Spectra of the original temperature field and the error temperature field at different time points,
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Figure 16. Temperature, number density and pressure fields for 2-D decaying turbulence with Re0 = 1590
and Mt0 = 1, at t = 34.6Te0. Panels (a–c) and (d–f ) correspond to two realizations.

on the time evolution of solenoidal dissipation and pressure-dilatation terms in the TKE
equation, they divided the turbulent decaying process into four stages. Furthermore, their
findings indicate that the pressure-dilatation transfer occurs more rapidly than the process
of vortex stretching and the formation of small-scale vortical structures.
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Figure 17. Temperature, number density and pressure fields for 3-D decaying turbulence with Re0 = 954 and
Mt0 = 1.2, at t = 16.9Te0. Panels (a–c) and (d–f ) correspond to two realizations.
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Figure 18. (a) Normalized error spectra of compressible velocity component, solenoidal velocity component,
temperature, number density and pressure for 2-D decaying turbulence (Re0 = 954) at t = 34.6Te0. (b) The
error spectra corresponding to the 3-D decaying turbulence at t = 16.9Te0.

Note that the above works focus on the volume-averaged statistics and do not describe
the scale dependence of internal-kinetic energy exchange due to pressure dilatation. To
address this issue, Praturi & Girimaji (2019) numerically studied the effect of pressure
dilatation on spectral evolution in CDIT using the GKS. They examined three initial
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velocity conditions, solenoidal, dilatational and mixed, and their findings indicate that
the large-scale dilatational motions exhibit high levels of exchange between internal and
kinetic energies due to the pressure-dilatation effect. Furthermore, they found that the high
wavenumbers in the dilatational velocity field contain more energy than their solenoidal
counterparts. This phenomenon is attributed to the absence of pressure action in enforcing
a divergence-free condition, allowing for the formation of shocks. It is worth noting that
this phenomenon is also observed in our study, where the compressible (dilatational)
velocity spectra Ec(k) exhibit greater values compared with the solenoidal velocity spectra
Es(k) in the high wavenumber range (see figures 3 and 6). As a consequence, this leads
to the cross-over wavenumber of Ec(k) being larger than that of Es(k) under high Mt0
conditions.

In the current USP simulations, the initial thermodynamic field exhibits exclusively
thermal fluctuations, with no occurrence of large-scale thermodynamic fluctuations. On
the other hand, many researchers have previously conducted numerical studies on CDIT
with initial thermodynamic fluctuations (Ristorcelli & Blaisdell 1997; Jaberi, Livescu
& Madnia 2000; Lee, Yu & Girimaji 2006). Among these works, Lee et al. (2006)
employed the hybrid thermal lattice Boltzmann method to numerically examine CDIT
under the influence of large-scale initial temperature fluctuations. They found that the
overall effect of pressure dilatation is to transfer energy from thermal to kinetic modes at
large scales. The transferred kinetic energy is manifested as the dilatational velocity field,
with subsequent cascading of large-scale dilatational fluctuations towards smaller scales.

In this study, large-scale temperature fluctuations primarily result from the
compressibility of turbulence. Our numerical findings indicate that the spatial correlation
of temperature fluctuations is dominated by the compressible mode of the velocity field
(see figure 9). On the other hand, for incompressible turbulent flows, previous researchers
have studied temperature fluctuations arising from dissipation rate fluctuations (Bos,
Chahine & Pushkarev 2015; Pushkarev, Balarac & Bos 2017). In this context, temperature
is modelled as a passive scalar, and existing literature results demonstrate a strong
dependence of the wavenumber scaling of the temperature spectrum on the scaling of
the dissipation rate spectrum (Bos et al. 2015). The USP method employed in our study
can be directly applied to this scenario, allowing for further investigation into the impact
of thermal fluctuations.

8. Concluding remarks

In this work, we employed the USP method to numerically investigate the effects of
thermal fluctuations on CDIT. Compared with the traditional molecular methods such as
DSMC, USP can be applied with much larger time steps and cell sizes as it couples the
effects of molecular movements and collisions.

In both 2-D and 3-D simulations, it is found that the turbulent spectra of velocity
and thermodynamic variables are greatly affected by thermal fluctuations in the high
wavenumber range. The wavenumber scaling law of the thermal fluctuation spectra
depends on the spatial dimension d as k(d−1). By applying the Helmholtz decomposition
to the velocity field, we show that the thermal fluctuation spectra of solenoidal and
compressible velocity components (i.e. Es(k) and Ec(k)) follow an energy ratio of 1 : 1
for 2-D cases, while this ratio changes to 2 : 1 for 3-D cases.

For 3-D decaying turbulence, a comparative study was conducted between the USP
method and the DNS method based on the deterministic NS equations. The results
show that thermal fluctuations dominate the turbulent spectra below length scales (i.e.
the cross-over length scales) comparable to the Kolmogorov length scale η, which
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shows good agreement with the previous studies (Bell et al. 2022; McMullen et al.
2022b). Furthermore, it is observed that the cross-over wavenumbers of thermodynamic
spectra increase with Mt following a similar trend as the cross-over wavenumber of
Ec(k), indicating the coupling relationship between thermodynamic fluctuations and the
compressible mode of the velocity field.

In addition to the turbulent spectra, our results demonstrate that thermal fluctuations
also play an important role in the predictability of turbulence. Specifically, with initial
differences attributed solely to thermal fluctuations, different flow realizations exhibit
large-scale divergences in velocity and thermodynamic fields after a certain period of
time. By calculating the error spectra between flow realizations, our study reveals the
‘inverse error cascades’ for velocity and thermodynamic variables. Moreover, our results
suggest a strong correlation between the predictabilities of thermodynamic variables and
the predictability of the compressible velocity component.

In this study, we focused on the effects of thermal fluctuations on homogeneous isotropic
turbulence, but we expect thermal fluctuations to be important for other turbulent flow
scenarios, such as laminar–turbulent transition (Luchini 2016) and turbulent mixing (Eyink
& Jafari 2022). In the latter case where molecular diffusion becomes significant, there is
a need to extend the kinetic models that form the basis of USP for precise determination
of gas diffusion coefficients (Todorova & Steijl 2019). For the predictability of turbulence,
further research is required to investigate the error growth behaviours across a wider range
of Reynolds numbers, along with a detailed comparative analysis between 2-D and 3-D
cases.
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