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Basics

Topology, mainly algebraic topology, is the fundamental mathematical subject
on which topological data analysis is based. In this chapter, we introduce some
of the very basics of this subject that are used in this book. First, in Section 1.1,
we give the definition of a topological space and other notions such as open
and closed sets, covers, and subspace topology that are derived from it. These
notions are quite abstract in the sense that they do not require any geometry.
However, the intuition of topology becomes more concrete to nonmathemati-
cians when we bring geometry into the mix. Section 1.2 is devoted to make
the connection between topology and geometry through what is called metric
spaces.

Maps such as homeomorphism and homotopy equivalence play a signifi-
cant role to relate topological spaces. They are introduced in Section 1.3. At
the heart of these definitions sits the important notion of continuous functions
which generalizes the concept mainly known for Euclidean domains to topo-
logical spaces. Certain categories of topological spaces become important for
their wide presence in applications. Manifolds are one such category which
we introduce in Section 1.4. Functions on them satisfying certain conditions
are presented in Section 1.5. They are well known as Morse functions. The
critical points of such functions relate to the topology of the manifold they are
defined on. We introduce these concepts in the smooth setting in this chap-
ter, and later adapt them for the piecewise-linear domains that are amenable to
finite computations.

1.1 Topological Space

The basic object in a topological space is a ground set whose elements are
called points. A topology on these points specifies how they are connected
by listing what points constitute a neighborhood – the so-called open set.
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2 1 Basics

The expression “rubber-sheet topology” commonly associated with the term
“topology” exemplifies this idea of connectivity of neighborhoods. If we bend
and stretch a sheet of rubber, it changes shape but always preserves the
neighborhoods in terms of the points and how they are connected.

We first introduce basic notions from point set topology. These notions are
prerequisites for more sophisticated topological ideas – manifolds, homeomor-
phism, isotopy, and other maps – used later to study algorithms for topological
data analysis. Homeomorphisms, for example, offer a rigorous way to state
that an operation preserves the topology of a domain, and isotopy offers a rig-
orous way to state that the domain can be deformed into a shape without ever
colliding with itself.

Perhaps it is more intuitive to understand the concept of topology in the pres-
ence of a metric because then we can use the metric balls such as Euclidean
balls in a Euclidean space to define neighborhoods – the open sets. Topolog-
ical spaces provide a way to abstract out this idea without a metric or point
coordinates, so they are more general than metric spaces. In place of a metric,
we encode the connectivity of a point set by supplying a list of all of the open
sets. This list is called a system of subsets of the point set. The point set and its
system together describe a topological space.

Definition 1.1. (Topological space) A topological space is a point set T
endowed with a system of subsets T , which is a set of subsets of T that satisfies
the following conditions:

● ∅,T ∈ T .
● For every U ⊆ T , the union of the subsets in U is in T .
● For every finite U ⊆ T , the common intersection of the subsets in U is in T .

The system T is called a topology on T. The sets in T are called the open
sets in T. A neighborhood of a point p ∈ T is an open set containing p.

First, we give examples of topological spaces to illustrate the definition
above. These examples have the set T finite.

Example 1.1. Let T={0, 1, 3, 5, 7}. Then, T ={∅, {0}, {1}, {5}, {1, 5}, {0, 1},
{0, 1, 5}, {0, 1, 3, 5, 7}} is a topology because ∅ and T are in T as required by
the first axiom, the union of any sets in T is in T as required by the second
axiom, and the intersection of any two sets is also in T as required by the
third axiom. However, T = {∅, {0}, {1}, {1, 5}, {0, 1, 5}, {0, 1, 3, 5, 7}} is not
a topology because the set {0, 1} = {0} ∪ {1} is missing.
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(a) (b) (c)

Figure 1.1 Example 1.3: (a) a graph as a topological space, stars of the vertices
and edges as open sets; (b) a closed cover with three elements; and (c) an open
cover with four elements.

Example 1.2. Let T = {u, v, w}. The power set 2T = {∅, {u}, {v}, {w}, {u, v},
{u, w}, {v,w}, {u, v, w}} is a topology. For any ground set T, the power set is
always a topology on it which is called the discrete topology.

One may take a subset of the power set as a ground set and define a topology,
as the next example shows. We will recognize later that the ground set here
corresponds to simplices in a simplicial complex and the “stars” of simplices
generate all open sets of a topology.

Example 1.3. Let T = {u, v, w, z, (u, z), (v, z), (w, z)}; this can be viewed
as a graph with four vertices and three edges as shown in Figure 1.1. Let

● T1 = {{(u, z)}, {(v, z)}, {(w, z)}} and
● T2 = {{(u, z), u}, {(v, z), v}, {(w, z), w}, {(u, z), (v, z), (w, z), z}}.
Then, T = 2T1∪T2 is a topology because it satisfies all three axioms. All open
sets of T are generated by the union of elements in B = T1∪T2 and there is no
smaller set with this property. Such a set B is called a basis of T . We will see
later in the next chapter (Section 2.1) that these are open stars of all vertices
and edges.

We now present some more definitions that will be useful later.

Definition 1.2. (Closure; Closed sets) A set Q is closed if its complement
T \ Q is open. The closure Cl Q of a set Q ⊆ T is the smallest closed set
containing Q.

In Example 1.1, the set {3, 5, 7} is closed because its complement {0, 1} in
T is open. The closure of the open set {0} is {0, 3, 7} because it is the smallest
closed set (complement of open set {1, 5}) containing 0. In Example 1.2, all
sets are both open and closed. In Example 1.3, the set {u, z, (u, z)} is closed,
but the set {z, (u, z)} is neither open nor closed. Interestingly, observe that
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{z} is closed. The closure of the open set {u, (u, z)} is {u, z, (u, z)}. In all
examples, the sets ∅ and T are both open and closed.

Definition 1.3. Given a topological space (T, T ), the interior Int A of a sub-
set A ⊆ T is the union of all open subsets of A. The boundary of A is Bd
A = Cl A \ Int A.

The interior of the set {3, 5, 7} in Example 1.1 is {5} and its boundary is
{3, 7}.

Definition 1.4. (Subspace topology) For every point set U ⊆ T, the topol-
ogy T induces a subspace topology on U, namely the system of open subsets
U = {P ∩ U : P ∈ T }. The point set U endowed with the system U is said to
be a topological subspace of T.

In Example 1.1, consider the subset U = {1, 5, 7}. It has the subspace
topology

U = {∅, {1}, {5}, {1, 5}, {1, 5, 7}}.

In Example 1.3, the subset U = {u, (u, z), (v, z)} has the subspace topology

{∅, {u, (u, z)}, {(u, z)}, {(v, z)}, {(u, z), (v, z)}, {u, (u, z), (v, z)}}.

Definition 1.5. (Connected) A topological space (T, T ) is disconnected if
there are two disjoint non-empty open sets U, V ∈ T so that T = U ∪ V .
A topological space is connected if it is not disconnected.

The topological space in Example 1.1 is connected. However, the topolog-
ical subspace (Definition 1.4) induced by the subset {0, 1, 5} is disconnected
because it can be obtained as the union of two disjoint open sets {0, 1} and
{5}. The topological space in Example 1.3 is also connected, but the subspace
induced by the subset {(u, z), (v, z), (w, z)} is disconnected.

Definition 1.6. (Cover; Compact) An open (closed) cover of a topological
space (T, T ) is a collection C of open (closed) sets so that T = ⋃c∈C c. The
topological space (T, T ) is called compact if every open cover C of it has a
finite subcover, that is, there exists C ′ ⊆ C such that T = ⋃

c∈C ′ c and C ′ is
finite.

In Figure 1.1(b), the cover consisting of {{u, z, (u, z)}, {v, z, (v, z)}, {w, z,
(w, z)}} is a closed cover whereas the cover consisting of {{u, (u, z)}, {v, (v, z)},
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1.2 Metric Space Topology 5

{w, (w, z)}, {z, (u, z), (v, z), (w.z)}} in Figure 1.1(c) is an open cover. Any
topological space with finite point set T is compact because all of its covers
are finite. Thus, all topological spaces in the discussed examples are compact.
We will see examples of noncompact topological spaces where the ground set
is infinite.

In the above examples, the ground set T is finite. It can be infinite in general
and a topology may have uncountably infinitely many open sets containing
uncountably infinitely many points.

Next, we introduce the concept of quotient topology. Given a space (T, T )
and an equivalence relation ∼ on elements in T, one can define a topology
induced by the original topology T on the quotient set T/∼ whose elements
are equivalence classes [x] for every point x ∈ T.

Definition 1.7. (Quotient topology) Given a topological space (T, T ) and an
equivalence relation∼ defined on the set T, a quotient space (S, S) induced by
∼ is defined by the set S = T/∼ and the quotient topology S where

S := {U ⊆ S | {x : [x] ∈ U } ∈ T
}
.

We will see the use of quotient topology in Chapter 7 when we study Reeb
graphs.

Infinite topological spaces may seem baffling from a computational point
of view, because they may have uncountably infinitely many open sets con-
taining uncountably infinitely many points. The easiest way to define such a
topological space is to inherit the open sets from a metric space. A topology
on a metric space excludes information that is not topologically essential. For
instance, the act of stretching a rubber sheet changes the distances between
points and thereby changes the metric, but it does not change the open sets
or the topology of the rubber sheet. In the next section, we construct such
a topology on a metric space and examine it from the concept of limit
points.

1.2 Metric Space Topology

Metric spaces are a special type of topological space commonly encountered in
practice. Such a space admits a metric that specifies the scalar distance between
every pair of points satisfying certain axioms.

Definition 1.8. (Metric space) A metric space is a pair (T,d) where T is
a set and d is a distance function d : T × T → R satisfying the following
properties:
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6 1 Basics

● d(p, q) = 0 if and only if p = q for all p ∈ T;
● d(p, q) = d(q, p) for all p, q ∈ T;
● d(p, q) ≤ d(p, r)+ d(r, q) for all p, q, r ∈ T.

It can be shown that the three axioms above imply that d(p, q) ≥ 0 for every
pair p, q ∈ T. In a metric space T, an open metric ball with center c and radius
r is defined to be the point set Bo(c, r) = {p ∈ T : d(p, c) < r}. Metric balls
define a topology on a metric space.

Definition 1.9. (Metric space topology) Given a metric space T, all metric
balls {Bo(c, r) | c ∈ T and 0 < r ≤ ∞} and their union constituting the open
sets define a topology on T.

All definitions for general topological spaces apply to metric spaces with
the above defined topology. However, we give alternative definitions using the
concept of limit points which may be more intuitive.

As we have mentioned already, the heart of topology is the question of what
it means for a set of points to be connected. After all, two distinct points cannot
be adjacent to each other; they can only be connected to one another by passing
through uncountably many intermediate points. The idea of limit points helps
express this concept more concretely, specifically in the case of metric spaces.

We use the notation d(·, ·) to express minimum distances between point sets
P, Q ⊆ T:

d(p, Q) = inf{d(p, q) : q ∈ Q},
d(P, Q) = inf{d(p, q) : p ∈ P, q ∈ Q}.

Definition 1.10. (Limit point) Let Q ⊆ T be a point set. A point p ∈ T is a
limit point of Q, also known as an accumulation point of Q, if for every real
number ε > 0, however tiny, Q contains a point q �= p such that d(p, q) < ε.

In other words, there is an infinite sequence of points in Q that gets succes-
sively closer and closer to p – without actually being p – and gets arbitrarily
close. Stated succinctly, d(p, Q \ {p}) = 0. Observe that it does not matter
whether p ∈ Q or not.

To see the parallel between the definitions given in this subsection and the
definitions given before, it is instructive to define limit points also for general
topological spaces. In particular, a point p ∈ T is a limit point of a set Q ⊆ T
if every open set containing p intersects Q.

Definition 1.11. (Connected) A point set Q ⊆ T is called disconnected if Q
can be partitioned into two disjoint non-empty sets U and V so that there is no
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(a) (b)

Figure 1.2 (a) The point set is disconnected; it can be partitioned into two con-
nected subsets shaded differently. (b) The point set is connected; the black point
at the center is a limit point of the points shaded lightly.

(a) (b)

Figure 1.3 Closed, open, and relatively open point sets in the plane. Dashed edges
and open circles indicate points missing from the point set.

point in U that is a limit point of V , and no point in V that is a limit point of U .
(See Figure 1.2[a] for an example.) If no such partition exists, Q is connected,
like the point set in Figure 1.2(b).

We can also distinguish between closed and open point sets using the con-
cept of limit points. Informally, a triangle in the plane is closed if it contains
all the points on its edges, and open if it excludes all the points on its edges, as
illustrated in Figure 1.3. The idea can be formally extended to any point set.

Definition 1.12. (Closure; Closed; Open) The closure of a point set Q ⊆ T,
denoted Cl Q, is the set containing every point in Q and every limit point of Q.
A point set Q is closed if Q = Cl Q, that is, Q contains all its limit points. The
complement of a point set Q is T \ Q. A point set Q is open if its complement
is closed, that is, T \ Q = Cl (T \ Q).

For example, consider the open interval (0, 1) ⊂ R, which contains every
r ∈ R so that 0 < r < 1. Let [0, 1] denote a closed interval (0, 1) ∪ {0} ∪ {1}.
The numbers 0 and 1 are both limit points of the open interval, so Cl (0, 1) =
[0, 1] = Cl [0, 1]. Therefore, [0, 1] is closed and (0, 1) is not. The numbers 0
and 1 are also limit points of the complement of the closed interval, R \ [0, 1],
so (0, 1) is open, but [0, 1] is not.
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The definition of open set of course depends on the space being consid-
ered. A triangle τ that is missing the points on its edges is open in the
two-dimensional affine Euclidean space supporting τ . However, it is not open
in the Euclidean space R3. Indeed, every point in τ is a limit point of R3 \ τ ,
because we can find sequences of points that approach τ from the side. In rec-
ognition of this caveat, a simplex σ ⊂ Rd is said to be relatively open if it
is open relative to its affine hull. Figure 1.3 illustrates this fact where, in this
example, the metric space is R2.

We can define the interior and boundary of a set using the notion of limit
points also. Informally, the boundary of a point set Q is the set of points where
Q meets its complement T \ Q. The interior of Q contains all the other points
of Q.

Definition 1.13. (Boundary; Interior) The boundary of a point set Q in a met-
ric space T, denoted Bd Q, is the intersection of the closures of Q and its
complement; that is, Bd Q = Cl Q ∩ Cl (T \ Q). The interior of Q, denoted
Int Q, is Q \ Bd Q = Q \ Cl (T \ Q).

For example, Bd [0, 1] = {0, 1} = Bd (0, 1) and Int [0, 1] = (0, 1) =
Int (0, 1). The boundary of a triangle (closed or open) in the Euclidean plane
is the union of the triangle’s three edges, and its interior is an open triangle,
illustrated in Figure 1.3. The terms boundary and interior have similar subtlety
as open sets: the boundary of a triangle embedded in R3 is the whole triangle,
and its interior is the empty set. However, relative to its affine hull, its interior
and boundary are defined exactly as in the case of triangles embedded in the
Euclidean plane. Interested readers can draw the analogy between this obser-
vation and the definition of interior and boundary of a manifold that appear
later in Definition 1.23.

We have seen a definition of the compactness of a point set in a topological
space (Definition 1.6). We define it differently here for a metric space. It can
be shown that the two definitions are equivalent.

Definition 1.14. (Bounded; Compact) The diameter of a point set Q is
supp,q∈Q d(p, q). The set Q is bounded if its diameter is finite, and is
unbounded otherwise. A point set Q in a metric space is compact if it is closed
and bounded.

In the Euclidean space Rd we can use the standard Euclidean distance as
the choice of metric. On the surface of a coffee mug, we could choose the
Euclidean distance too; alternatively, we could choose the geodesic distance,
namely the length of the shortest path from p to q on the mug’s surface.
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Example 1.4. (Euclidean ball) In Rd , the Euclidean d-ball with center c and
radius r , denoted B(c, r), is the point set B(c, r) = {p ∈ Rd : d(p, c) ≤ r}.
A 1-ball is an edge, and a 2-ball is called a disk. A unit ball is a ball with
radius 1. The boundary of the d-ball is called the Euclidean (d − 1)-sphere
and denoted S(c, r) = {p ∈ Rd : d(p, c) = r}. The name expresses the fact
that we consider it a (d − 1)-dimensional point set – to be precise, a (d − 1)-
dimensional manifold – even though it is embedded in d-dimensional space.
For example, a circle is a 1-sphere, and a layman’s “sphere” in R3 is a 2-
sphere. If we remove the boundary from a ball, we have the open Euclidean
d-ball Bo(c, r) = {p ∈ Rd : d(p, c) < r}.

The topological spaces that are subspaces of a metric space such as Rd

inherit their topology as a subspace topology. Examples of topological sub-
spaces are the Euclidean d-ball Bd , Euclidean d-sphere Sd , open Euclidean
d-ball Bd

o , and Euclidean half-ball Hd , where

Bd = {x ∈ Rd : ‖x‖ ≤ 1},
Sd = {x ∈ Rd+1 : ‖x‖ = 1},
Bd

o = {x ∈ Rd : ‖x‖ < 1},
Hd = {x ∈ Rd : ‖x‖ < 1 and xd ≥ 0}.

1.3 Maps, Homeomorphisms, and Homotopies

The equivalence of two topological spaces is determined by how the points
that comprise them are connected. For example, the surface of a cube can be
deformed into a sphere without cutting or gluing it because they are connected
the same way. They have the same topology. This notion of topological equiv-
alence can be formalized via functions that send the points of one space to
points of the other while preserving the connectivity.

This preservation of connectivity is achieved by preserving the open sets.
A function from one space to another that preserves the open sets is called
a continuous function or a map. Continuity is a vehicle to define topological
equivalence, because a continuous function can send many points to a single
point in the target space, or send no points to a given point in the target space.
If the former does not happen, that is, when the function is injective, we call
it an embedding of the domain into the target space. True equivalence is given
by a homeomorphism, a bijective function from one space to another which
has continuity as well as a continuous inverse. This ensures that open sets are
preserved in both directions.
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Figure 1.4 Each point set in this figure is homeomorphic to the point set above or
below it, but not to any of the others. Open circles indicate points missing from
the point set, as do the dashed edges in the point sets second from the right.

Definition 1.15. (Continuous function; Map) A function f : T→ U from the
topological space T to another topological space U is continuous if for every
open set Q ⊆ U, f −1(Q) is open. Continuous functions are also called maps.

Definition 1.16. (Embedding) A map g : T→ U is an embedding of T into U
if g is injective.

A topological space can be embedded into a Euclidean space by assigning
coordinates to its points so that the assignment is continuous and injective. For
example, drawing a triangle on paper is an embedding of S1 into R2. There are
topological spaces that cannot be embedded into a Euclidean space, or even
into a metric space – these spaces cannot be represented by any metric.

Next we define a homeomorphism that connects two spaces that have
essentially the same topology.

Definition 1.17. (Homeomorphism) Let T and U be topological spaces. A
homeomorphism is a bijective map h : T → U whose inverse is continuous
too.

Two topological spaces are homeomorphic if there exists a homeomorphism
between them.

Homeomorphism induces an equivalence relation among topological spaces,
which is why two homeomorphic topological spaces are called topologically
equivalent. Figure 1.4 shows pairs of homeomorphic topological spaces. A less
obvious example is that the open d-ball Bd

o is homeomorphic to the Euclidean
space Rd , given by the homeomorphism h(x) = x/(1− ||x ||). The same map
also exhibits that the half-ball Hd is homeomorphic to the Euclidean half-space
{x ∈ Rd : xd ≥ 0}.

For maps between compact spaces, there is a weaker condition to be verified
for homeomorphisms because of the following property.
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(a) (b) (c)

Figure 1.5 Two tori knotted differently, one triangulated (c) and the other not (b).
Both are homeomorphic to the standard unknotted torus in (a), but not isotopic
to it.

Proposition 1.1. If T and U are compact metric spaces, every bijective map
from T to U has a continuous inverse.

One can take advantage of this fact to prove that certain functions are
homeomorphisms by showing continuity only in the forward direction. When
two topological spaces are subspaces of the same larger space, a notion of
similarity called isotopy exists which is stronger than homeomorphism. If two
subspaces are isotopic, one can be continuously deformed to the other while
keeping the deforming subspace homeomorphic to its original form all the
time. For example, a solid cube can be continuously deformed into a ball in
this manner.

Homeomorphic subspaces are not necessarily isotopic. Consider a torus
embedded in R3, illustrated in Figure 1.5(a). One can embed the torus in R3

so that it is knotted, as shown in Figure 1.5(b) and (c). The knotted torus is
homeomorphic to the standard, unknotted one. However, it is not possible to
continuously deform one to the other while keeping it embedded in R3 and
homeomorphic to the original. Any attempt to do so forces the torus to be “self-
intersecting” and thus not being a manifold. One way to look at this obstruction
is by considering the topology of the space around the tori. Although the knot-
ted and unknotted tori are homeomorphic, their complements in R3 are not.
This motivates us to consider both the notion of an isotopy, in which a torus
deforms continuously, and the notion of an ambient isotopy, in which not only
the torus deforms, but the entire R3 deforms with it.

Definition 1.18. (Isotopy) An isotopy connecting two spaces T ⊆ Rd and
U ⊆ Rd is a continuous map ξ : T×[0, 1] → Rd where ξ(T, 0) = T, ξ(T, 1) =
U, and for every t ∈ [0, 1], ξ(·, t) is a homeomorphism between T and its
image {ξ(x, t) : x ∈ T}. An ambient isotopy connecting T and U is a map ξ :
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Rd ×[0, 1] → Rd such that ξ(·, 0) is the identity function on Rd , ξ(T, 1) = U,
and for each t ∈ [0, 1], ξ(·, t) is a homeomorphism.

For an example, consider the map

ξ(x, t) = 1− (1− t)‖x‖
1− ‖x‖ x

that sends the open d-ball Bd
o to itself if t = 0, and to the Euclidean space

Rd if t = 1. The parameter t plays the role of time, that is, ξ(Bd
o , t) deforms

continuously from a ball at time zero to Rd at time one. Thus, there is an
isotopy between the open d-ball and Rd .

Every ambient isotopy becomes an isotopy if its domain is restricted from
Rd × [0, 1] to T × [0, 1]. It is known that if there is an isotopy between two
subspaces, then there exists an ambient isotopy between them. Hence, the two
notions are equivalent.

There is another notion of similarity among topological spaces that is weaker
than homeomorphism, called homotopy equivalence. It relates spaces that can
be continuously deformed to one another but the transformation may not pre-
serve homeomorphism. For example, a ball can shrink to a point, which is not
homeomorphic to it because a bijective function from an infinite point set to a
single point cannot exist. However, homotopy preserves some form of connec-
tivity, such as the number of connected components, holes, and/or voids. This
is why a coffee cup is homotopy equivalent to a circle, but not to a ball or a
point.

To get to homotopy equivalence, we first need the concept of homotopies,
which are isotopies without the homeomorphism.

Definition 1.19. (Homotopy) Let g : X → U and h : X → U be maps. A
homotopy is a map H : X×[0, 1] → U such that H(·, 0) = g and H(·, 1) = h.
Two maps are homotopic if there is a homotopy connecting them.

For example, let g : B3 → R3 be the identity map on a unit ball and
h : B3 → R3 be the map sending every point in the ball to the origin. The
fact that g and h are homotopic is demonstrated by the homotopy H(x, t) =
(1−t)·g(x). Observe that H(B3, t) deforms continuously a ball at time zero to
a point at time one. A key property of a homotopy is that, as H is continuous,
at every time t the map H(·, t) remains continuous.

For developing more intuition, consider two maps that are not homotopic.
Let g : S1 → S1 be the identity map from the circle to itself, and let h : S1 →
S1 map every point on the circle to a single point p ∈ S1. Although apparently
it seems that we can contract a circle to a point, that view is misleading because
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Figure 1.6 All three of the topological spaces are homotopy equivalent, because
they are all deformation retracts of the leftmost space.

the map H is required to map every point on the circle at every time to a point
on the circle. The contraction of the circle to a point is possible only if we
break the continuity, say by cutting or gluing the circle somewhere.

Observe that a homeomorphism relates two topological spaces T and U
whereas a homotopy or an isotopy (which is a special kind of homotopy)
relates two maps, thereby indirectly establishing a relationship between two
subspaces g(X) ⊆ U and h(X) ⊆ U. That relationship is not necessarily an
equivalent one, but the following is.

Definition 1.20. (Homotopy equivalent) Two topological spaces T and U are
homotopy equivalent if there exist maps g : T→ U and h : U→ T such that
h ◦ g is homotopic to the identity map ιT : T → T and g ◦ h is homotopic to
the identity map ιU : U→ U.

Homotopy equivalence is indeed an equivalence relation, that is, if A, B
and B,C are homotopy equivalent spaces, so are the pair A,C . Homeomor-
phic spaces necessarily have the same dimension though homotopy equivalent
spaces may have different dimensions. To gain more intuition about homotopy
equivalent spaces, we show why a 2-ball is homotopy equivalent to a single
point p. Consider a map h : B2 → {p} and a map g : {p} → B2 where g(p)
is any point q in B2. Observe that h ◦ g is the identity map on {p}, which is
trivially homotopic to itself. In the other direction, g◦h : B2 → B2 sends every
point in B2 to q. A homotopy between g ◦ h and the identity map idB2 is given
by the map H(x, t) = (1− t)q + t x .

An useful intuition for understanding the definition of homotopy equivalent
spaces can be derived from the fact that two spaces T and U are homotopy
equivalent if and only if there exists a third space X so that both T and U are
deformation retracts of X; see Figure 1.6.

Definition 1.21. (Deformation retract) Let T be a topological space, and let
U ⊂ T be a subspace. A retraction r of T to U is a map from T to U such that
r(x) = x for every x ∈ U. The space U is a deformation retract of T if the
identity map on T can be continuously deformed to a retraction with no motion
of the points already in U: specifically, there is a homotopy called deformation
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retraction R : T×[0, 1] → T such that R(·, 0) is the identity map on T, R(·, 1)
is a retraction of T to U, and R(x, t) = x for every x ∈ U and every t ∈ [0, 1].

Fact 1.1. If U is a deformation retract of T, then T and U are homotopy
equivalent.

For example, any point on a line segment (open or closed) is a deformation
retract of the line segment and is homotopy equivalent to it. The letter M is a
deformation retract of the letter W , and also of a 1-ball. Moreover, as we said
before, two spaces are homotopy equivalent if they are deformation retractions
of a common space. The symbols ∅,∞, and� (viewed as one-dimensional
point sets) are deformation retracts of a double doughnut – a doughnut with two
holes. Therefore, they are homotopy equivalent to each other, though none of
them is a deformation retract of any of the others because one is not a subspace
of the other. They are not homotopy equivalent to A, X , O , ⊕, �, �, a ball,
nor a coffee cup.

1.4 Manifolds

A manifold is a topological space that is locally connected in a particular
way. A 1-manifold has this local connectivity looking like a segment. A 2-
manifold (with boundary) has the local connectivity looking like a complete
or partial disk. In layman’s terms, a 2-manifold has the structure of a piece
of paper or rubber sheet, possibly with the boundaries glued together to form
a closed surface – a category that includes disks, spheres, tori, and Möbius
bands.

Definition 1.22. (Manifold) A topological space M is an m-manifold, or sim-
ply a manifold, if every point x ∈ M has a neighborhood homeomorphic to Bm

o
or Hm . The dimension of M is m.

Every manifold can be partitioned into boundary and interior points.
Observe that these words mean very different things for a manifold than they
do for a metric space or topological space.

Definition 1.23. (Boundary; Interior) The interior Int M of an m-manifold M
is the set of points in M that have a neighborhood homeomorphic to Bm

o . The
boundary Bd M of M is the set of points M \ Int M . The boundary Bd M , if
not empty, consists of the points that have a neighborhood homeomorphic to
Hm . If Bd M is the empty set, we say that M is without boundary.
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(a) (b) (c) (d)

Figure 1.7 (a) A Möbius band. (b) Removal of the red and green loops opens
up the torus into a topological disk. (c) A double torus: every surface without
boundary in R3 resembles a sphere or a conjunction of one or more tori. (d) Double
torus knotted.

A single point, a 0-ball, is a 0-manifold without boundary according to this
definition. The closed disk B2 is a 2-manifold whose interior is the open disk
B2

o and whose boundary is the circle S1. The open disk B2
o is a 2-manifold

whose interior is B2
o and whose boundary is the empty set. This highlights an

important difference between Definitions 1.13 and 1.23 of “boundary”: when
B2

o is viewed as a point set in the space R2, its boundary is S1 according
to Definition 1.13; but viewed as a manifold, its boundary is empty accord-
ing to Definition 1.23. The boundary of a manifold is always included in the
manifold.

The open disk B2
o, the Euclidean space R2, the sphere S2, and the torus are all

connected 2-manifolds without boundary. The first two are homeomorphic to
each other, but the last two are not. The sphere and the torus in R3 are compact
(bounded and closed with respect to R3) whereas B2

o and R2 are not.
A d-manifold, d ≥ 2, can have orientations whose formal definition we

skip here. Informally, we say that a 2-manifold M is non-orientable if, starting
from a point p, one can walk on one side of M and end up on the opposite
side of M upon returning to p. Otherwise, M is orientable. Spheres and balls
are orientable, whereas the Möbius band in Figure 1.7(a) is a non-orientable
2-manifold with boundary.

A surface is a 2-manifold that is a subspace of Rd . Any compact surface
without boundary in R3 is an orientable 2-manifold. To be non-orientable, a
compact surface must have a non-empty boundary (like the Möbius band) or
be embedded in a four- or higher-dimensional Euclidean space.

A surface can sometimes be disconnected by removing one or more loops
(connected 1-manifolds without boundary) from it. The genus of an orientable
and compact surface without boundary is g if 2g is the maximum number of
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16 1 Basics

loops that can be removed from the surface without disconnecting it; here the
loops are permitted to intersect each other. For example, the sphere has genus
zero as every loop cuts it into two disks. The torus has genus one: a circular cut
around its neck and a second circular cut around its circumference, illustrated
in Figure 1.7(b), allow it to unfold into a topological disk. A third loop would
cut it into two pieces. Figure 1.7(c) and (d) each shows a 2-manifold without
boundary of genus two. Although a high-genus surface can have a very com-
plex shape, all compact 2-manifolds in R3 that have the same genus and no
boundary are homeomorphic to each other.

1.4.1 Smooth Manifolds

A purely topological manifold has no geometry. But if we embed it in a
Euclidean space, it could appear smooth or wrinkled. We now introduce a
“geometric” manifold by imposing a differential structure on it. For the rest
of this chapter, we focus on only manifolds without boundary.

Consider a map φ : U → W where U and W are open sets in Rk

and Rd , respectively. The map φ has d components, namely φ(x) =
(φ1(x), φ2(x), . . . , φd(x)), where x = (x1, x2, . . . , xk) denotes a point in Rk .
The Jacobian of φ at x is the d × k matrix of the first-order partial derivatives⎡

⎢⎢⎢⎢⎣

∂φ1(x)

∂x1
. . .

∂φ1(x)

∂xk
...

. . .
...

∂φd(x)

∂x1
. . .

∂φd(x)

∂xk

⎤
⎥⎥⎥⎥⎦ .

The map φ is regular if its Jacobian has rank k at every point in U . The map φ
is Ci -continuous if the i-th-order partial derivatives of φ are continuous.

The reader may be familiar with parametric surfaces, for which U is a two-
dimensional parameter space and its image φ(U ) in d-dimensional space is
a parametric surface. Unfortunately, a single parametric surface cannot easily
represent a manifold with a complicated topology. However, for a manifold to
be smooth, it suffices that each point on the manifold has a neighborhood that
looks like a smooth parametric surface.

Definition 1.24. (Smooth embedded manifold) For any i > 0, an m-manifold
M without boundary embedded in Rd is Ci -smooth if for every point p ∈
M , there exists an open set Up ⊂ Rm , a neighborhood Wp ⊂ Rd of p, and
a map φp : Up → Wp ∩ M such that (i) φp is Ci -continuous, (ii) φp is a
homeomorphism, and (iii) φp is regular. If m = 2, we call M a Ci -smooth
surface.
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1.5 Functions on Smooth Manifolds 17

The first condition says that each map is continuously differentiable at least
i times. The second condition requires each map to be bijective, ruling out
“wrinkles” where multiple points in U map to a single point in W . The third
condition prohibits any map from having a directional derivative of zero at any
point in any direction. The first and third conditions together enforce smooth-
ness, and imply that there is a well-defined tangent m-flat at each point in M .
The three conditions together imply that the maps φp defined in the neigh-
borhood of each point p ∈ M overlap smoothly. There are two extremes of
smoothness. We say that M is C∞-smooth if for every point p ∈ M , the par-
tial derivatives of φp of all orders are continuous. On the other hand, M is
nonsmooth if M is an m-manifold (therefore C0-smooth) but not C1-smooth.

1.5 Functions on Smooth Manifolds

In previous sections, we introduced topological spaces, including the special
case of (smooth) manifolds. Very often, a space can be equipped with contin-
uous functions defined on it. In this section, we focus on real-valued functions
of the form f : X → R defined on a topological space X , also called scalar
functions; see Figure 1.8(a) for the graph of a function f : R2 → R. Sca-
lar functions appear commonly in practice that describe space/data of interest
(e.g., the elevation function defined on the surface of the Earth). We are inter-
ested in the topological structures behind scalar functions. In this section, we
limit our discussion to nicely behaved scalar functions (called Morse functions)
defined on smooth manifolds. Their topological structures are characterized by
the so-called critical points which we will introduce below. Later in the book
we will also discuss scalar functions on simplicial complex domains, as well as
more complex maps defined on a space X , for example, a multivariate function
f : X → Rd .

1.5.1 Gradients and Critical Points

In what follows, for simplicity of presentation, we assume that we consider
smooth (C∞-continuous) functions and smooth manifolds embedded in Rd ,
even though often we only require the functions (resp. manifolds) to be C2-
continuous (resp. C2-smooth).

To provide intuition, let us start with a smooth scalar function defined on the
real line, f : R → R; the graph of such a function is shown in Figure 1.8(b).
Recall that the derivative of a function at a point x ∈ R is defined as

D f (x) = d

dx
f (x) = lim

t→0

f (x + t)− f (x)

t
. (1.1)
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Figure 1.8 (a) The graph of a function f : R2 → R. (b) The graph of a function
f : R→ R with critical points marked.

The value D f (x) gives the rate of change of the value of f at x . This can be
visualized as the slope of the tangent line of the graph of f at (x, f (x)). The
critical points of f are the set of points x such that D f (x) = 0. For a function
defined on the real line, there are two types of critical points in the generic
case: maxima and minima, as marked in Figure 1.8(b).

Now suppose we have a smooth function f : Rd → R defined on Rd . Fix an
arbitrary point x ∈ Rd . As we move a little around x within its local neighbor-
hood, the rate of change of f differs depending on which direction we move.
This gives rise to the directional derivative Dv f (x) at x in direction (i.e., a
unit vector) v ∈ Sd−1, where Sd−1 is the unit (d − 1)-sphere, defined as

Dv f (x) = lim
t→0

f (x + t · v)− f (x)

t
. (1.2)

The gradient vector of f at x ∈ Rd intuitively captures the direction of steepest
increase of the function f . More precisely, we have the following.

Definition 1.25. (Gradient for functions on Rd ) Given a smooth function f :
Rd → R, the gradient vector field ∇ f : Rd → Rd is defined as follows: for
any x ∈ Rd ,

∇ f (x) =
[
∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xd
(x)

]T

, (1.3)

where (x1, x2, . . . , xd) represents an orthonormal coordinate system for Rd .
The vector ∇ f (x) ∈ Rd is called the gradient vector of f at x . A point x ∈ Rd

is a critical point if ∇ f (x) = [0 0 . . . 0]T; otherwise, x is regular.
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(a) (c)(b) (d)

minimum (index 0) maximum (index 2)saddle (index 1) monkey saddle

Figure 1.9 (top) The graph of the function around nondegenerate critical points
for a smooth function on R2, and a degenerate critical point, called “monkey sad-
dle.” For example, for an index-0 critical point p, its local neighborhood can be
written as f (x) = f (p) + x2

1 + x2
2 , making p a local minimum. (bottom) The

local (closed) neighborhood of the corresponding critical point in the domain R2,
where the dark blue colored regions are the portion of the neighborhood of p
whose function value is at most f (p).

Observe that for any v ∈ Rd , the directional derivative satisfies that
Dv f (x) = 〈∇ f (x), v〉. It then follows that ∇ f (x) ∈ Rd is along the unit
vector v where Dv f (x) is maximized among the directional derivatives in all
unit directions around x ; and its magnitude ‖∇ f (x)‖ equals the value of this
maximum directional derivative. The critical points of f are those points where
the directional derivative vanishes in all directions – locally, the rate of change
of f is zero no matter which direction one deviates from x . See Figure 1.9 for
the three types of critical points, minimum, saddle point, and maximum, for a
generic smooth function f : R2 → R.

Finally, we can extend the above definitions of gradients and critical points
to a smooth function f : M → R defined on a smooth Riemannian m-manifold
M . Here, a Riemannian manifold is a manifold equipped with a Riemann-
ian metric, which is a smoothly varying inner product defined on the tangent
spaces. This allows the measurements of length so as to define gradient. At
a point x ∈ M , denote the tangent space of M at x by TMx , which is the
m-dimensional vector space consisting of all tangent vectors of M at x . For
example, TMx is an m-dimensional linear space Rm for an m-dimensional
manifold M embedded in the Euclidean space Rd , with Riemannian metric
(inner product in the tangent space) induced from Rd .
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The gradient ∇ f is a vector field on M , that is, ∇ f : M → TM maps every
point x ∈ M to a vector ∇ f (x) ∈ TMx in the tangent space of M at x . Similar
to the case for a function defined on Rd , the gradient vector field ∇ f satisfies
that for any x ∈ M and v ∈ TMx , 〈∇ f (x), v〉 gives rise to the directional
derivative Dv f (x) of f in direction v, and ∇ f (x) still specifies the direction
of steepest increase of f along all directions in TMx with its magnitude being
the maximum rate of change. More formally, we have the following definition,
analogous to Definition 1.25 for the case of a smooth function on Rd .

Definition 1.26. (Gradient vector field; Critical points) Given a smooth func-
tion f : M → R defined on a smooth m-dimensional Riemannian manifold M ,
the gradient vector field ∇ f : M → TM is defined as follows: for any x ∈ M ,
let (x1, x2, . . . , xm) be a local coordinate system in a neighborhood of x with
orthonormal unit vectors xi , then the gradient at x is

∇ f (x) =
[
∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xm
(x)

]T

.

A point x ∈ M is critical if ∇ f (x) vanishes, in which case f (x) is called a
critical value for f . Otherwise, x is regular.

It follows from the chain rule that the criticality of a point x is independent
of the local coordinate system being used.

1.5.2 Morse Functions and Morse Lemma

From the first-order derivatives of a function we can determine critical points.
We can learn more about the “type” of the critical points by inspecting the
second-order derivatives of f .

Definition 1.27. (Hessian matrix; Nondegenerate critical points) Given a
smooth m-manifold M , the Hessian matrix of a twice differentiable function
f : M → R at x is the matrix of second-order partial derivatives,

Hessian(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f

∂x1∂x1
(x)

∂2 f

∂x1∂x2
(x) · · · ∂2 f

∂x1∂xm
(x)

∂2 f

∂x2∂x1
(x)

∂2 f

∂x2∂x2
2(x) · · · ∂2 f

∂x2∂xm
(x)

...
...

. . .
...

∂2 f

∂xm∂x1
(x)

∂2 f

∂xm∂x2
2(x) · · · ∂2 f

∂xm∂xm
(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where (x1, x2, . . . , xm) is a local coordinate system in a neighborhood of x .
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A critical point x of f is nondegenerate if its Hessian matrix, Hessian(x),
is nonsingular (has nonzero determinant); otherwise, it is a degenerate critical
point.

For example, consider f : R2 → R defined by f (x, y) = x3 − 3xy2. The
origin (0, 0) is a degenerate critical point often referred to as a “monkey sad-
dle:” see Figure 1.9(d), where the graph of the function around (0, 0) goes up
and down three times (instead of twice as for a nondegenerate saddle shown in
Figure 1.9b). It turns out that, as a consequence of the Morse Lemma below,
nondegenerate critical points are always isolated whereas the degenerate ones
may not be so. A simple example is f : R2 → R defined by f (x, y) = x2,
where all points on the y-axis are degenerate critical points. The local neigh-
borhood of nondegenerate critical points can be completely characterized by
the following Morse Lemma.

Proposition 1.2. (Morse Lemma) Given a smooth function f : M → R
defined on a smooth m-manifold M, let p be a nondegenerate critical point
of f . Then there is a local coordinate system in a neighborhood U (p) of p
so that (i) the coordinate of p is (0, 0, . . . , 0), and (ii) locally for every point
x = (x1, x2, . . . , xm) in neighborhood U (p),

f (x) = f (p)− x2
1 − · · · − x2

s + x2
s+1 · · · + x2

m, for some s ∈ [0,m].
The number s of minus signs in the above quadratic representation of f (x) is
called the index of the critical point p.

For a smooth function f : M → R defined on a 2-manifold M , an index-0,
index-1, or index-2 (nondegenerate) critical point corresponds to a minimum, a
saddle, or a maximum, respectively. For a function defined on an m-manifold,
nondegenerate critical points include minima (index 0), maxima (index m),
and m − 1 types of saddle points.

The behavior of degenerate critical points is more complicated to charac-
terize. Instead, we now introduce a family of “nice” functions, called Morse
functions, whose critical points cannot be degenerate.

Definition 1.28. (Morse function) A smooth function f : M → R defined on
a smooth manifold M is a Morse function if and only if: (i) none of f ’s critical
points are degenerate; and (ii) the critical points have distinct function values.

Limiting our study only to well-behaved Morse functions is not too restric-
tive as the Morse functions form an open and dense subset of the space of
all smooth functions C∞(M) on M . So in this sense, a generic function is
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a Morse function. On the other hand, it is much cleaner to characterize the
topology induced by such a function, which we do now.

1.5.3 Connection to Topology

We now characterize how critical points influence the topology of M induced
by the scalar function f : M → R.

Definition 1.29. (Interval, sublevel, and superlevel sets) Given f : M → R
and I ⊆ R, the interval levelset of f with respect to I is defined as

MI = f −1(I ) = {x ∈ M | f (x) ∈ I }.
The case for I = (−∞, a] is also referred to as the sublevel set M≤a :=
f −1((−∞, a]) of f , while M≥a := f −1([a,∞)) is called the superlevel set;
and f −1(a) is called the levelset of f at a ∈ R.

Given f : M → R, imagine sweeping M with increasing function values
of f . It turns out that the topology of the sublevel sets can only change when
we sweep through critical values of f . More precisely, we have the following
classical result, where a diffeomorphism is a homeomorphism that is smooth
in both directions.

Theorem 1.3. (Homotopy type of sublevel sets) Let f : M → R be a smooth
function defined on a manifold M. Given a < b, suppose the interval levelset
M[a,b] = f −1([a, b]) is compact and contains no critical points of f . Then
M≤a is diffeomorphic to M≤b.

Furthermore, M≤a is a deformation retract of M≤b, and the inclusion map
i : M≤a ↪→ M≤b is a homotopy equivalence.

As an illustration, consider the example of height function f : M → R
defined on a vertical torus as shown in Figure 1.10(a). There are four crit-
ical points for the height function f , u (minimum), v,w (saddles), and z
(maximum). We have that M≤a is: (i) empty for a < f (u); (ii) homeomor-
phic to a 2-disk for f (u) < a < f (v); (iii) homeomorphic to a cylinder for
f (v) < a < f (w); (iv) homeomorphic to a compact genus-one surface with a
circle as boundary for f (w) < a < f (z); and (v) a full torus for a > f (z).

Theorem 1.3 states that the homotopy type of the sublevel set remains the
same until it passes a critical point. For Morse functions, we can also charac-
terize the homotopy type of sublevel sets around critical points, captured by
attaching k-cells.
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Figure 1.10 (a) The height function defined on a torus with critical points u, v,
w, and z. (b)–(f) Passing through an index-k critical point is the same as attaching
a k-cell from the homotopy point of view. For example, M≤a+ε for a = f (v)
(as shown in (d)) is homotopy equivalent to attaching a 1-cell (shown in (c)) to
M≤a−ε (shown in (b)) for an infinitesimal positive ε.

Specifically, recall that Bk is the k-dimensional unit Euclidean ball, and its
boundary is Sk−1, the (k − 1)-dimensional sphere. Let X be a topological
space, and g : Sk−1 → X a continuous map. For k > 0, attaching a k-cell to
X (w.r.t. g) is obtained by attaching the k-cell Bk to X along its boundary as
follows: first, take the disjoint union of X and Bk , and next, identify all points
x ∈ Sk−1 with g(x) ∈ X . For the special case of k = 0, attaching a 0-cell to X
is obtained by simply taking the disjoint union of X and a single point.

The following theorem states that, from the homotopy point of view, sweep-
ing past an index-k critical point is equivalent to attaching a k-cell to the
sublevel set. See Figure 1.10 for illustrations.

Theorem 1.4. Given a Morse function f : M → R defined on a smooth man-
ifold M, let p be an index-k critical point of f with α = f (p). Assume
f −1([α − ε, α + ε]) is compact for a sufficiently small ε > 0 such that there
are no other critical points of f contained in this interval levelset other than
p. Then the sublevel set M≤α+ε has the same homotopy type as M≤α−ε with a
k-cell attached to its boundary Bd M≤α−ε.

Finally, we state the well-known Morse inequalities, connecting critical
points with the so-called Betti numbers of the domain which we will define
formally in Section 2.5. In particular, fixing a field coefficient, the i-th Betti
number is the rank of the so-called i-th (singular) homology group of a
topological space X .

Theorem 1.5. (Morse inequalities) Let f be a Morse function on a smooth
compact d-manifold M. For 0 ≤ i ≤ d, let ci denote the number of critical
points of f with index i , and βi be the i-th Betti number of M. We then have:
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(a) ci ≥ βi for all i ≥ 0; and
∑d

i=0(−1)i ci = ∑d
i=0(−1)iβi (weak Morse

inequality);
(b) ci−ci−1+ci−2−· · ·±c0 ≥ βi−βi−1+βi−2 · · ·±β0 for all i ≥ 0 (strong

Morse inequality).

1.6 Notes and Exercises

A good source on point set topology is Munkres [243]. The concepts of var-
ious maps and manifolds are well described in Hatcher [186]. The books by
Guillemin and Pollack [179] and Milnor [233, 234] are good sources for Morse
theory on smooth manifolds and differential topology in general.

Exercises

1. A space is called Hausdorff if every two disjoint point sets have disjoint
open sets containing them.
(a) Give an example of a space that is not Hausdorff.
(b) Give an example of a space that is Hausdorff.
(c) Show the above examples on the same ground set T.

2. In every space T, the point sets ∅ and T are both closed and open.
(a) Give an example of a space that has more than two sets that are both

closed and open, and list all of those sets.
(b) Explain the relationship between the idea of connectedness and the

number of sets that are both closed and open.
3. A topological space T is called path connected if any two points x, y ∈ T

can be joined by a path, that is, there exists a continuous map f : [0, 1] →
T of the segment [0, 1] ⊂ R onto T so that f (0) = x and f (1) = y. Prove
that a path connected space is also connected but the converse may not be
true; however, if T is finite, then the two notions are equivalent.

4. Prove that for every subset X of a metric space, Cl Cl X = Cl X . In other
words, augmenting a set with its limit points does not give it more limit
points.

5. Show that any metric on a finite set induces a discrete topology.
6. Prove that the metric is a continuous function on the Cartesian space T×T

of a metric space T.
7. Give an example of a bijective function that is continuous, but its inverse

is not. In light of Proposition 1.1, the spaces need to be noncompact.
8. A space is called normal if it is Hausdorff and for any two disjoint closed

sets X and Y , there are disjoint open sets UX ⊃ X and UY ⊃ Y . Show
that any metric space is normal. Show the same for any compact space.
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9. Let f : T→ U be a continuous function of a compact space T into another
space U. Prove that the image f (T) is compact.

10. (a) Construct an explicit deformation retraction of Rk \ {o} onto Sk−1

where o denotes the origin. Also, show Rk ∪ {∞} is homeomorphic to
Sk .

(b) Show that any d-dimensional finite convex polytope is homeomorphic
to the d-dimensional unit ball Bd .

11. Deduce that homeomorphism is an equivalence relation. Show that the
relation of homotopy among maps is an equivalence relation.

12. Consider the function f : R3 → R defined as f (x1, x2, x3) = 3x2
1+3x2

2−
9x2

3 . Show that the origin (0, 0, 0) is a critical point of f . Give the index of
this critical point. Let S denote the unit sphere centered at the origin. Show
that f (−∞,0] ∩ S is homotopy equivalent to two points, whereas f [0,∞)∩ S
is homotopy equivalent to S1, the unit 1-sphere (i.e., circle).
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