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Introduction

The focus of this book is non-asymptotic theory in high-dimensional statistics. As an area
of intellectual inquiry, high-dimensional statistics is not new: it has roots going back to the
seminal work of Rao, Wigner, Kolmogorov, Huber and others, from the 1950s onwards.
What is new—and very exciting—is the dramatic surge of interest and activity in high-
dimensional analysis over the past two decades. The impetus for this research is the nature
of data sets arising in modern science and engineering: many of them are extremely large,
often with the dimension of the same order as, or possibly even larger than, the sample
size. In such regimes, classical asymptotic theory often fails to provide useful predictions,
and standard methods may break down in dramatic ways. These phenomena call for the
development of new theory as well as new methods. Developments in high-dimensional
statistics have connections with many areas of applied mathematics—among them machine
learning, optimization, numerical analysis, functional and geometric analysis, information
theory, approximation theory and probability theory. The goal of this book is to provide a
coherent introduction to this body of work.

1.1 Classical versus high-dimensional theory

What is meant by the term “high-dimensional”, and why is it important and interesting
to study high-dimensional problems? In order to answer these questions, we first need to
understand the distinction between classical as opposed to high-dimensional theory.

Classical theory in probability and statistics provides statements that apply to a fixed class
of models, parameterized by an index n that is allowed to increase. In statistical settings, this
integer-valued index has an interpretation as a sample size. The canonical instance of such
a theoretical statement is the law of large numbers. In its simplest instantiation, it concerns
the limiting behavior of the sample mean of n independent and identically distributed d-
dimensional random vectors {Xi}ni=1, say, with mean μ = E[X1] and a finite variance. The law
of large numbers guarantees that the sample mean μ̂n := 1

n

∑n
i=1 Xi converges in probability

to μ. Consequently, the sample mean μ̂n is a consistent estimator of the unknown population
mean. A more refined statement is provided by the central limit theorem, which guarantees
that the rescaled deviation

√
n(μ̂n − μ) converges in distribution to a centered Gaussian with

covariance matrix Σ = cov(X1). These two theoretical statements underlie the analysis of a
wide range of classical statistical estimators—in particular, ensuring their consistency and
asymptotic normality, respectively.

In a classical theoretical framework, the ambient dimension d of the data space is typically
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2 Introduction

viewed as fixed. In order to appreciate the motivation for high-dimensional statistics, it is
worthwhile considering the following:

Question Suppose that we are given n = 1000 samples from a statistical model in
d = 500 dimensions. Will theory that requires n → +∞with the dimension d remaining
fixed provide useful predictions?

Of course, this question cannot be answered definitively without further details on the
model under consideration. Some essential facts that motivate our discussion in this book
are the following:

1. The data sets arising in many parts of modern science and engineering have a “high-
dimensional flavor”, with d on the same order as, or possibly larger than, the sample
size n.

2. For many of these applications, classical “large n, fixed d” theory fails to provide useful
predictions.

3. Classical methods can break down dramatically in high-dimensional regimes.

These facts motivate the study of high-dimensional statistical models, as well as the associ-
ated methodology and theory for estimation, testing and inference in such models.

1.2 What can go wrong in high dimensions?

In order to appreciate the challenges associated with high-dimensional problems, it is worth-
while considering some simple problems in which classical results break down. Accordingly,
this section is devoted to three brief forays into some examples of high-dimensional phenom-
ena.

1.2.1 Linear discriminant analysis

In the problem of binary hypothesis testing, the goal is to determine whether an observed
vector x ∈ Rd has been drawn from one of two possible distributions, sayP1 versusP2. When
these two distributions are known, then a natural decision rule is based on thresholding the
log-likelihood ratio log P2[x]

P1[x] ; varying the setting of the threshold allows for a principled
trade-off between the two types of errors—namely, deciding P1 when the true distribution
is P2, and vice versa. The celebrated Neyman–Pearson lemma guarantees that this family of
decision rules, possibly with randomization, are optimal in the sense that they trace out the
curve giving the best possible trade-off between the two error types.

As a special case, suppose that the two classes are distributed as multivariate Gaussians,
say N(μ1,Σ) and N(μ2,Σ), respectively, differing only in their mean vectors. In this case, the
log-likelihood ratio reduces to the linear statistic

Ψ(x) :=
〈
μ1 − μ2, Σ

−1
(
x −

μ1 + μ2

2

)〉
, (1.1)

where 〈·, ·〉 denotes the Euclidean inner product in Rd. The optimal decision rule is based on
thresholding this statistic. We can evaluate the quality of this decision rule by computing the

https://doi.org/10.1017/9781108627771.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108627771.002


1.2 What can go wrong in high dimensions? 3

probability of incorrect classification. Concretely, if the two classes are equally likely, this
probability is given by

Err(Ψ) := 1
2P1[Ψ(X′) ≤ 0] + 1

2P2[Ψ(X′′) > 0],

where X′ and X′′ are random vectors drawn from the distributions P1 and P2, respectively.
Given our Gaussian assumptions, some algebra shows that the error probability can be writ-
ten in terms of the Gaussian cumulative distribution function Φ as

Err(Ψ) =
1
√

2π

∫ −γ/2

−∞
e−t2/2 dt︸�������������������︷︷�������������������︸

Φ(−γ/2)

, where γ =
√

(μ1 − μ2)TΣ−1(μ1 − μ2). (1.2)

In practice, the class conditional distributions are not known, but instead one observes
a collection of labeled samples, say {x1, . . . , xn1} drawn independently from P1, and
{xn1+1, . . . , xn1+n2} drawn independently from P2. A natural approach is to use these sam-
ples in order to estimate the class conditional distributions, and then “plug” these estimates
into the log-likelihood ratio. In the Gaussian case, estimating the distributions is equivalent
to estimating the mean vectors μ1 and μ2, as well as the covariance matrix Σ, and standard
estimates are the samples means

μ̂1 :=
1
n1

n1∑
i=1

xi and μ̂2 :=
1
n2

n1+n2∑
i=n1+1

xi, (1.3a)

as well as the pooled sample covariance matrix

Σ̂ :=
1

n1 − 1

n1∑
i=1

(xi − μ̂1) (xi − μ̂1)T +
1

n2 − 1

n1+n2∑
i=n1+1

(xi − μ̂2) (xi − μ̂2)T. (1.3b)

Substituting these estimates into the log-likelihood ratio (1.1) yields the Fisher linear dis-
criminant function

Ψ̂(x) =
〈
μ̂1 − μ̂2, Σ̂

−1
(
x −

μ̂1 + μ̂2

2

)〉
. (1.4)

Here we have assumed that the sample covariance is invertible, and hence are assuming
implicitly that ni > d.

Let us assume that the two classes are equally likely a priori. In this case, the error prob-
ability obtained by using a zero threshold is given by

Err(Ψ̂) := 1
2P1[Ψ̂(X′) ≤ 0] + 1

2P2[Ψ̂(X′′) > 0],

where X′ and X′′ are samples drawn independently from the distributions P1 and P2, re-
spectively. Note that the error probability is itself a random variable, since the discriminant
function Ψ̂ is a function of the samples {Xi}n1+n2

i=1 .
In the 1960s, Kolmogorov analyzed a simple version of the Fisher linear discriminant,

in which the covariance matrix Σ is known a priori to be the identity, so that the linear
statistic (1.4) simplifies to

Ψ̂id(x) =
〈
μ̂1 − μ̂2, x −

μ̂1 + μ̂2

2

〉
. (1.5)

https://doi.org/10.1017/9781108627771.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108627771.002


4 Introduction

Working under an assumption of Gaussian data, he analyzed the behavior of this method
under a form of high-dimensional asymptotics, in which the triple (n1, n2, d) all tend to
infinity, with the ratios d/ni, for i = 1, 2, converging to some non-negative fraction α > 0,
and the Euclidean1 distance ‖μ1 − μ2‖2 converging to a constant γ > 0. Under this type of
high-dimensional scaling, he showed that the error Err(Ψ̂id) converges in probability to a
fixed number—in particular,

Err(Ψ̂id)
prob.
−→ Φ

(
−

γ2

2
√
γ2 + 2α

)
, (1.6)

where Φ(t) := P[Z ≤ t] is the cumulative distribution function of a standard normal variable.
Thus, if d/ni → 0, then the asymptotic error probability is simplyΦ(−γ/2), as is predicted by
classical scaling (1.2). However, when the ratios d/ni converge to a strictly positive number
α > 0, then the asymptotic error probability is strictly larger than the classical prediction,
since the quantity γ2

2
√

γ2+2α
is shifted towards zero.
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Figure 1.1 (a) Plots of the error probability Err(Ψ̂id) versus the mean shift parameter
γ ∈ [1, 2] for d = 400 and fraction α = 0.5, so that n1 = n2 = 800. Gray circles cor-
respond to the empirical error probabilities, averaged over 50 trials and confidence
bands shown with plus signs, as defined by three times the standard error. The solid
curve gives the high-dimensional prediction (1.6), whereas the dashed curve gives
the classical prediction (1.2). (b) Plots of the error probability Err(Ψ̂id) versus the
fraction α ∈ [0, 1] for d = 400 and γ = 2. In this case, the classical prediction
Φ(−γ/2) plotted as a dashed line remains flat, since it is independent of α.

Recalling our original motivating question from Section 1.1, it is natural to ask whether
the error probability of the test Ψ̂id, for some finite triple (d, n1, n2), is better described by the
classical prediction (1.2), or the high-dimensional analog (1.6). In Figure 1.1, we plot com-
parisons between the empirical behavior and theoretical predictions for different choices
of the mean shift parameter γ and limiting fraction α. Figure 1.1(a) shows plots of the
error probability Err(Ψ̂id) versus the mean shift parameter γ for dimension d = 400 and
fraction α = 0.5, meaning that n1 = n2 = 800. Gray circles correspond to the empirical

1 We note that the Mahalanobis distance from equation (1.2) reduces to the Euclidean distance when Σ = Id .
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performance averaged over 50 trials, whereas the solid and dashed lines correspond to the
high-dimensional and classical predictions, respectively. Note that the high-dimensional pre-
diction (1.6) with α = 0.5 shows excellent agreement with the behavior in practice, whereas
the classical prediction Φ(−γ) drastically underestimates the error rate. Figure 1.1(b) shows
a similar plot, again with dimension d = 400 but with γ = 2 and the fraction α ranging in
the interval [0.05, 1]. In this case, the classical prediction is flat, since it has no dependence
on α. Once again, the empirical behavior shows good agreement with the high-dimensional
prediction.

A failure to take into account high-dimensional effects can also lead to sub-optimality. A
simple instance of this phenomenon arises when the two fractions d/ni, i = 1, 2, converge
to possibly different quantities αi ≥ 0 for i = 1, 2. For reasons to become clear shortly, it
is natural to consider the behavior of the discriminant function Ψ̂id for a general choice of
threshold t ∈ R, in which case the associated error probability takes the form

Errt(Ψ̂id) = 1
2P1[Ψ̂id(X′) ≤ t] + 1

2P2[Ψ̂id(X′′) > t], (1.7)

where X′ and X′′ are again independent samples from P1 and P2, respectively. For this set-
up, it can be shown that

Errt(Ψ̂id)
prob.
−→

1
2
Φ

(
−
γ2 + 2t + (α1 − α2)

2
√
γ2 + α1 + α2

)
+

1
2
Φ

(
−
γ2 − 2t − (α1 − α2)

2
√
γ2 + α1 + α2

)
,

a formula which reduces to the earlier expression (1.6) in the special case when α1 = α2 = α

and t = 0. Due to the additional term α1 − α2, whose sign differs between the two terms, the
choice t = 0 is no longer asymptotically optimal, even though we have assumed that the two
classes are equally likely a priori. Instead, the optimal choice of the threshold is t = α2−α1

2 , a
choice that takes into account the different sample sizes between the two classes.

1.2.2 Covariance estimation

We now turn to an exploration of high-dimensional effects for the problem of covariance
estimation. In concrete terms, suppose that we are given a collection of random vectors
{x1, . . . , xn}, where each xi is drawn in an independent and identically distributed (i.i.d.)
manner from some zero-mean distribution in Rd, and our goal is to estimate the unknown
covariance matrix Σ = cov(X). A natural estimator is the sample covariance matrix

Σ̂ :=
1
n

n∑
i=1

xixT
i , (1.8)

a d × d random matrix corresponding to the sample average of the outer products
xixT

i ∈ Rd×d. By construction, the sample covariance Σ̂ is an unbiased estimate, meaning
that E[Σ̂] = Σ.

A classical analysis considers the behavior of the sample covariance matrix Σ̂ as the sam-
ple size n increases while the ambient dimension d stays fixed. There are different ways
in which to measure the distance between the random matrix Σ̂ and the population covari-
ance matrix Σ, but, regardless of which norm is used, the sample covariance is a consistent
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estimate. One useful matrix norm is the �2-operator norm, given by

|||Σ̂ − Σ|||2 := sup
u�0

‖(Σ̂ − Σ)u‖2

‖u‖2
. (1.9)

Under mild moment conditions, an argument based on the classical law of large numbers
can be used to show that the difference |||Σ̂ − Σ|||2 converges to zero almost surely as n →
∞. Consequently, the sample covariance is a strongly consistent estimate of the population
covariance in the classical setting.

Is this type of consistency preserved if we also allow the dimension d to tend to infinity?
In order to pose the question more crisply, let us consider sequences of problems (Σ̂,Σ)
indexed by the pair (n, d), and suppose that we allow both n and d to increase with their
ratio remaining fixed—in particular, say d/n = α ∈ (0, 1). In Figure 1.2, we plot the results
of simulations for a random ensemble Σ = Id, with each Xi ∼ N(0, Id) for i = 1, . . . , n. Using
these n samples, we generated the sample covariance matrix (1.8), and then computed its
vector of eigenvalues γ(Σ̂) ∈ Rd, say arranged in non-increasing order as

γmax(Σ̂) = γ1(Σ̂) ≥ γ2(Σ̂) ≥ · · · ≥ γd(Σ̂) = γmin(Σ̂) ≥ 0.

Each plot shows a histogram of the vector γ(Σ̂) ∈ Rd of eigenvalues: Figure 1.2(a) corre-
sponds to the case (n, d) = (4000, 800) or α = 0.2, whereas Figure 1.2(b) shows the pair
(n, d) = (4000, 2000) or α = 0.5. If the sample covariance matrix were converging to the
identity matrix, then the vector of eigenvalues γ(Σ̂) should converge to the all-ones vec-
tor, and the corresponding histograms should concentrate around 1. Instead, the histograms
in both plots are highly dispersed around 1, with differing shapes depending on the aspect
ratios.
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Figure 1.2 Empirical distribution of the eigenvalues of a sample covariance ma-
trix Σ̂ versus the asymptotic prediction of the Marčenko–Pastur law. It is speci-

fied by a density of the form fMP(γ) ∝
√

(tmax(α)−γ) (γ−tmin(α))
γ

, supported on the in-

terval [tmin(α), tmax(α)] = [(1 −
√
α)2, (1 +

√
α)2]. (a) Aspect ratio α = 0.2 and

(n, d) = (4000, 800). (b) Aspect ratio α = 0.5 and (n, d) = (4000, 2000). In both
cases, the maximum eigenvalue γmax(Σ) is very close to (1 +

√
α)2, consistent with

theory.

These shapes—if we let both the sample size and dimension increase in such a way that
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d/n → α ∈ (0, 1)—are characterized by an asymptotic distribution known as the Marčenko–
Pastur law. Under some mild moment conditions, this theory predicts convergence to a
strictly positive density supported on the interval [tmin(α), tmax(α)], where

tmin(α) := (1 −
√
α)2 and tmax(α) := (1 +

√
α)2. (1.10)

See the caption of Figure 1.2 for more details.
The Marčenko–Pastur law is an asymptotic statement, albeit of a non-classical flavor since

it allows both the sample size and dimension to diverge. By contrast, the primary focus of
this book are results that are non-asymptotic in nature—that is, in the current context, we
seek results that hold for all choices of the pair (n, d), and that provide explicit bounds on
the events of interest. For example, as we discuss at more length in Chapter 6, in the setting
of Figure 1.2, it can be shown that the maximum eigenvalue γmax(Σ̂) satisfies the upper
deviation inequality

P[γmax(Σ̂) ≥ (1 +
√

d/n + δ)2] ≤ e−nδ2/2 for all δ ≥ 0, (1.11)

with an analogous lower deviation inequality for the minimum eigenvalue γmin(Σ̂) in the
regime n ≥ d. This result gives us more refined information about the maximum eigenvalue,
showing that the probability that it deviates above (1 +

√
d/n)2 is exponentially small in

the sample size n. In addition, this inequality (and related results) can be used to show that
the sample covariance matrix Σ̂ is an operator-norm-consistent estimate of the population
covariance matrix Σ as long as d/n → 0.

1.2.3 Nonparametric regression

The effects of high dimensions on regression problems can be even more dramatic. In one
instance of the problem known as nonparametric regression, we are interested in estimating
a function from the unit hypercube [0, 1]d to the real line R; this function can be viewed
as mapping a vector x ∈ [0, 1]d of predictors or covariates to a scalar response variable
y ∈ R. If we view the pair (X,Y) as random variables, then we can ask for the function f that
minimizes the least-squares prediction error E[(Y − f (X))2]. An easy calculation shows that
the optimal such function is defined by the conditional expectation f (x) = E[Y | x], and it is
known as the regression function.

In practice, the joint distribution PX,Y of (X,Y) is unknown, so that computing f directly is
not possible. Instead, we are given samples (Xi,Yi) for i = 1, . . . , n, drawn in an i.i.d. manner
from PX,Y , and our goal is to find a function f̂ for which the mean-squared error (MSE)

‖ f̂ − f ‖2
L2 := EX[( f̂ (X) − f (X))2] (1.12)

is as small as possible.
It turns out that this problem becomes extremely difficult in high dimensions, a manifes-

tation of what is known as the curse of dimensionality. This notion will be made precise
in our discussion of nonparametric regression in Chapter 13. Here, let us do some simple
simulations to address the following question: How many samples n should be required as
a function of the problem dimension d? For concreteness, let us suppose that the covariate
vector X is uniformly distributed over [0, 1]d, so that PX is the uniform distribution, de-
noted by Uni([0, 1]d). If we are able to generate a good estimate of f̂ based on the samples
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X1, . . . , Xn, then it should be the case that a typical vector X′ ∈ [0, 1]d is relatively close to at
least one of our samples. To formalize this notation, we might study the quantity

ρ∞(n, d) := EX′,X

[
min

i=1,...,n
‖X′ − Xi‖∞

]
, (1.13)

which measures the average distance between an independently drawn sample X′, again
from the uniform distribution Uni([0, 1]d), and our original data set {X1, . . . , Xn}.

How many samples n do we need to collect as a function of the dimension d so as to ensure
that ρ∞(n, d) falls below some threshold δ? For illustrative purposes, we use δ = 1/3 in the
simulations to follow. As in the previous sections, let us first consider a scaling in which the
ratio d/n converges to some constant α > 0, say α = 0.5 for concreteness, so that n = 2d.
Figure 1.3(a) shows the results of estimating the quantity ρ∞(2d, d) on the basis of 20 trials.
As shown by the gray circles, in practice, the closest point (on average) to a data set based
on n = 2d samples tends to increase with dimension, and certainly stays bounded above 1/3.
What happens if we try a more aggressive scaling of the sample size? Figure 1.3(b) shows
the results of the same experiments with n = d2 samples; again, the minimum distance tends
to increase as the dimension increases, and stays bounded well above 1/3.
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Figure 1.3 Behavior of the quantity ρ∞(n, d) versus the dimension d, for different
scalings of the pair (n, d). Full circles correspond to the average over 20 trials, with
confidence bands shown with plus signs, whereas the solid curve provides the theo-
retical lower bound (1.14). (a) Behavior of the variable ρ∞(2d, d). (b) Behavior of the
variable ρ∞(d2, d). In both cases, the expected minimum distance remains bounded
above 1/3, corresponding to log(1/3) ≈ −1.1 (horizontal dashed line) on this loga-
rithmic scale.

In fact, we would need to take an exponentially large sample size in order to ensure that
ρ∞(n, d) remained below δ as the dimension increased. This fact can be confirmed by proving
the lower bound

log ρ∞(n, d) ≥ log
d

2(d + 1)
−

log n
d

, (1.14)

which implies that a sample size n > (1/δ)d is required to ensure that the upper bound
ρ∞(n, d) ≤ δ holds. We leave the proof of the bound (1.14) as an exercise for the reader.
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1.3 What can help us in high dimensions? 9

We have chosen to illustrate this exponential explosion in a randomized setting, where
the covariates X are drawn uniformly from the hypercube [0, 1]d. But the curse of dimen-
sionality manifests itself with equal ferocity in the deterministic setting, where we are given
the freedom of choosing some collection {xi}ni=1 of vectors in the hypercube [0, 1]d. Let us
investigate the minimal number n required to ensure that any vector x′ ∈ [0, 1]d is at most
distance δ in the �∞-norm to some vector in our collection—that is, such that

sup
x′∈[0,1]d

min
i=1,...,n

‖x′ − xi‖∞ ≤ δ. (1.15)

The most straightforward way of ensuring this approximation quality is by a uniform grid-
ding of the unit hypercube: in particular, suppose that we divide each of the d sides of the
cube into �1/(2δ)� sub-intervals,2 each of length 2δ. Taking the Cartesian products of these
sub-intervals yields a total of �1/(2δ)�d boxes. Placing one of our points xi at the center of
each of these boxes yields the desired approximation (1.15).

This construction provides an instance of what is known as a δ-covering of the unit hyper-
cube in the �∞-norm, and we see that its size must grow exponentially in the dimension. By
studying a related quantity known as a δ-packing, this exponential scaling can be shown to
be inescapable—that is, there is not a covering set with substantially fewer elements. See
Chapter 5 for a much more detailed treatment of the notions of packing and covering.

1.3 What can help us in high dimensions?

An important fact is that the high-dimensional phenomena described in the previous sections
are all unavoidable. Concretely, for the classification problem described in Section 1.2.1, if
the ratio d/n stays bounded strictly above zero, then it is not possible to achieve the optimal
classification rate (1.2). For the covariance estimation problem described in Section 1.2.2,
there is no consistent estimator of the covariance matrix in �2-operator norm when d/n re-
mains bounded away from zero. Finally, for the nonparametric regression problem in Sec-
tion 1.2.3, given the goal of estimating a differentiable regression function f , no consistent
procedure is possible unless the sample size n grows exponentially in the dimension d. All
of these statements can be made rigorous via the notions of metric entropy and minimax
lower bounds, to be developed in Chapters 5 and 15, respectively.

Given these “no free lunch” guarantees, what can help us in the high-dimensional setting?
Essentially, our only hope is that the data is endowed with some form of low-dimensional
structure, one which makes it simpler than the high-dimensional view might suggest. Much
of high-dimensional statistics involves constructing models of high-dimensional phenomena
that involve some implicit form of low-dimensional structure, and then studying the statisti-
cal and computational gains afforded by exploiting this structure. In order to illustrate, let us
revisit our earlier three vignettes, and show how the behavior can change dramatically when
low-dimensional structure is present.

2 Here �a� denotes the ceiling of a, or the smallest integer greater than or equal to a.
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1.3.1 Sparsity in vectors

Recall the simple classification problem described in Section 1.2.1, in which, for j = 1, 2,
we observe nj samples of a multivariate Gaussian with mean μ j ∈ Rd and identity covariance
matrix Id. Setting n = n1 = n2, let us recall the scaling in which the ratios d/nj are fixed
to some number α ∈ (0,∞). What is the underlying cause of the inaccuracy of the classical
prediction shown in Figure 1.1? Recalling that μ̂ j denotes the sample mean of the nj samples,
the squared Euclidean error ‖μ̂ j − μ j‖2

2 turns out to concentrate sharply around d
n j
= α. This

fact is a straightforward consequence of the chi-squared (χ2) tail bounds to be developed in
Chapter 2—in particular, see Example 2.11. When α > 0, there is a constant level of error,
for which reason the classical prediction (1.2) of the error rate is overly optimistic.

But the sample mean is not the only possible estimate of the true mean: when the true
mean vector is equipped with some type of low-dimensional structure, there can be much
better estimators. Perhaps the simplest form of structure is sparsity: suppose that we knew
that each mean vector μ j were relatively sparse, with only s of its d entries being non-
zero, for some sparsity parameter s � d. In this case, we can obtain a substantially better
estimator by applying some form of thresholding to the sample means. As an example, for a
given threshold level λ > 0, the hard-thresholding estimator is given by

Hλ(x) = xI[|x| > λ] =

⎧⎪⎪⎨⎪⎪⎩x if |x| > λ,
0 otherwise,

(1.16)

where I[|x| > λ] is a 0–1 indicator for the event {|x| > λ}. As shown by the solid curve in
Figure 1.4(a), it is a “keep-or-kill” function that zeroes out x whenever its absolute value
falls below the threshold λ, and does nothing otherwise. A closely related function is the
soft-thresholding operator

Tλ(x) = I[|x| > λ](x − λ sign(x)) =

⎧⎪⎪⎨⎪⎪⎩x − λ sign(x) if |x| > λ,
0 otherwise.

(1.17)

As shown by the dashed line in Figure 1.4(a), it has been shifted so as to be continuous, in
contrast to the hard-thresholding function.

In the context of our classification problem, instead of using the sample means μ̂ j in
the plug-in classification rule (1.5), suppose that we used hard-thresholded versions of the
sample means—namely

μ̃ j = Hλn (μ̂ j) for j = 1, 2 where λn :=

√
2 log d

n
. (1.18)

Standard tail bounds to be developed in Chapter 2—see Exercise 2.12 in particular—will
illuminate why this particular choice of threshold λn is a good one. Using these thresholded
estimates, we can then implement a classifier based on the linear discriminant

Ψ̃(x) :=
〈
μ̃1 − μ̃2, x −

μ̃1 + μ̃2

2

〉
. (1.19)

In order to explore the performance of this classifier, we performed simulations using the
same parameters as those in Figure 1.1(a); Figure 1.4(b) gives a plot of the error Err(Ψ̃)
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Figure 1.4 (a) Plots of the hard-thresholding and soft-thresholding functions at some
level λ > 0. (b) Plots of the error probability Err(Ψ̂id) versus the mean shift parameter
γ ∈ [1, 2] with the same set-up as the simulations in Figure 1.1: dimension d = 400,
and sample sizes n = n1 = n2 = 800. In this case, the mean vectors μ1 and μ2 each
had s = 5 non-zero entries, and the classification was based on hard-thresholded

versions of the sample means at the level λn =

√
2 log d

n . Gray circles correspond
to the empirical error probabilities, averaged over 50 trials and confidence intervals
defined by three times the standard error. The solid curve gives the high-dimensional
prediction (1.6), whereas the dashed curve gives the classical prediction (1.2). In
contrast to Figure 1.1(a), the classical prediction is now accurate.

versus the mean shift γ. Overlaid for comparison are both the classical (1.2) and high-
dimensional (1.6) predictions. In contrast to Figure 1.1(a), the classical prediction now gives
an excellent fit to the observed behavior. In fact, the classical limit prediction is exact when-
ever the ratio log

(
d
s

)
/n approaches zero. Our theory on sparse vector estimation in Chapter 7

can be used to provide a rigorous justification of this claim.

1.3.2 Structure in covariance matrices

In Section 1.2.2, we analyzed the behavior of the eigenvalues of a sample covariance matrix
Σ̂ based on n samples of a d-dimensional random vector with the identity matrix as its
covariance. As shown in Figure 1.2, when the ratio d/n remains bounded away from zero, the
sample eigenspectrum γ(Σ̂) remains highly dispersed around 1, showing that Σ̂ is not a good
estimate of the population covariance matrix Σ = Id. Again, we can ask the questions: What
types of low-dimensional structure might be appropriate for modeling covariance matrices?
And how can they can be exploited to construct better estimators?

As a very simple example, suppose that our goal is to estimate a covariance matrix known
to be diagonal. It is then intuitively clear that the sample covariance matrix can be im-
proved by zeroing out its non-diagonal entries, leading to the diagonal covariance estimate
D̂. A little more realistically, if the covariance matrix Σ were assumed to be sparse but the
positions were unknown, then a reasonable estimator would be the hard-thresholded ver-

sion Σ̃ := Tλn (Σ̂) of the sample covariance, say with λn =

√
2 log d

n as before. Figure 1.5(a)
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12 Introduction

shows the resulting eigenspectrum γ(Σ̃) of this estimator with aspect ratio α = 0.2 and
(n, d) = (4000, 800)—that is, the same settings as Figure 1.2(a). In contrast to the Marčenko–
Pastur behavior shown in the former figure, we now see that the eigenspectrum γ(Σ̃) is
sharply concentrated around the point mass at 1. Tail bounds and theory from Chapters 2

and 6 can be used to show that |||Σ̃ − Σ|||2 �
√

log d
n with high probability.
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Figure 1.5 (a) Behavior of the eigenspectrum γ(Σ̃) for a hard-thresholded version
of the sample covariance matrix. Unlike the sample covariance matrix itself, it can
be a consistent estimator of a sparse covariance matrix even for scalings such that
d/n = α > 0. (b) Behavior of the sample covariance matrix for estimating se-
quences of covariance matrices of increasing dimension but all satisfying the con-
straint trace(Σ) ≤ 20. Consistent with theoretical predictions, the operator norm error
|||Σ̂−Σ|||2 for this sequence decays at the rate 1/

√
n, as shown by the solid line on the

log–log plot.

An alternative form of low-dimensional structure for symmetric matrices is that of fast
decay in their eigenspectra. If we again consider sequences of problems indexed by (n, d),
suppose that our sequence of covariance matrices have a bounded trace—that is, trace(Σ) ≤
R, independent of the dimension d. This requirement means that the ordered eigenvalues
γ j(Σ) must decay a little more quickly than j−1. As we discuss in Chapter 10, these types
of eigendecay conditions hold in a variety of applications. Figure 1.5(b) shows a log–log
plot of the operator norm error |||Σ̂ − Σ|||2 over a range of pairs (n, d), all with the fixed ratio
d/n = 0.2, for a sequence of covariance matrices that all satisfy the constraint trace(Σ) ≤
20. Theoretical results to be developed in Chapter 6 predict that, for such a sequence of
covariance matrices, the error |||Σ̂−Σ|||2 should decay as n−1/2, even if the dimension d grows
in proportion to the sample size n. See also Chapters 8 and 10 for discussion of other forms
of matrix estimation in which these types of rank or eigendecay constraints play a role.

1.3.3 Structured forms of regression

As discussed in Section 1.2.3, a generic regression problem in high dimensions suffers from
a severe curse of dimensionality. What type of structure can alleviate this curse? There are
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1.3 What can help us in high dimensions? 13

various forms of low-dimensional structure that have been studied in past and on-going work
on high-dimensional regression.

One form of structure is that of an additive decomposition in the regression function—say
of the form

f (x1, . . . , xd) =
d∑

j=1

gj(x j), (1.20)

where each univariate function gj : R → R is chosen from some base class. For such func-
tions, the problem of regression is reduced to estimating a collection of d separate univariate
functions. The general theory developed in Chapters 13 and 14 can be used to show how the
additive assumption (1.20) largely circumvents3 the curse of dimensionality. A very special
case of the additive decomposition (1.20) is the classical linear model, in which, for each
j = 1, . . . , d, the univariate function takes the form gj(x j) = θ j x j for some coefficients θ j ∈ R.
More generally, we might assume that each gj belongs to a reproducing kernel Hilbert space,
a class of function spaces studied at length in Chapter 12.

Assumptions of sparsity also play an important role in the regression setting. The sparse
additive model (SPAM) is based on positing the existence of some subset S ⊂ {1, 2, . . . , d}
of cardinality s = |S | such that the regression function can be decomposed as

f (x1, . . . , xd) =
∑
j∈S

g j(x j). (1.21)

In this model, there are two different classes of objects to be estimated: (i) the unknown
subset S that ranges over all

(
d
s

)
possible subsets of size s; and (ii) the univariate functions

{gj, j ∈ S } associated with this subset. A special case of the SPAM decomposition (1.21) is
the sparse linear model, in which f (x) =

∑d
j=1 θ j x j for some vector θ ∈ Rd that is s-sparse.

See Chapter 7 for a detailed discussion of this class of models, and the conditions under
which accurate estimation is possible even when d � n.

There are a variety of other types of structured regression models to which the meth-
ods and theory developed in this book can be applied. Examples include the multiple-index
model, in which the regression function takes the form

f (x1, . . . , xd) = h(Ax), (1.22)

for some matrix A ∈ Rs×d, and function h : Rs → R. The single-index model is the special
case of this model with s = 1, so that f (x) = h(〈a, x〉) for some vector a ∈ Rd. Another
special case of this more general family is the SPAM class (1.21): it can be obtained by
letting the rows of A be the standard basis vectors {e j, j ∈ S }, and letting the function h
belong to the additive class (1.20).

Taking sums of single-index models leads to a method known as projection pursuit re-
gression, involving functions of the form

f (x1, . . . , xd) =
M∑
j=1

gj (〈aj, x〉), (1.23)

for some collection of univariate functions {gj}Mj=1, and a collection of d vectors {aj}Mj=1. Such

3 In particular, see Exercise 13.9, as well as Examples 14.11 and 14.14.
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14 Introduction

models can also help alleviate the curse of dimensionality, as long as the number of terms
M can be kept relatively small while retaining a good fit to the regression function.

1.4 What is the non-asymptotic viewpoint?

As indicated by its title, this book emphasizes non-asymptotic results in high-dimensional
statistics. In order to put this emphasis in context, we can distinguish between at least three
types of statistical analysis, depending on how the sample size behaves relative to the di-
mension and other problem parameters:

• Classical asymptotics. The sample size n is taken to infinity, with the dimension d and
all other problem parameters remaining fixed. The standard laws of large numbers and
central limit theorem are examples of this type of theory.

• High-dimensional asymptotics. The pair (n, d) is taken to infinity simultaneously, while
enforcing that, for some scaling function Ψ, the sequence Ψ(n, d) remains fixed, or con-
verges to some value α ∈ [0,∞]. For example, in our discussions of linear discrimi-
nant analysis (Section 1.2.1) and covariance estimation (Section 1.2.2), we considered
such scalings with the function Ψ(n, d) = d/n. More generally, the scaling function
might depend on other problem parameters in addition to (n, d). For example, in study-
ing vector estimation problems involving a sparsity parameter s, the scaling function
Ψ(n, d, s) = log

(
d
s

)
/n might be used. Here the numerator reflects that there are

(
d
s

)
possible

subsets of cardinality s contained in the set of all possible indices {1, 2, . . . , d}.
• Non-asymptotic bounds. The pair (n, d), as well as other problem parameters, are viewed

as fixed, and high-probability statements are made as a function of them. The previously
stated bound (1.11) on the maximum eigenvalue of a sample covariance matrix is a stan-
dard example of such a result. Results of this type—that is, tail bounds and concentration
inequalities on the performance of statistical estimators—are the primary focus of this
book.

To be clear, these modes of analysis are closely related. Tail bounds and concentration
inequalities typically underlie the proofs of classical asymptotic theorems, such as almost
sure convergence of a sequence of random variables. Non-asymptotic theory can be used
to predict some aspects of high-dimensional asymptotic phenomena—for instance, it can
be used to derive the limiting forms of the error probabilities (1.6) for linear discriminant
analysis. In random matrix theory, it can be used to establish that the sample eigenspectrum
of a sample covariance matrix with d/n = α lies within4 the interval [(1−

√
α)2, (1+

√
α)2]

with probability one as (n, d) grow—cf. Figure 1.2. Finally, the functions that arise in a
non-asymptotic analysis can suggest appropriate forms of scaling functions Ψ suitable for
performing a high-dimensional asymptotic analysis so as to unveil limiting distributional
behavior.

One topic not covered in this book—due to space constraints—is an evolving line of
work that seeks to characterize the asymptotic behavior of low-dimensional functions of a
given high-dimensional estimator; see the bibliography in Section 1.6 for some references.

4 To be clear, it does not predict the precise shape of the distribution on this interval, as given by the
Marčenko–Pastur law.
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For instance, in sparse vector estimation, one natural goal is to seek a confidence inter-
val for a given coordinate of the d-dimensional vector. At the heart of such analyses are
non-asymptotic tail bounds, which allow for control of residuals within the asymptotics.
Consequently, the reader who has mastered the techniques laid out in this book will be well
equipped to follow these types of derivations.

1.5 Overview of the book

With this motivation in hand, let us now turn to a broad overview of the structure of this
book, as well as some suggestions regarding its potential use in a teaching context.

1.5.1 Chapter structure and synopses

The chapters follow a rough division into two types: material on Tools and techniques (TT),
and material on Models and estimators (ME). Chapters of the TT type are foundational in
nature, meant to develop techniques and derive theory that is broadly applicable in high-
dimensional statistics. The ME chapters are meant to be complementary in nature: each
such chapter focuses on a particular class of statistical estimation problems, and brings to
bear the methods developed in the foundational chapters.

Tools and techniques
• Chapter 2: This chapter provides an introduction to standard techniques in deriving tail

bounds and concentration inequalities. It is required reading for all other chapters in the
book.

• Chapter 3: Following directly from Chapter 2, this chapter is devoted to more advanced
material on concentration of measure, including the entropic method, log-Sobolev in-
equalities, and transportation cost inequalities. It is meant for the reader interested in a
deeper understanding of the concentration phenomenon, but is not required reading for
the remaining chapters. The concentration inequalities in Section 3.4 for empirical pro-
cesses are used in later analysis of nonparametric models.

• Chapter 4: This chapter is again required reading for most other chapters, as it introduces
the foundational ideas of uniform laws of large numbers, along with techniques such as
symmetrization, which leads naturally to the Rademacher complexity of a set. It also cov-
ers the notion of Vapnik–Chervonenkis (VC) dimension as a particular way of bounding
the Rademacher complexity.

• Chapter 5: This chapter introduces the geometric notions of covering and packing in met-
ric spaces, along with the associated discretization and chaining arguments that underlie
proofs of uniform laws via entropic arguments. These arguments, including Dudley’s en-
tropy integral, are required for later study of nonparametric models in Chapters 13 and 14.
Also covered in this chapter are various connections to Gaussian processes, including the
Sudakov–Fernique and Gordon–Slepian bounds, as well as Sudakov’s lower bound.

• Chapter 12: This chapter provides a self-contained introduction to reproducing kernel
Hilbert spaces, including material on kernel functions, Mercer’s theorem and eigenvalues,
the representer theorem, and applications to function interpolation and estimation via ker-
nel ridge regression. This material is not a prerequisite for reading Chapters 13 and 14,
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but is required for understanding the kernel-based examples covered in these chapters on
nonparametric problems.

• Chapter 14: This chapter follows the material from Chapters 4 and 13, and is devoted to
more advanced material on uniform laws, including an in-depth analysis of two-sided and
one-sided uniform laws for the population and empirical L2-norms. It also includes some
extensions to certain Lipschitz cost functions, along with applications to nonparametric
density estimation.

• Chapter 15: This chapter provides a self-contained introduction to techniques for proving
minimax lower bounds, including in-depth discussions of Le Cam’s method in both its
naive and general forms, the local and Yang–Barron versions of the Fano method, along
with various examples. It can be read independently of any other chapter, but does make
reference (for comparison) to upper bounds proved in other chapters.

Models and estimators

• Chapter 6: This chapter is devoted to the problem of covariance estimation. It develops
various non-asymptotic bounds for the singular values and operator norms of random ma-
trices, using methods based on comparison inequalities for Gaussian matrices, discretiza-
tion methods for sub-Gaussian and sub-exponential variables, as well as tail bounds of the
Ahlswede–Winter type. It also covers the estimation of sparse and structured covariance
matrices via thresholding and related techniques. Material from Chapters 2, 4 and 5 is
needed for a full understanding of the proofs in this chapter.

• Chapter 7: The sparse linear model is possibly the most widely studied instance of a
high-dimensional statistical model, and arises in various applications. This chapter is de-
voted to theoretical results on the behavior of �1-relaxations for estimating sparse vectors,
including results on exact recovery for noiseless models, estimation in �2-norm and pre-
diction semi-norms for noisy models, as well as results on variable selection. It makes
substantial use of various tail bounds from Chapter 2.

• Chapter 8: Principal component analysis is a standard method in multivariate data analy-
sis, and exhibits a number of interesting phenomena in the high-dimensional setting. This
chapter is devoted to a non-asymptotic study of its properties, in both its unstructured and
sparse versions. The underlying analysis makes use of techniques from Chapters 2 and 6.

• Chapter 9: This chapter develops general techniques for analyzing estimators that are
based on decomposable regularizers, including the �1-norm and nuclear norm as special
cases. It builds on the material on sparse linear regression from Chapter 7, and makes uses
of techniques from Chapters 2 and 4.

• Chapter 10: There are various applications that involve the estimation of low-rank matri-
ces in high dimensions, and this chapter is devoted to estimators based on replacing the
rank constraint with a nuclear norm penalty. It makes direct use of the framework from
Chapter 9, as well as tail bounds and random matrix theory from Chapters 2 and 6.

• Chapter 11: Graphical models combine ideas from probability theory and graph theory,
and are widely used in modeling high-dimensional data. This chapter addresses various
types of estimation and model selection problems that arise in graphical models. It re-
quires background from Chapters 2 and 7.

• Chapter 13: This chapter is devoted to an in-depth analysis of least-squares estimation
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1.5 Overview of the book 17

in the general nonparametric setting, with a broad range of examples. It exploits tech-
niques from Chapters 2, 4 and 5, along with some concentration inequalities for empirical
processes from Chapter 3.

1.5.2 Recommended background

This book is targeted at graduate students with an interest in applied mathematics broadly
defined, including mathematically oriented branches of statistics, computer science, electri-
cal engineering and econometrics. As such, it assumes a strong undergraduate background
in basic aspects of mathematics, including the following:

• A course in linear algebra, including material on matrices, eigenvalues and eigendecom-
positions, singular values, and so on.

• A course in basic real analysis, at the level of Rudin’s elementary book (Rudin, 1964),
covering convergence of sequences and series, metric spaces and abstract integration.

• A course in probability theory, including both discrete and continuous variables, laws of
large numbers, as well as central limit theory. A measure-theoretic version is not required,
but the ability to deal with the abstraction of this type is useful. Some useful books include
Breiman (1992), Chung (1991), Durrett (2010) and Williams (1991).

• A course in classical mathematical statistics, including some background on decision the-
ory, basics of estimation and testing, maximum likelihood estimation and some asymp-
totic theory. Some standard books at the appropriate level include Keener (2010), Bickel
and Doksum (2015) and Shao (2007).

Probably the most subtle requirement is a certain degree of mathematical maturity on the
part of the reader. This book is meant for the person who is interested in gaining a deep un-
derstanding of the core issues in high-dimensional statistics. As with anything worthwhile in
life, doing so requires effort. This basic fact should be kept in mind while working through
the proofs, examples and exercises in this book.

At the same time, this book has been written with self-study and/or teaching in mind. To wit,
we have often sacrificed generality or sharpness in theorem statements for the sake of proof
clarity. In lieu of an exhaustive treatment, our primary emphasis is on developing techniques
that can be used to analyze many different problems. To this end, each chapter is seeded
with a large number of examples, in which we derive specific consequences of more abstract
statements. Working through these examples in detail, as well as through some of the many
exercises at the end of each chapter, is the best way to gain a robust grasp of the material.
As a warning to the reader: the exercises range in difficulty from relatively straightforward
to extremely challenging. Don’t be discouraged if you find an exercise to be challenging;
some of them are meant to be!

1.5.3 Teaching possibilities and a flow diagram

This book has been used for teaching one-semester graduate courses on high-dimensional
statistics at various universities, including the University of California Berkeley, Carnegie
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Mellon University, Massachusetts Institute of Technology and Yale University. The book
has far too much material for a one-semester class, but there are various ways of working
through different subsets of chapters over time periods ranging from five to 15 weeks. See
Figure 1.6 for a flow diagram that illustrates some of these different pathways through the
book.

Chap. 2

Chap. 3 Chap. 4 Chap. 5

Chap. 6 Chap. 7

Chap. 8

Chap. 9

Chap. 10 Chap. 11

Chap. 12Chap. 13Chap. 14

Chap. 15

Figure 1.6 A flow diagram of Chapters 2–15 and some of their dependence struc-
ture. Various tours of subsets of chapters are possible; see the text for more details.

A short introduction. Given a shorter period of a few weeks, it would be reasonable to cover
Chapter 2 followed by Chapter 7 on sparse linear regression, followed by parts of Chapter 6
on covariance estimation. Other brief tours beginning with Chapter 2 are also possible.

A longer look. Given a few more weeks, a longer look could be obtained by supplementing
the short introduction with some material from Chapter 5 on metric entropy and Dudley’s
entropy integral, followed by Chapter 13 on nonparametric least squares. This supplement
would give a taste of the nonparametric material in the book. Alternative additions are pos-
sible, depending on interests.

A full semester course. A semester-length tour through the book could include Chapter 2 on
tail bounds, Chapter 4 on uniform laws, the material in Sections 5.1 through 5.3.3 on metric
entropy through to Dudley’s entropy integral, followed by parts of Chapter 6 on covariance

https://doi.org/10.1017/9781108627771.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108627771.002


1.6 Bibliographic details and background 19

estimation, Chapter 7 on sparse linear regression, and Chapter 8 on principal component
analysis. A second component of the course could consist of Chapter 12 on reproducing
kernel Hilbert spaces, followed by Chapter 13 on nonparametric least squares. Depending
on the semester length, it could also be possible to cover some material on minimax lower
bounds from Chapter 15.

1.6 Bibliographic details and background

Rao (1949) was one of the first authors to consider high-dimensional effects in two-sample
testing problems. The high-dimensional linear discriminant problem discussed in Section
1.2.1 was first proposed and analyzed by Kolmogorov in the 1960s. Deev, working in the
group of Kolmogorov, analyzed the high-dimensional asymptotics of the general Fisher lin-
ear discriminant for fractions αi ∈ [0, 1). See the book by Serdobolskii (2000) and the survey
paper by Raudys and Young (2004) for further detail on this early line of Russian research
in high-dimensional classification.

The study of high-dimensional random matrices, as treated briefly in Section 1.2.2, also
has deep roots, dating back to the seminal work from the 1950s onwards (e.g., Wigner, 1955,
1958; Marčenko and Pastur, 1967; Pastur, 1972; Wachter, 1978; Geman, 1980). The high-
dimensional asymptotic law for the eigenvalues of a sample covariance matrix illustrated in
Figure 1.2 is due to Marčenko and Pastur (1967); this asymptotic prediction has been shown
to be a remarkably robust phenomenon, requiring only mild moment conditions (e.g., Silver-
stein, 1995; Bai and Silverstein, 2010). See also the paper by Götze and Tikhomirov (2004)
for quantitative bounds on the distance to this limiting distribution.

In his Wald Memorial Lecture, Huber (1973) studied the asymptotics of robust regres-
sion under a high-dimensional scaling with d/n constant. Portnoy (1984; 1985) studied M-
estimators for high-dimensional linear regression models, proving consistency when the ra-
tio d log d

n goes to zero, and asymptotic normality under somewhat more stringent conditions.
See also Portnoy (1988) for extensions to more general exponential family models. The
high-dimensional asymptotics of various forms of robust regression estimators have been
studied in recent work by El Karoui and co-authors (e.g., Bean et al., 2013; El Karoui, 2013;
El Karoui et al., 2013), as well as by Donoho and Montanari (2013).

Thresholding estimators are widely used in statistical problems in which the estimand
is expected to be sparse. See the book by Johnstone (2015) for an extensive discussion of
thresholding estimators in the context of the normal sequence model, with various appli-
cations in nonparametric estimation and density estimation. See also Chapters 6 and 7 for
some discussion and analysis of thresholding estimators. Soft thresholding is very closely
related to �1-regularization, a method with a lengthy history (e.g., Levy and Fullagar, 1981;
Santosa and Symes, 1986; Tibshirani, 1996; Chen et al., 1998; Juditsky and Nemirovski,
2000; Donoho and Huo, 2001; Elad and Bruckstein, 2002; Candès and Tao, 2005; Donoho,
2006b; Bickel et al., 2009); see Chapter 7 for an in-depth discussion.

Stone (1985) introduced the class of additive models (1.20) for nonparametric regression;
see the book by Hastie and Tibshirani (1990) for more details. The SPAM class (1.21) has
been studied by many researchers (e.g., Meier et al., 2009; Ravikumar et al., 2009; Koltchin-
skii and Yuan, 2010; Raskutti et al., 2012). The single-index model (1.22), as a particular
instance of a semiparametric model, has also been widely studied; for instance, see the var-

https://doi.org/10.1017/9781108627771.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108627771.002


20 Introduction

ious papers (Härdle and Stoker, 1989; Härdle et al., 1993; Ichimura, 1993; Hristache et al.,
2001) and references therein for further details. Friedman and Stuetzle (1981) introduced the
idea of projection pursuit regression (1.23). In broad terms, projection pursuit methods are
based on seeking “interesting” projections of high-dimensional data (Kruskal, 1969; Huber,
1985; Friedman and Tukey, 1994), and projection pursuit regression is based on this idea in
the context of regression.
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