
Forum of Mathematics, Sigma (2024), Vol. 12:e76 1–44
doi:10.1017/fms.2024.59

RESEARCH ARTICLE

On the local 𝑳2-Bound of the Eisenstein series
Subhajit Jana 1 and Amitay Kamber 2

1School of Mathematical Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom;
E-mail: s.jana@qmul.ac.uk (corresponding author).
2Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom;
E-mail: ak2356@dpmms.cam.ac.uk.

Received: 16 August 2023; Revised: 19 April 2024; Accepted: 21 May 2024

2020 Mathematics Subject Classification: Primary – 11F70; Secondary – 11F72, 22E55

Abstract
We study the growth of the local 𝐿2-norms of the unitary Eisenstein series for reductive groups over number fields,
in terms of their parameters. We derive a poly-logarithmic bound on an average, for a large class of reductive
groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis,
Lapid and Müller.

As applications of our method, we prove the optimal lifting property for SL𝑛 (Z/𝑞Z) for square-free q, as well
as the Sarnak–Xue [52] counting property for the principal congruence subgroup of SL𝑛 (Z) of square-free level.
This makes the recent results of Assing–Blomer [8] unconditional.
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1. Introduction

Eisenstein series are ubiquitous in the theory of automorphic forms, in particular, they are crucially
used by Langlands, and later by Arthur, in their seminal works on the development of the spectral
decomposition of the space of automorphic forms of a reductive group and the trace formula (see [6, 36,
37, 38]. Many important questions in number theory and automorphic forms rely directly upon certain
analytic properties of the Eisenstein series, for example, their complex analytic properties including the
location and order of their poles and their various growth properties near the cusps.

The Eisenstein series, in contrast with cusp forms, do not decay near the cusps; in fact, they have
polynomial growth. The rate of growth depends precisely on the constant terms of the Eisenstein series.
In particular, the unitary Eisenstein series (barely!) fail to be square-integrable on the noncompact
fundamental domain. However, it is quite natural to wonder how the 𝐿2-norms of unitary Eisenstein
series grow locally (i.e., on a fixed compact subset of the fundamental domain), in terms of their
Archimedean and non-Archimedean parameters.

In this paper, we study the general local 𝐿2-bound of a unitary Eisenstein series on a reductive
group over a number field. We refer to [38, Section 5.3], where such questions are considered and the
relations with other important automorphic and analytic questions, for example, location and order of
the poles of the Eisenstein series and classification of the residual spectrum, are discussed. Informally,
we prove sharp upper bounds for the averages of the squared local 𝐿2-norms of the Eisenstein series
over certain short families, for a large class of reductive algebraic groups; see Theorems 2 and 3. We
refer to Section 1.1 for precise and detailed discussions of the problems and our results.

Our estimates of the local 𝐿2-norms of the Eisenstein series are potentially useful to answer many
interesting number-theoretic questions, in particular, the problems that are approached via the spectral
theory of various noncompact arithmetic symmetric spaces. Such approaches often face serious analytic
difficulties due to the existence of the continuous spectrum and require estimates for various local
𝐿 𝑝-norms of the Eisenstein series. Our estimates and the methods to prove them seem to be utilizable
to overcome the analytic hurdles that arise via the local 𝐿2-norms of the Eisenstein series, at least in
certain cases.

As a proof-of-concept, we prove the optimal lifting property for SL𝑛 (Z/𝑞Z) in Theorem 5 for
square-free q, as well as the Sarnak–Xue counting property in Theorem 4, for the principal congruence
subgroups of SL𝑛 (Z) of square-free level. Assing–Blomer recently proved those theorems conditional
on the local 𝐿2-bounds of the Eisenstein series (see [8]). Thus, we make their results unconditional. We
refer to Section 1.3 for a detailed discussion. In a sequel [32], we prove optimal Diophantine exponent
for SL𝑛 (Z[1/𝑝]), as expected in a series of influential works by Ghosh–Gorodnik–Nevo (e.g. see [26]),
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assuming Sarnak’s density hypothesis. The proof of the main results in [32] crucially depends on (a
slightly weaker version of) Theorem 1 below; see [32, Section 4.8]. We refer the reader to [32] for a
detailed discussion of this problem and our proof.

Let us now discuss the motivating questions and our results.

1.1. Local 𝐿2-bound

Let G be a reductive algebraic group over a number field F. Let A be the adele ring of F. Also let A 𝑓 be
the finite adeles and 𝐹∞ := 𝐹 ⊗R. Given a Levi subgroup M of G, let 𝔞∗𝑀 be the R-vector space spanned
by F-rational characters of M, and (𝔞𝐺𝑀 )

∗ the R-vector space spanned by characters that are trivial on
G. Let 𝐻𝑀 : 𝑀 (A) → 𝔞𝑀 the natural map, and 𝑀 (A)1 the kernel of 𝐻𝑀 . We denote by 𝑀0 a minimal
Levi subgroup.

Let P be a parabolic subgroup of G with Levi subgroup M. We denote 𝔞𝑃 = 𝔞𝑀 . Let 𝜑 be in
A2 (𝑃), which is the pre-Hilbert space of square-integrable automorphic forms on 𝑁 (A)𝑀 (𝐹)\𝐺 (A).
Let 𝜆 be an element of (𝔞𝐺

𝑀,C
)∗ := (𝔞𝐺𝑀 )

∗ ⊗R C. Following Langlands in [37] (also see [6, Chapter 7]),
we construct an Eisenstein series Eis(𝜑, 𝜆) attached to 𝜑 and 𝜆 (see the details of the construction in
Section 3.3).

Let 𝜑 be a unit vector (see Section 3.1 for the definition of the norm on A2(𝑃)) with 𝜈(𝜑) being
a measurement of the complexity of 𝜑. We will later use a more nuanced notion of complexity (both
Archimedean and non-Archimedean) (see Section 4.1 for precise definitions). Finally, let 𝜆 ∈ 𝑖(𝔞𝐺𝑀 )

∗ be
purely imaginary, so that Eis(𝜑, 𝜆) appears in the spectral decomposition of 𝐿2 (𝐺 (𝐹)\𝐺 (A)1). Here
and elsewhere in the paper, d𝜆 will denote the real-valued Lebesgue measure on 𝑖(𝔞𝐺𝑀 )

∗ as in, for
example, [6].

We ask the following two questions with (presumably, strictly) decreasing levels of difficulty. Let Ω
be a fixed compact set in a fundamental domain of 𝐺 (𝐹)\𝐺 (A)1. How do∫

Ω

|Eis(𝜑, 𝜆) (𝑔) |2 d𝑔 (1.1)

and ∫
‖𝜆′−𝜆‖≤1

∫
Ω

|Eis(𝜑, 𝜆′) (𝑔) |2 d𝑔 d𝜆′ (1.2)

grow as 𝜈(𝜑) + ‖𝜆‖ → ∞?
Here is our general expectation regarding the estimates of the above integrals.

The integrals (1.1) and (1.2) 
Ω (log(1 + 𝜈(𝜑) + ‖𝜆‖))dim𝔞𝐺𝑀 , (1.3)

as 𝜈(𝜑) + ‖𝜆‖ → ∞.
Let 𝜑 be spherical at all places, and 𝜈(𝜑) denote the size of the Laplace eigenvalue of 𝜑. If 𝐺 = GL2

and Eis(𝜑, 𝜆) is the nonholomorphic spherical Eisenstein series, then it is a classical result that (1.1)
indeed satisfies (1.3) (see Section 1.4). For 𝐺 = GL3, Miller in [43] proved that (1.2) satisfies (1.3)
(see Section 1.4 for more discussions). For 𝐺 = GL𝑛, Zhang in [56] showed that if Eis(𝜑, 𝜆) is the
maximal parabolic degenerate Eisenstein series, that is induced from the trivial representation of the
Levi subgroup GL𝑛−1 ×GL1, then (1.1) satisfies (1.3)1. As far as we know, these are the only examples
where a poly-logarithmic strength bound is known for all the Eisenstein series for either (1.1) or (1.2),
at least for higher rank groups.

1In fact, he proved an asymptotic formula in 𝜆 in this case.
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Remark 1.1. In this remark, we comment on a few topics in the existing literature that have similar
flavour as the local 𝐿2-bound question in this paper. One may wonder about the size of the analogous
local (and global, for cuspidal forms) 𝐿𝑝-bound of automorphic forms for any 1 ≤ 𝑝 ≤ ∞. For compact
manifolds, general polynomial bounds in 𝜈(𝜑) were obtained by Sogge [54], and there have been many
improvements in various aspects. On arithmetic locally symmetric spaces local 𝐿∞-norms for cuspidal
automorphic forms have been studied quite a lot, in particular, quite extensively for small rank groups.
We refer to [13] for the case of GL𝑛 (R), to [42] for general semisimple groups and the references therein.
The proofs there are via the pretrace formula, which can also be made to work to prove similar bounds
for the local 𝐿∞-bounds of the short averages of the square of the Eisenstein series in case of noncompact
spaces. We also remark that local 𝐿∞-bound of general Eisenstein series may not satisfy (1.3) (see, e.g.
[11, Theorem 2]). On the other hand, the local 𝐿∞ bounds of the cusp forms (similarly, of an average of
Eisenstein series) on GL𝑛 as in [13] often do not hold globally (i.e. uniformly near the cusp) (see [14]).

1.2. Main results

In this section, we state our main results. Informally, we prove that, for a large class of groups, (1.2)
indeed can be estimated poly-logarithmically in 𝜈(𝜑) + ‖𝜆‖; as expected in (1.3). Before stating the
most general result in our paper, we first give the state-of-the-art result for GL𝑛 that is possible to state
in classical language and without detailed notations.
Theorem 1. Let 𝐺 = GL𝑛 and P be a parabolic subgroup of G. Let 𝜑0 ∈ A2(𝑃) be a unit that is
spherical at all places. Moreover, suppose that 𝜑0 is an eigenfunction of the full Hecke algebra at the
non-Archimedean places and the ring of invariant differential operators in the centre of the universal
enveloping algebra at the Archimedean places. Then, for any 𝜆0 ∈ 𝑖(𝔞𝐺𝑃 )

∗, we have∫
𝜆∈𝑖 (𝔞𝐺𝑃 )

∗

‖𝜆−𝜆0 ‖≤1

∫
Ω

|Eis(𝜑0, 𝜆) (𝑥) |2 d𝑥 d𝜆 
Ω (log(1 + 𝜈(𝜑0) + ‖𝜆0‖))𝑛−1,

where 𝜈(𝜑0) is the size of the Laplace eigenvalue of 𝜑0.
Remark 1.2. Actually, Theorem 1 is true for any 𝜑 that lies in the 𝜋-isotypic subspace A2

𝜋 (𝑃) for some
representation 𝜋 of 𝑀 (A) and is only required to be spherical at the Archimedean places and invariant
by any 𝐾 ⊂ GL𝑛 (A 𝑓 ), with 
 replaced by 
𝐾 . The dependency of the constant on K could, a priori,
be large, for example, polynomial in level(𝐾) (see Section 4.1 for the definition of level). One may
expect a polylogarithmic dependence on the level, but we can only prove it when 𝜑 is associated with
unramified cuspidal datum, as in Theorem 2.

Now, we describe our full results. First, we recall certain terminologies (that are fully explained in
the body of the paper).
◦ Following Langlands, a cuspidal datum 𝜒 is a 𝐺 (𝐹)-conjugacy class of pairs (𝐿, 𝜎), where L is a

Levi subgroup of G defined over F and 𝜎 is a cuspidal representation of 𝐿(A) (see Section 3.1).
Moreover, we recall the notion of unramifiedness of a cuspidal datum, due to Arthur, which ensures
that the datum has a trivial stabilizer (see [6, Section 15]2).

◦ We discuss certain estimates of various intertwining operators. The following terminologies are due
to Finis–Lapid–Müller.

– We say G satisfies property (tempered winding number, TWN+) if the first derivatives of
the global normalization factors of the intertwining operators satisfy certain estimates (see
Section 5.1).

– We say G satisfies property (bounded degree, BD) if the first derivatives of the local normalized
intertwining operators satisfy certain estimates (see Section 5.2).

2The notion should not be confused with ‘unramifiedness’ of the local components of an automorphic representation.
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◦ For any Levi subgroup M, let Π2(𝑀) denote the isomorphism class of representations of 𝑀 (A)
appearing discretely in 𝐿2 (𝑀 (𝐹)\𝑀 (A)) (see Section 3.1).

◦ For a parabolic subgroup P with Levi subgroup M, 𝜒 a cuspidal datum and 𝜋 ∈ Π2 (𝑀), let A2(𝑃)𝜒,𝜋
denote the (𝜒, 𝜋)-isotypic part of A2 (𝑃) (see Section 3.1).

◦ We fix (good) maximal compact subgroups 𝐾∞ of 𝐺 (𝐹∞) and 𝐾 𝑓 of 𝐺 (A 𝑓 ). For 𝜏 ∈ 𝐾∞, which
is the unitary dual of 𝐾∞, we write A2(𝑃)𝜏,𝐾 for the space of functions in A2(𝑃) which are right
K-invariant and belong to 𝜏-isotypic subspace. We define A2

𝜒,𝜋 (𝑃)𝜏,𝐾 similarly (see Section 3.1).
◦ We bound the integrals over Ω in (1.1) and (1.2) via the inner product of truncated Eisenstein series.

We work with a truncation operator Λ𝑇 , as defined by Arthur, where T is a sufficiently dominant
element in 𝔞𝑀0 . We also define 𝑑 (𝑇) to be a measurement of how dominant T is (see Section 3.4 for
details).

◦ Finally, we fix certain measurements of the Archimedean complexity of a representation 𝜋 of a real
group by the size of its Casimir eigenvalue, denoted by 𝜈(𝜋) and certain measurement of the non-
Archimedean complexity of an open compact subgroup K of 𝐺 (A 𝑓 ) by its depth and level, denoted
by level(𝐾) (see Section 4.1). To give a sense of their sizes for 𝐺 = GL2, if 𝜋 is principal series
representations induced from |.|𝑖𝑡 ⊗ |.|−𝑖𝑡 , then 𝜈(𝜋) � 1 + 𝑡2, and if K is the principal congruence
subgroup of level q, then level(𝐾) = 𝑞.
Here is our first main theorem.

Theorem 2. Assume that G satisfies properties (TWN+) and (BD). Let P be a parabolic subgroup of G
with Levi subgroup M and 𝜋0 ∈ Π2 (𝑀). Moreover, assume that 𝜒 := (𝑀, 𝜋0) is an unramified cuspidal
datum of G. Let 𝜏 ∈ 𝐾∞ and 𝐾 ⊂ 𝐾 𝑓 be an open-compact. Then

∫
𝜆∈𝑖 (𝔞𝐺𝑀 )

∗

‖𝜆−𝜆0 ‖≤1

‖Λ𝑇 Eis(𝜑0, 𝜆)‖2
2 d𝜆 


(
(1 + ‖𝑇 ‖) log

(
1 + 𝜈(𝜋0,∞) + ‖𝜆0‖ + 𝜈(𝜏) + level(𝐾)

) )dim𝔞𝐺𝑀
,

for any unit 𝜑0 ∈ A2
𝜒,𝜋0 (𝑃)

𝜏,𝐾 and 𝜆0 ∈ 𝑖(𝔞𝐺𝑀 )
∗.

Remark 1.3. The implicit constant in Theorem 2 depends only on G. For G and 𝜒 as in the statement,
Theorem 2 proves that the integral (1.2) grows poly-logarithmically in all the parameters, verifying (1.3).
For GL𝑛, when Theorem 2 applies, it is more general than Theorem 1 in the level and weight aspect,
since it gives poly-logarithmic dependence on the level and is not restricted to 𝐾∞-invariant vectors.

Of course, Theorem 2 excludes a ‘narrow’ class of cuspidal data that are not unramified. For example,
for 𝐺 = GL𝑛, a Levi subgroup is of the form 𝑀 � GL𝑛1 × · · · ×GL𝑛𝑘 , and a representation 𝜋 ∈ Π2 (𝑀)
satisfies 𝜋 � 𝜋1 ⊗ · · · ⊗ 𝜋𝑘 , where 𝜋𝑖 ∈ Π2(GL𝑛𝑖 ). Theorem 2 will apply to 𝜋 if and only if each 𝜋𝑖 is
cuspidal, and 𝜋𝑖 � 𝜋 𝑗 for 𝑖 ≠ 𝑗 .

In Theorem 3, we give a result towards the expectation in (1.3) for G with the similar level of
generalities considered in Theorem 2 and 𝜏 being trivial but for all cuspidal data 𝜒. Before stating the
theorem precisely, we introduce a new quantity below, which roughly measures the number of discrete
series representations with specific 𝐾∞𝐾 𝑓 -type that arises from a given cuspidal datum.

Definition 1.4. Let 𝜏 ∈ 𝐾∞ and 𝐾 ⊂ 𝐾 𝑓 be an open-compact. For any cuspidal datum 𝜒 of G, we define

𝐹 (𝜒; 𝜏, 𝐾) :=
∑
𝑃⊃𝑃0

dim
(
A2
𝜒 (𝑃)𝜏,𝐾

)
=

∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)

dim
(
A2
𝜒,𝜋 (𝑃)𝜏,𝐾

)
.

Here, 𝑃0 is some fixed minimal parabolic subgroup containing 𝑀0 and 𝑃 ⊃ 𝑃0 are called standard
parabolic subgroups.
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Theorem 3. Assume that G satisfies properties (TWN+) and (BD). Let 𝜒 := (𝑀, 𝜋0) be any cuspidal
datum of G. Then∑

𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜒,𝜋 (𝑃)𝐾∞𝐾

∫
𝜆∈𝑖 (𝔞𝐺𝑃 )

∗

‖𝜆−𝜆0 ‖≤1

‖Λ𝑇 Eis(𝜑, 𝜆)‖2
2 d𝜆



(
(1 + ‖𝑇 ‖) log(1 + 𝜈(𝜋0,∞) + ‖𝜆0‖ + level(𝐾))

)dim𝔞𝐺𝑀
𝐹 (𝜒; triv, 𝐾),

where B𝜒,𝜋 (𝑃)𝐾∞𝐾 denotes an orthonormal basis of A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 and 𝜆0 ∈ 𝑖(𝔞𝐺𝑀 )

∗.

Remark 1.5. Note that the (𝑃, 𝜋)-summand on the left-hand side above vanishes identically unless
A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 ≠ {0}. In fact, the total number of nonzero (𝑃, 𝜋, 𝜑)-summands on the left-hand side is

finite and equals to 𝐹 (𝜒; triv, 𝐾) (the 𝜆-integral, however, may be empty if 𝜆0 ∈ 𝑖(𝔞𝐺𝑀 )
∗ ⊂ 𝑖(𝔞𝐺𝑀0

)∗ is
far from 𝑖(𝔞𝐺𝑃 )

∗ ⊂ 𝑖(𝔞𝐺𝑀0
)∗). Thus, Theorem 3 on average is of the same strength as Theorem 2, that is,

the integral in (1.2) on average satisfies the estimate in (1.3).

In particular, by the positivity of the left-hand side in Theorem 3, we obtain the following corollary.

Corollary 1.6. Assume that G and 𝜒 are as in Theorem 3. Let P be a parabolic subgroup of G and
𝜋 ∈ Π2 (𝑀𝑃), such that A2

𝜒,𝜋 (𝑃) ≠ {0}. Then∫
𝜆∈𝑖 (𝔞𝐺𝑃 )

∗

‖𝜆−𝜆0 ‖≤1

‖Λ𝑇 Eis(𝜑0, 𝜆)‖2
2 d𝜆



(
(1 + ‖𝑇 ‖) log(1 + 𝜈(𝜋∞) + ‖𝜆0‖ + level(𝐾))

)dim𝔞𝐺𝑀
𝐹 (𝜒; triv, 𝐾),

for any unit 𝜑0 ∈ A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 and 𝜆0 ∈ 𝑖(𝔞𝐺𝑃 )

∗.

Remark 1.7. Let us focus on GL𝑛. In this case, understanding 𝐹 (𝜒; triv, 𝐾) boils down to a local
question, as we know for which 𝜋 it holds that A2

𝜒,𝜋 ≠ {0} thanks to [44]. Then one can show that when
𝜋0 is cuspidal it holds that

𝐹 (𝜒; triv, 𝐾) 
 dimA2
𝜒,𝜋0 (𝑃)

𝐾∞𝐾 .

However, when 𝜋0 is not cuspidal, 𝐹 (𝜒; triv, 𝐾) can be a lot larger than dimA2
𝜒,𝜋0 (𝑃)

𝐾∞𝐾 , which
eventually leads to a nonoptimal result, when averaging over a basis of A2

𝜒,𝜋0 (𝑃)
𝐾∞𝐾 .

For general groups, the size of 𝐹 (𝜒; 𝜏, 𝐾) has two components: the local component, namely, the
dimension of the 𝐾∞𝐾 𝑓 -type subspace and the global component, namely, the number and multiplicity
of square-integrable representations (with a given 𝐾∞𝐾 𝑓 ∩ 𝑀 (A)-type) that are attached to 𝜒.

The local component could, potentially, be quite larger than log(‖𝜈(𝜏)‖ + level(𝐾)) but by uniform
admissibility (see [10]) is bounded depending only on 𝜏 and K. This nonoptimal dependence on level(𝐾)
even for GL𝑛 is the main weakness of Theorem 3 relative to Theorem 2. Also, Theorem 3 is restricted
to 𝜏 = triv, but this should not be a major issue.

The global component should, at least conjecturally, be small, and, in fact, bounded (perhaps de-
pending on K). Its understanding depends eventually upon the classification of the residual spectrum. In
other words, it depends on how the residual spectrum arises from the residues of the Eisenstein series
induced from cuspidal representations, which in turn asks for highly nontrivial analytic properties of
the Eisenstein series. All of the above problems are still wide open for general reductive groups, and
understanding them for classical groups seems like a very interesting question that we plan to address
in future work.
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Remark 1.8. One may wonder whether one can obtain an estimate for the pointwise bound of the
local 𝐿2-norms in (1.1) from corresponding bounds for their 𝜆-averages in Corollary 1.6. In principle,
one may attempt this via a contour-shifting argument and employing the functional equation of the
Eisenstein series. This kind of approach is prevalent in analytic number theory: for example, bounding
central L-value 𝐿(1/2 + 𝑖𝑇) for some automorphic representation for large T, by sharp estimation of∫ 𝑇 +𝐻
𝑇 −𝐻 |𝐿(1/2 + 𝑖𝑡) |2 d𝑡 for some 𝐻 ≤ 𝑇 , shifting the 𝑖𝑡-contour and applying functional equation of the

L-function (see, e.g. [28]). Clearly, to apply the above contour-shifting method in our case, we need
to crucially understand meromorphic properties of the Eisenstein series away from the unitary axis, in
particular, the location of its poles and residues. On GL𝑛, this is essentially equivalent to understanding
strong zero-free regions of various Rankin–Selberg L-functions. Our current knowledge of such zero-
free regions is rather limited and only yields a polynomial strength bound in the question (1.1).

1.3. Applications

While estimating the local 𝐿2-bound of the Eisenstein series is interesting in its own right, it is also
very useful in applications to number theory and Diophantine approximation. As a matter of fact, we
came to study 𝐿2-bounds of the Eisenstein series while trying to understand certain number theoretic
problems via the spectral theory of automorphic forms.

We already mentioned the sequel [32], where we use the results of this work to prove optimal
Diophantine exponent for SL𝑛 assuming Sarnak’s density hypothesis.

Here, we give two other applications of the 𝐿2-bounds of the Eisenstein series, concerning the
principal congruence subgroups of SL𝑛 (Z). Let Γ(1) := SL𝑛 (Z), and let Γ(𝑞) := ker(Γ(1)

mod 𝑞
−−−−−→

SL𝑛 (Z/𝑞Z)) be its principal congruence subgroup. By strong approximation, Γ(1)/Γ(𝑞) � SL𝑛 (Z/𝑞Z).
Let ‖ · ‖ be the Frobenius norm on SL𝑛 (R), that is ‖𝑔‖2 =

∑
𝑖, 𝑗 |𝑔𝑖, 𝑗 |2 (as a matter of fact, one can

consider any other norm as well).
The first problem is about counting the number of elements

#{𝛾 ∈ Γ(𝑞) | ‖𝛾‖ ≤ 𝑅}.

There are two regimes in which this problem is well understood. In the regime 𝑅 < 𝐶𝑞, where 𝐶 = 𝐶 (𝑛)
is some small constant, it is simple to show that

#{𝛾 ∈ Γ(𝑞) | ‖𝛾‖ ≤ 𝑅} = 1.

In the regime where q is fixed and 𝑅 →∞ (or at least a large power of q), it holds that

#{𝛾 ∈ Γ(𝑞) | ‖𝛾‖ ≤ 𝑅} = 𝑐𝑛
𝑅𝑛(𝑛−1)

#SL𝑛 (Z/𝑞Z)
+𝑂 (𝑅𝑛(𝑛−1)−𝛿𝑛 ) (1.4)

with 𝑐𝑛 an explicit constant, and 𝛿𝑛 > 0 a small constant. This follows from the work of Duke, Rudnick
and Sarnak [16, Theorem 1.10] and is based on spectral methods3.

Sarnak and Xue ([52, Conjecture 2], see also [53]) made the following conjecture, which addresses
the intermediate range when R is a small power of q:

#{𝛾 ∈ Γ(𝑞) | ‖𝛾‖ ≤ 𝑅} 
𝜖
𝑅𝑛(𝑛−1)+𝜖

|SL𝑛 (Z/𝑞Z) |
+ 𝑅𝑛(𝑛−1)/2.

In a recent work, Assing and Blomer [8, Theorem 1.4] essentially confirm the above Sarnak–Xue
conjecture showing that

3The result is for 𝑞 = 1, but the method works for every q. See also [30, Corollary 5.2] for a generalized statement with a
simpler proof. Recently, in [12], the authors significantly improved the error term of Equation (1.4) over [16].
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#{𝛾 ∈ Γ(𝑞) | ‖𝛾‖ ≤ 𝑅} 
𝜖 (𝑅𝑞) 𝜖
(
𝑅𝑛(𝑛−1)

𝑞𝑛
2−1

+ 𝑅𝑛(𝑛−1)/2
)
, (1.5)

conditional on a difficult conjecture, namely [8, Hypothesis 1], on the local 𝐿2-bound of the Eisenstein
series. This hypothesis is slightly weaker than the expected bound in (1.3) for the integral (1.1). In
Theorem 4, we make Assing–Blomer’s result unconditional, by employing the method of proving
Theorem 3, while also using their work as a crucial input.
Theorem 4. Let q be a square-free integer. Then Equation (1.5) holds for every 𝜖 > 0 and every 𝑅 ≥ 1.

The second application we have is the problem of optimal lifting. Recall that by strong approximation
for SL𝑛, the map SL𝑛 (Z) → SL𝑛 (Z/𝑞Z) is onto. We may therefore ask, given 𝛾 ∈ SL𝑛 (Z/𝑞Z), to
find a lift of it to 𝛾 ∈ SL𝑛 (Z), with ‖𝛾‖ minimal. Gorodnik–Nevo studied this problem in a general
context and proved that for every 𝛾, it is possible to find a lift 𝛾 with ‖𝛾‖ 
𝜖 𝑞𝐶𝑛+𝜖 where 𝐶𝑛 is
some explicit constant (see [29, Theorem 1.1]). One may then wonder what is the smallest 𝐶𝑛 so that
the statement holds for it. A simple lower bound is 𝐶𝑛 ≥ 1 + 1/𝑛, which follows from Equation (1.4)
(with 𝑞 = 1) and the fact that |SL𝑛 (Z/𝑞Z) | �𝜖 𝑞𝑛

2−1−𝜖 , but it is not the correct answer. In [34], by
the second author and Pétér Varjú (which was completed after this work), it is shown that the correct
answer is 𝐶𝑛 = 2 (following weaker results of [51]). More precisely, the authors showed that for every q
and 𝛾 ∈ SL𝑛 (Z/𝑞Z), there is a lift 𝛾 ∈ SL𝑛 (Z) with ‖𝛾‖ 
𝑛 𝑞2 log 𝑞. In the other direction, they show
that for every n, 𝜖 > 0, and for every q, there is 𝛾 ∈ SL𝑛 (Z/𝑞Z), such that every lift 𝛾 ∈ SL𝑛 (Z) of 𝛾
satisfies ‖𝛾‖ �𝑛,𝜖 𝑞2−𝜖 .

In contrast to the results of [34], Sarnak [51] observed that when one considers almost all the elements
instead of all the elements, the simple lower bound 𝐶𝑛 = 1 + 1/𝑛 should be the correct answer to the
problem, and proved it for 𝑛 = 2. This property is expected to hold in a general context, and we call it
optimal lifting. We again refer to [27] for a detailed discussion of the general problem of optimal lifting,
and to [33] for this specific problem.

In the recent work of Assing and Blomer [8, Theorem 1.4], they essentially solved the optimal lifting
problem (see the statement of Theorem 5) but, again, conditional on [8, Hypothesis 1]. Once again, in
Theorem 5, employing the method of proving Theorem 3 and crucially inputting one of the main results
of [8], we make the above result of Assing–Blomer’s unconditional.
Theorem 5. For every 𝜖 > 0, there is 𝛿 > 0, such that for every square-free integer q, the number of
elements in 𝛾 ∈ SL𝑛 (Z/𝑞Z) without a lift 𝛾 ∈ SL𝑛 (Z) with ‖𝛾‖ ≤ 𝑞1+1/𝑛+𝜖 is at most 𝑂 (𝑞𝑛2−1−𝛿).

We now add a few remarks regarding Theorems 4 and 5.
Remark 1.9. While Theorems 4 and 5 are limited to q square-free (except for 𝑛 = 2, where Sarnak’s
proof holds for all q), our method can prove them for general q assuming Sarnak’s density conjecture,
which is implied by the generalized Ramanujan conjecture (GRC) for cusp forms of GL𝑛 over Q. More
generally, unconditionally and independently of (most of) the work of Assing–Blomer, one can get
slightly weaker results, with the exponents multiplied by 1 + 2𝛿/(𝑛 − 1), where 0 ≤ 𝛿 ≤ (𝑛 − 1)/2 is
the best approximation for the (GRC) for GL𝑛 over Q. Specifically, one has 𝛿 ≤ 1

2 −
1

1+𝑛2 (see [50]).
Remark 1.10. Conjecturally, similar ‘Sarnak–Xue Counting’ and ‘Optimal Lifting’ theorems should
hold more generally, in particular, for congruence subgroups of arithmetic lattices in semisimple Lie
groups. We refer to [27], where those conjectures are discussed at length (for the specific problem of Γ(𝑞)
see [27, Section 2.6]). In particular, for uniform (cocompact) lattices one can prove that Sarnak–Xue
counting and optimal lifting follow from Sarnak’s density conjecture in automorphic forms, which is,
presumably, a true approximation of the (false) naive Ramanujan conjecture (see [27]). For nonuniform
lattices, this implication is unknown, because of the analytic difficulties coming from the Eisenstein
series. The techniques of this paper allow us to essentially overcome those analytic difficulties, for
nonuniform lattices in groups different than GL𝑛, as long as properties (TWN+) and (BD) are known.
For principal congruence subgroups of SL𝑛 (Z) of square-free level, Assing–Blomer proved Sarnak’s
density conjecture, which allows in combination with this work to deduce the two theorems.
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Remark 1.11. We note, that in this paper, we do not attempt to prove [8, Hypothesis 1], and it remains
an interesting and hard open question. We refer to Section 1.6 for a discussion.

1.4. Difficulties in higher rank

In this section, we try to describe the difficulties one faces while trying to estimate (1.1) and (1.2).
We start with a toy-example – estimating (1.1) for a low-rank group. We take 𝐺 = GL2 over Q,

𝑀 = GL1 × GL1, P the Borel subgroup in G, 𝜋 = triv × triv and 𝜆 = (𝑖𝑡,−𝑖𝑡) with 𝑡 ∈ R. We take
𝜑 ∈ A2(𝑃)𝜋 to be the O2 (R)GL2(Ẑ)-invariant unit vector. In the classical language, Eis(𝜑, 𝜆) is the
same as 𝐸 (·, 1/2 + 𝑖𝑡). The classical Maass–Selberg relations (see [43, pp.153]) yield that

‖Λ𝑇 𝐸 (·, 1/2 + 𝑖𝑡)‖2
2 = lim

𝑡′→𝑡
〈Λ𝑇 𝐸 (·, 1/2 + 𝑖𝑡 ′),Λ𝑇 𝐸 (·, 1/2 + 𝑖𝑡)〉

= lim
𝑡′→𝑡

(
𝑒𝑖𝑇 (𝑡

′−𝑡)

𝑖(𝑡 ′ − 𝑡) +
𝑐(𝑖𝑡 ′)𝑒𝑖𝑇 (𝑡′+𝑡)

𝑖(𝑡 ′ + 𝑡) − 𝑐(𝑖𝑡)𝑒−𝑖𝑇 (𝑡′+𝑡)
𝑖(𝑡 ′ + 𝑡) − 𝑐(𝑖𝑡 ′)𝑐(𝑖𝑡)𝑒−𝑖𝑇 (𝑡′−𝑡)

𝑖(𝑡 ′ − 𝑡)

)

= 2𝑇 − 𝑐′(𝑖𝑡)
𝑐(𝑖𝑡) + �

(
𝑐(𝑖𝑡)𝑒−2𝑖𝑡𝑇

𝑡

)

 𝑇 log(1 + |𝑡 |).

Here, 𝑐(𝑠) is the scattering matrix appearing in the constant term of 𝐸 (·, 1/2 + 𝑖𝑡), given by 𝜉 (𝑠)
𝜉 (1+𝑠) ,

where 𝜉 (𝑠) is the completed Riemann zeta function. The last estimate follows from the standard zero-
free region of the Riemann zeta function. Now, we explain the difficulties we face if we try to prove the
statement given in (1.3), by generalizing the method above.

1. The case when Eis(𝜑, 𝜆) is the minimal parabolic Eisenstein series for GL𝑛 is a natural higher-rank
analogue of the above. Higher rank Maass–Selberg relations are in this case more complicated than
the GL2 version. The number of summands in the formula is (𝑛!)2. Moreover, each summand will
likely have (a priori, higher-order) poles as 𝜆′ → 𝜆. The manoeuvre of ‘grouping terms’ which
cancel each other’s poles, analogous to the GL2 case, is, in fact, combinatorially quite involved. Such
complications arise already for GL3, as can be seen in [43].

2. Apparently, the next difficult case is when Eis(𝜑, 𝜆) is induced from a cuspidal representation of a
nonminimal parabolic, that is 𝜑 is a cusp form. Apart from solving the combinatorial problem that
arises in the limit procedure, one also needs to know certain strong estimates of the logarithmic
(a priori, high) derivatives of the intertwining operators. When the Eisenstein series is spherical
everywhere, such estimates can be described via the zero-free region of various Rankin–Selberg
L-functions for GL𝑚1 ×GL𝑚2 with 𝑚1 +𝑚2 ≤ 𝑛 at the edge of the critical strips. However, the quality
and generality of the zero-free region that is required to prove (1.3) is still out of reach.

3. We remark that Langlands (see [6, Proposition 15.3]) proved the Maass–Selberg relations, but only
when the underlying representation 𝜋 of 𝑀 (A) is cuspidal. Arthur, in [5], proved an approximate
Maass–Selberg relation for a general discrete series 𝜋. However, the precision and generality of the
approximation that we need to prove (1.3) is not available. In fact, the required precision in Arthur’s
approximate Maass–Selberg formula can be obtained only via the classification of discrete series
representations, in particular, how the residual spectrum arises from the Eisenstein series induced
from cusp forms. This, in turn, requires understanding deep meromorphic properties of the Eisenstein
series, in particular, the locations, orders and residues of their poles.

4. When we move from GL𝑛 to general reductive groups, all of the above difficulties persist prominently.
First of all, our ignorance of the classification of the discrete series, equivalently the required
meromorphic properties of a general Eisenstein series, hinders the very first step of estimating the
𝐿2-norm via the Maass–Selberg relations. Even in the case of the Eisenstein series induced from
cuspidal representations, the limit procedure requires a deep understanding of the meromorphic
properties of the intertwining operators and the size of the (a priori, high) derivatives of the same —
none of which is yet in the grasp of the current literature.
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Primarily, this is why, in this paper, we try to estimate (1.2) for general Eisenstein series on general
reductive groups not via the Maass–Selberg formula, rather via the spectral side of the Arthur–Selberg
trace formula. We explain this in the next subsection.

In a future work, in order to estimate (1.1) for GL𝑛 using the Maass–Selberg relations, we plan to
address some of the issues pointed to above and, in particular, to give a robust method of understanding
the combinatorics and corresponding limit problem mentioned above.

Remark 1.12. There is one case in which the Maass–Selberg relations do yield a nice formula, and it
is exactly the unramified case of Theorem 2. The Maass–Selberg relations, in this case, are given in
Lemma 3.1 and essentially reduce to understanding a certain operator we denote by M𝑇

𝑀 (𝜆, 𝑃), defined
by a certain limit. Arthur’s method of (𝐺, 𝑀)-family gives a way to calculate the limit in the formula.
More precisely, Finis–Lapid–Müller [21], generalizing previous results of Arthur in the spherical case,
essentially gave a formula for M𝑇

𝑀 (𝜆, 𝑃), given in Proposition 5.7. The formula is a polynomial in T
with coefficients given by certain intertwining operators and their first derivatives, given along linearly
independent directions. Then, when we take 𝜆-average over a short interval around 𝜆0, we can use
properties (TWN+) (and (BD) for general congruence subgroups) to deduce a bound on M𝑇

𝑀 (𝜆, 𝑃),
given in Proposition 5.5, from which Theorem 2 follows. This technique can be traced back at least to
[49] (for GL𝑛 and a fixed level) and was formalized in [22].

1.5. High level sketch for the proof of Theorem 3

Our proof of Theorem 3 uses the Arthur–Selberg trace formula, or more precisely, Arthur’s development
of the spectral side of the trace formula and Finis–Lapid–Müller’s refinement of it.

As we described in the previous subsection, it is quite difficult to estimate ‖Λ𝑇 Eis(𝜑0, 𝜆0)‖2
2 pointwise

in 𝜆0. Proving an estimate on a 𝜆-average over a short interval around 𝜆0 seems to be more tractable.
Moreover, in our proof, we also need to average over 𝜑 in an orthonormal basis, equivalence classes
of associated parabolic subgroups and discrete series representations of the Levi of these parabolic
subgroups.

For a sufficiently dominant truncation parameter T and a bi-𝐾∞𝐾-invariant test function f on 𝐺 (A),
Arthur defined a distribution 𝐽𝑇𝜒 ( 𝑓 ) on the spectral side, that (for 𝑑 (𝑇) sufficiently large) essentially can
be given by a weighted sum over 𝑃 ⊃ 𝑃0 of∑

𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜒,𝜋 (𝑃)

∫
𝑖 (𝔞𝐺𝑀 )∗

𝑓 (𝜇𝜋 + 𝜆)‖Λ𝑇 Eis(𝜑, 𝜆)‖2 d𝜆,

where 𝜇𝜋 is the Langlands parameter of 𝜋 (which is necessarily spherical as an 𝑀 (A)-a representation)
and 𝑓 is the spherical transform of f.

We choose an f with bounded support via the Paley–Wiener theory and the theory of spherical
inversion so that spherical transform 𝑓 localizes at 𝜇𝜋 + 𝜆 ≈ 𝜇𝜋0 + 𝜆0, and so that 𝐽𝑇𝜒 ( 𝑓 ) majorizes the
left-hand side of the estimate in Theorem 3. Our goal, now, is to estimate 𝐽𝑇𝜒 ( 𝑓 ) satisfactorily.

Arthur, in his deep work to develop the spectral side of the trace formula, showed that 𝐽𝑇𝜒 ( 𝑓 ) is
a polynomial in T whose coefficients are given in terms of certain intertwining operators and their
derivatives. More precisely, 𝐽𝑇𝜒 ( 𝑓 ) essentially takes the form of a weighted sum over 𝑃 ⊃ 𝑃0 of

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝐿⊃𝑀𝑃

∫
𝑖 (𝔞𝐺𝐿 )∗

𝑓 (𝜆)tr
(
M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

)
d𝜆.

The combinatorial formula of Finis–Lapid–Müller allows us to understand M𝑇
𝐿 (𝑃, 𝜆) in terms of a

certain linear combination of various rank one intertwining operators and their first derivatives. We can
then use the bound on M𝑇

𝐿 (𝑃, 𝜆) given in Proposition 5.5 that are yielded by properties (TWN+) and
(BD), together with the Paley–Wiener theory to conclude the proof.

https://doi.org/10.1017/fms.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.59


Forum of Mathematics, Sigma 11

The fact that we only see the first derivative of the intertwiners in the above formula circumvents the
difficulty that arises because of, a priori, high derivatives of the same in the Maass–Selberg formula, as
described in Section 1.4. Moreover, the formula above, which is yielded by the theory of (𝐺, 𝐿)-families
due to Arthur and Finis–Lapid–Müller, bypasses the combinatorial complications that arise in the limit
procedure in the Maass–Selberg formula, as described in Section 1.4.

It is worth noting that we do not use the geometric side of the trace formula, rather only use the
two different expressions of the spectral side given in Proposition 6.1 (the spectral side of the pretrace
formula) and Proposition 6.2 (the spectral side of the trace formula) (also see Proposition 6.3). We also
remark that we crucially use the spectral decomposition for a specific cuspidal datum. This is presumably
different than a usual proof of, for example, Weyl law (see, e.g. [20], [41]), where one does another sum
over all cuspidal data in addition to the averages in Theorem 3. This extra average will not give us the
result of the strength as in, for example, Theorem 1. The primary reason is that the contribution from
the cusp forms will dominate. This way, we may only achieve a polynomial strength dependence on
level(𝐾) in Theorem 1 (and Remark 1.2) as opposed to a poly-logarithmic strength.

1.6. On the proof of the applications

The proofs of the applications do not use Theorems 3 or 2 directly, but instead use very similar methods.
The reason that we cannot use the theorems directly is explained in Remark 1.7.

Instead, one can prove the theorems by proving a weighted version of Theorem 3, where repre-
sentations are weighted by how far they are from being tempered. Our method allows such a mod-
ification, by using a function ℎ𝑅,𝑞 on GL𝑛 (A) that is essentially the characteristic function of the
R-radius ball at the Archimedean places and of 𝐾 (𝑞) at the non-Archimedean places, where 𝐾 (𝑞) is
the principal congruence subgroup of level q of GL𝑛 over the finite adeles (see Section 4.1 below
for the definition). This requires increasing 𝑑 (𝑇) sufficiently slowly so that Arthur’s formulæ will still
hold.

In practice, we use the full distribution 𝐽𝑇 of Arthur, over the entire spectrum. The idea is to compare
two different formulæ of Arthur for 𝐽𝑇 (ℎ𝑅,𝑞). On the one hand, the spectral side of the trace formula
allows us to give a bound on 𝐽𝑇 (ℎ𝑅,𝑞), given in Proposition 8.1. This is done by using the bound on
M𝑇

𝐿 (𝜆, 𝑃) given in Proposition 5.5 to reduce the problem to a sum, which is bounded in the work of
Assing–Blomer [8, Theorem 7.1].

The other formula for 𝐽𝑇 (ℎ𝑅,𝑞), which requires that 𝑑 (𝑇)will be sufficiently large (actually depending
logarithmically on R), can be seen as a pretrace formula and leads to a bound on the usual kernel of
ℎ𝑅,𝑞 , given in Proposition 8.3. The bound on the kernel of ℎ𝑅,𝑞 by standard methods (e.g, [51, 27])
leads to the proofs of both Theorems 4 and 5.

We finally remark that similar ideas, of using two formulæ for 𝐽𝑇 (ℎ), were recently used by Finis–
Lapid to provide a remainder term for Weyl law for a large class of arithmetic noncompact locally
symmetric spaces [20]. However, [20] compares the pretrace formula with the geometric side of the
trace formula, not the spectral side.

1.7. Added in proof

After the completion of this article, Assing, Blomer and Nelson [9] extended the results of [8]. In
particular, they show that in Theorems 4 and 5, the assumption that q is square-free can be removed.

1.8. Conventions

As usual in analytic number theory, we use 𝜖 to denote a small positive constant, whose actual value
may change from line to line. We use Vinogradov’s notations � and 
, whose implied constants are
understood to depend only on the group G and the number field F.
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2. General preliminaries

Let F denote a number field with integer ring 𝔬. The letter v will usually (unless mentioned otherwise)
denote an arbitrary place of F, and 𝐹𝑣 will denote the v-adic completion of F. Let G denote a reductive
group defined over F. Let A denote the adele ring of F. Also let A 𝑓 denote the finite adeles and
𝐹∞ := 𝐹 ⊗ R.

Below, we briefly discuss the main ingredients and quantities in our proof. We primarily follow the
notations of [21, Section 2.1] and [22, Section 4].

2.1. Brief structure theory of reductive groups

Let 𝑇0 denote a fixed maximal F-split torus of G. Let 𝑀0 denote the centralizer of 𝑇0 in G, which is a
minimal Levi subgroup. Let L denote the finite set of Levi subgroups defined over F containing 𝑀0.
Given 𝑀 ∈ L, let L(𝑀) ⊂ L denote the (finite) set of Levi subgroups containing M and P (𝑀) denote
the (finite) set of parabolic subgroups defined over F with Levi subgroup M. We also fix a minimal
parabolic subgroup 𝑃0 ⊃ 𝑀0.

Let 𝑇𝑀 denote the split part of the identity component of the centre of M. We denote
𝑊 (𝑀) := 𝑁𝐺 (𝑀)/𝑀 , where 𝑁𝐺 (𝑀) denotes the normalizer of M in G. We denote the Weyl group of
(𝐺,𝑇0) by 𝑊0 := 𝑊 (𝑀0). We can identify 𝑊 (𝑀) as a subgroup of 𝑊0.

Let 𝔞∗𝑀 denote the R-vector space spanned by the lattice 𝑋∗(𝑀) of F-rational characters of M,
and let 𝔞∗𝑀,C := 𝔞∗𝑀 ⊗R C. For 𝑀1 ⊂ 𝑀2, it holds that 𝔞∗𝑀2

⊂ 𝔞∗𝑀1
with a well-defined complement

𝔞∗𝑀1
= 𝔞∗𝑀2

⊕ (𝔞𝑀2
𝑀1
)∗. Let 𝔞𝑀 denote the dual space of 𝔞∗𝑀 , and we fix a pairing 〈, 〉 between 𝔞𝑀 and

𝔞∗𝑀 . For 𝑃 ∈ P (𝑀), we write 𝔞𝑃 = 𝔞𝑀 .
We choose a 𝑊0-invariant inner product on 𝔞0 := 𝔞𝑀0 , which also defines measures on 𝔞𝑀 and 𝔞∗𝑀

for all 𝑀 ∈ L. We normalize all measures as in [6, Section 7], similar to [21].
For 𝑃 ∈ P (𝑀), we write 𝑀𝑃 = 𝑀 . Let 𝑁𝑃 denote the unipotent radical of P. Let Σ𝑃 ⊂ (𝔞𝐺𝑃 )

∗

denote the set of roots of 𝑇𝑀 on the Lie algebra of 𝑁𝑃 . Let Δ𝑃 denote the subset of simple roots of Σ𝑃 .
Let Σ𝑀 := ∪𝑃∈P (𝑀 )Σ𝑃 . Given two parabolics 𝑃,𝑄 ∈ P (𝑀), we say that P and Q are adjacent along
𝛼 ∈ Σ𝑀 and write 𝑃 |𝛼𝑄 if Σ𝑃 = Σ𝑄 \ {−𝛼} ∪ {𝛼}.

Let 𝐴0 denote the identity component of 𝑇0 (R). We let 𝐴𝑀 := 𝐴0 ∩𝑇𝑀 (R). Let 𝐻𝑀 : 𝑀 (A) → 𝔞𝑀
denote the natural homomorphism defined by

𝑒 〈𝜒,𝐻𝑀 (𝑚) 〉 := |𝜒(𝑚) |A =
∏
𝑣

|𝜒(𝑚𝑣 ) |𝑣

for any 𝜒 ∈ 𝑋∗(𝑀). Here, | · |A denotes the homomorphism from A× → R+ given by | · |A :=
∏
𝑣 | · |𝑣 ,

where | · |𝑣 denotes the usual absolute value on 𝐹𝑣 . Let 𝑀 (A)1 ⊂ 𝑀 (A) denote the kernel of 𝐻𝑀 . It
holds that 𝑀 (A) = 𝐴𝑀 × 𝑀 (A)1.

We fix a maximal compact subgroup 𝐾∞ of 𝐺 (𝐹∞) and a maximal open-compact subgroup 𝐾 𝑓 of
𝐺 (A 𝑓 ). Finally, we fix the maximal compact subgroup 𝐾A := 𝐾∞𝐾 𝑓 of 𝐺 (A) and assume that it is
admissible relative to 𝑀0, so that for every 𝑃 ∈ P (𝑀0), an Iwasawa decomposition 𝐺 (A) = 𝑃(A)𝐾A
holds.

Given 𝑀 ∈ M and 𝑃 ∈ P (𝑀), let 𝐻𝑃 : 𝐺 (A) → 𝔞𝑃 denote the extension of 𝐻𝑀 to a left 𝑁𝑃 (A)
and right 𝐾A-invariant map.

3. Global preliminaries

3.1. Automorphic forms

Given 𝑀 ∈ L, let

𝐿2
disc (𝑀 (𝐹)\𝑀 (A)

1) � 𝐿2
disc (𝑀 (𝐹)𝐴𝑀\𝑀 (A))
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denote the discrete part of the spectrum of 𝐿2 (𝑀 (𝐹)𝐴𝑀\𝑀 (A)), that is the Hilbert sum of all irreducible
subrepresentations of 𝑀 (A) on the space.

Let Π2 (𝑀) denote4 the countable set of equivalence classes of irreducible unitary representation of
𝑀 (A) appearing in 𝐿2

disc (𝑀 (𝐹)\𝑀 (A)
1). Each element 𝜋 ∈ Π2 (𝑀) is an abstract unitary representation

of 𝑀 (A). By abuse of notations, we consider each 𝜋 ∈ Π2 (𝑀) also as a representation of 𝑀 (A)1. By
Flath’s tensor product theorem (see [23]), each 𝜋 ∈ Π2 (𝑀) can be considered as a tensor product of
local representations 𝜋 = ⊗𝑣𝜋𝑣 , where 𝜋𝑣 is a representation of 𝑀 (𝐹𝑣 ). We denote the finite part of the
representation ⊗𝑣<∞𝜋𝑣 by 𝜋 𝑓 , and the infinite part of the representation ⊗𝑣 |∞𝜋𝑣 by 𝜋∞.

Let 𝑃 ∈ P (𝑀) and A2(𝑃) denote the set of automorphic forms 𝜑 on 𝑁𝑃 (A)𝑀 (𝐹)\𝐺 (A) that are
square-integrable, that is 𝜑 satisfies

𝛿−1/2
𝑃 𝜑(·𝑘) ∈ 𝐿2

disc(𝐴𝑀𝑀 (𝐹)\𝑀 (A)), ∀𝑘 ∈ 𝐾A,

where 𝛿𝑃 is the modular character attached to P (in particular, 𝜑(𝑎𝑚𝑘) = 𝛿1/2
𝑃 (𝑎)𝜑(𝑚𝑘) for 𝑎 ∈ 𝐴𝑀 ,

𝑚 ∈ 𝑀 (A)1 and 𝑘 ∈ 𝐾A). Then A2(𝑃) is a pre-Hilbert space, with an inner product

〈𝜑1, 𝜑2〉A2 (𝑃) :=
∫

𝐴𝑀𝑀 (𝐹 )𝑁𝑃 (A)\𝐺 (A)

𝜑1 (𝑔)𝜑2(𝑔) d𝑔.

Sometimes, we shorthand ‖ · ‖A2 (𝐺) as ‖ · ‖2. Let A2(𝑃) denote the Hilbert space completion of A2 (𝑃).
For 𝜋 ∈ Π2 (𝑀), we will also denote A2

𝜋 (𝑃) ⊂ A2(𝑃) to be the subspace of 𝜑, such that 𝛿−1/2
𝑃 𝜑(·𝑘) lies

in the 𝜋-isotypic subspace of 𝐿2
disc, 𝜋 (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) ⊂ 𝐿2

disc (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) for every 𝑘 ∈ 𝐾A.
Given 𝜆 ∈ 𝑖(𝔞𝐺𝑃 )

∗, let 𝜌(𝑃, 𝜆, ·) denote the unitary representation of 𝐺 (A) on A2(𝑃), given by

𝜌(𝑃, 𝜆, 𝑦) (𝜑) (𝑥) := 𝜑(𝑥𝑦)𝑒 〈𝜆,𝐻𝑃 (𝑥𝑦)−𝐻𝑃 (𝑥) 〉 , 𝑦 ∈ 𝐺 (A).

The representation 𝜌(𝑃, 𝜆, ·) is isomorphic to

Ind𝐺 (A)
𝑃 (A)

(
𝐿2

disc (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) ⊗ 𝑒 〈𝜆,𝐻𝑀 ( ·) 〉
)

(see [22, Section 4.2]). We remark that the action of every compact subgroup of 𝐺 (A) on A2(𝑃) does
not depend on 𝜆.

Recall that a cuspidal datum 𝜒 is a 𝐺 (𝐹)-conjugacy class of pairs (𝐿, 𝜎), where L is a Levi subgroup
of G defined over F and 𝜎 is a cuspidal representation of 𝐿(A) (see [6, Section 12] for a detailed
discussion). We have a coarse spectral decomposition

𝐿2
disc (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) =

⊕̂
𝜒
𝐿2

disc,𝜒 (𝐴𝑀𝑀 (𝐹)\𝑀 (A))

(see [6, (12.5)]). Here and elsewhere, ⊕̂ denotes a Hilbert space direct sum. We have a similar coarse
spectral decomposition of A2 (𝑃) (see [6, p.66–67]). Let A2

𝜒 (𝑃) denote the 𝜒-part of this spectral
decomposition. Finally, we also write

𝐿2
disc,𝜒, 𝜋 (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) := 𝐿2

disc,𝜒 (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) ∩ 𝐿2
disc, 𝜋 (𝐴𝑀𝑀 (𝐹)\𝑀 (A))

and A2
𝜒,𝜋 (𝑃) := A2

𝜒 (𝑃) ∩A2
𝜋 (𝑃).

4In [21], the authors denote it by Πdisc (𝑀 (A)) .
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3.2. Some discussion of the coarse spectral expansion

Since this topic is less standard, for the convenience of the reader, we add here a discussion of the coarse
spectral decomposition.

We start with the group GL𝑛, in which case, the coarse spectral decomposition is well understood.
Thanks to the multiplicity one theorem, each cuspidal representation 𝜎 of a Levi subgroup L appears
with multiplicity one, that is

dim Hom𝐿 (A) (𝜎, 𝐿2 (𝐴𝐿𝐿(𝐹)\𝐿(A))) ≤ 1.

Next, let us describe some of the results of [44]. First, we recall that given a cuspidal representation
𝜎 of GL𝑎 (A) and 𝑏 > 0, one may construct a Speh representation Speh(𝜎, 𝑏) of GL𝑎𝑏 (A), which is
the unique irreducible quotient of the induction of 𝜎⊗𝑏 from the Levi subgroup GL𝑎 (A)𝑏 and twisted
by the character GL𝑎 (A)𝑏 � (𝑔1, 𝑔2, . . . , 𝑔𝑏) ↦→ | det(𝑔1) | (𝑏−1)/2 | det(𝑔2) | (𝑏−3)/2 . . . | det(𝑔𝑏) | (1−𝑏)/2.
It holds that Speh(𝜎, 𝑏) ∈ Π2(GL𝑎𝑏), and each representation 𝜋 ∈ Π2 (GL𝑛) is isomorphic to a unique
Speh representation Speh(𝜎, 𝑏) for some 𝑏 | 𝑛 and cuspidal representation 𝜎 of GL𝑛/𝑏 (A). Note that
the 𝑏 = 1 case corresponds to the cuspidal representations in Π2 (GL𝑛).

Now, if M is a Levi subgroup of GL𝑛 of a parabolic P, for each 𝜋 ∈ Π2 (𝑀), there is a unique cuspidal
datum 𝜒, such that A2

𝜒,𝜋 (𝑃) ≠ {0}, and the multiplicity of 𝜋 in the space 𝐿2
disc (𝐴𝑀𝑀 (𝐹)\𝑀 (A)) is

equal to 1. More precisely, if 𝑀 � GL𝑛1×· · ·×GL𝑛𝑘 is the standard Levi subgroup, and 𝜋 = 𝜋1⊗· · ·⊗𝜋𝑘 ,
then one can write (uniquely) 𝑛𝑖 = 𝑎𝑖𝑏𝑖 , find a cuspidal representation 𝜎𝑖 ∈ Π2(GL𝑎𝑖 ) and write
𝜋𝑖 = Speh(𝜎𝑖 , 𝑏𝑖). In this case, let 𝐿 := GL𝑏1

𝑎1 × · · · × GL𝑏𝑘𝑎𝑘 and 𝜎 := 𝜎⊗𝑏1
1 ⊗ · · · ⊗ 𝜎⊗𝑏𝑘

𝑘 ∈ Π2 (𝐿) be
cuspidal. If 𝜒 is the cuspidal datum corresponding to (𝐿, 𝜎), then A2

𝜒,𝜋 (𝑃) ≠ {0}.
The procedure can be reversed, but one should be a bit careful about the fact that cuspidal datum

is only defined up to equivalence. In general, given a Levi L and 𝜎 ∈ Π2(𝐿) cuspidal, let 𝜒 := (𝐿, 𝜎)
be the cuspidal datum and P be a standard parabolic containing L as a Levi subgroup. Then there are
at most 𝑛𝑃 := |

∑
𝑃′∼𝑃𝑊 (𝔞𝑃 , 𝔞𝑃′ ) | ≤ |𝑊0 | = 𝑛! other pairs (𝐿 ′, 𝜎′) of Levi subgroups 𝐿 ′ ⊃ 𝑀0 and

cuspidal representations 𝜎′ ∈ Π2(𝐿 ′) in 𝜒 (see [6, Section 12]). Given such a pair (𝐿, 𝜎) and a Levi
subgroup 𝐿 ⊂ 𝑀 , we get at most one residual representation in 𝐿2

disc,𝜒 (𝐴𝑀𝑀 (𝐹)\𝑀 (A)). All in all,
there are at most 𝑛! pairs of standard parabolics P and 𝜋 ∈ Π2(𝑀𝑃), such that A2

𝜒,𝜋 (𝑃) ≠ {0}.
For groups that are different than GL𝑛, the situation becomes much more involved. An interesting case

is the group 𝐺 = 𝐺2. By [45, Appendix III], for 𝜒 = (𝑀0, triv) (the torus and the trivial representation
of it), there are infinitely many different 𝜋 ∈ Π2 (𝐺), such that

𝐿2
disc,𝜒, 𝜋 (𝐴𝐺𝐺 (𝐹)\𝐺 (A)) ≠ {0}

(see also [35, 55] for complete results about the residual spectrum in this case). Moreover, by [24], for
some 𝜋 ∈ Π2 (𝐺), there are two different cuspidal data 𝜒1, 𝜒2, such that

𝐿2
disc,𝜒𝑖 , 𝜋 (𝐴𝐺𝐺 (𝐹)\𝐺 (A)) ≠ {0},

with 𝜒1 associated with the subgroup G and 𝜒2 associated with a proper parabolic subgroup. Finally,
the multiplicity of 𝜋 in 𝐿2

disc,𝜒1 , 𝜋
(𝐴𝐺𝐺 (𝐹)\𝐺 (A)) can be arbitrarily large.

3.3. Eisenstein series

Given 𝜑 ∈ A2 (𝑃) and 𝜆 ∈ (𝔞𝐺
𝑃,C
)∗, we define a corresponding Eisenstein series, as

Eis(𝜑, 𝜆) (𝑔) :=
∑

𝛾∈𝑃 (𝐹 )\𝐺 (𝐹 )
𝜑(𝛾𝑔)𝑒 〈𝜆,𝐻𝑃 (𝛾𝑔) 〉 .
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The above converges absolutely if 𝜆 is sufficiently dominant5. One can then, via Langlands’ deep work
(see, e.g. [36]), meromorphically continue Eis(𝜑, 𝜆) to all 𝜆 ∈ (𝔞𝐺

𝑃,C
)∗.

It holds that the Eisenstein series intertwines the representation 𝜌(𝑃, 𝜆, ·). Namely, it holds that

Eis(𝜑, 𝜆) (𝑔𝑦) = Eis(𝜌(𝑃, 𝜆, 𝑦)𝜑, 𝜆) (𝑔),

for 𝑦 ∈ 𝐺 (A).

3.4. Truncation

Recall the minimal parabolic subgroup 𝑃0 ∈ P (𝑀0). Given 𝑇 ∈ 𝔞𝐺𝑀0
, let

𝑑 (𝑇) := min
𝛼∈Δ𝑃0

{𝛼(𝑇)}.

Given T with 𝑑 (𝑇) sufficiently large, Arthur (following Langlands; see [6, Section 13]) defined certain
truncation operator Λ𝑇 , which acts on locally integrable functions on 𝐺 (𝐹)\𝐺 (A)1. We do not need
the exact definition of Λ𝑇 but just the following properties of it.

Let f be a locally integrable function on 𝐺 (𝐹)\𝐺 (A)1.
1. Λ𝑇 𝑓 is rapidly decaying. In particular, if 𝜆 ∈ (𝔞𝐺

𝑃,C
)∗ is away from any pole of Eis(𝜑, 𝜆), then

Λ𝑇 Eis(𝜑, 𝜆) is square-integrable.
2. Given any compact Ω ⊂ 𝐺 (𝐹)\𝐺 (A)1, there is a 𝐶 (Ω) > 0, such that for every 𝑇 ∈ 𝔞𝐺𝑀0

with
𝑑 (𝑇) > 𝐶 (Ω), it holds that Λ𝑇 𝑓 |Ω= 𝑓 |Ω (see [40, Lemma 6.2]).

3. When 𝛼(𝑇) ≤ 𝛼(𝑇 ′) for every 𝛼 ∈ Δ𝑃0 , it holds that Λ𝑇 ′Λ𝑇 = Λ𝑇 and ‖Λ𝑇 ′ 𝑓 ‖2 ≥ ‖Λ𝑇 𝑓 ‖2 (see
[20, Section 3.3]).

3.5. Intertwining operators

We follow [22, Section 4.2] to define intertwining operators and to record their relevant properties.
For 𝑃,𝑄 ∈ P (𝑀) and 𝜆 ∈ 𝔞∗𝑀,C, we define the standard intertwining operator

𝑀𝑄 |𝑃 (𝜆) : A2(𝑃) → A2 (𝑄)

by

(𝑀𝑄 |𝑃 (𝜆)𝜑) (𝑥) :=
∫

𝑁𝑄 (A)∩𝑁𝑃 (A)\𝑁𝑄 (A)

𝜑(𝑛𝑥)𝑒 〈𝜆,𝐻𝑃 (𝑛𝑥)−𝐻𝑄 (𝑥) 〉 d𝑛. (3.1)

The above integral converges absolutely for sufficiently dominant 𝜆. It can then be meromorphically
continued for all 𝜆 ∈ 𝔞∗𝑀,C. It can be checked that 𝑀𝑄 |𝑃 (𝜆)−1 = 𝑀𝑃 |𝑄 (𝜆) and for 𝜆 ∈ 𝑖(𝔞𝐺𝑀 )

∗ the
operator 𝑀𝑄 |𝑃 (𝜆) is unitary.

For each 𝜋 ∈ Π2(𝑀), we denote the restriction of 𝑀𝑄 |𝑃 (𝜆) on A2
𝜋 (𝑃) by 𝑀𝑄 |𝑃 (𝜋, 𝜆) : A2

𝜋 (𝑃) →
A2
𝜋 (𝑄). On the other hand, we can define an intertwiner from

𝑀 I
𝑄 |𝑃 (𝜆, 𝜋) : Ind𝐺 (A)

𝑃 (A) 𝜋 → Ind𝐺 (A)
𝑄 (A)𝜋

that can be densely defined on K-finite and 𝑍 (Lie(𝐺 (𝐹∞)) ⊗R C)-finite subspace of Ind𝐺 (A)
𝑃 (A) 𝜋 as in (3.1)

(first, for sufficiently dominant 𝜆, then by meromorphic continuation). Then we have a unique canonical
isomorphism of 𝐺 (A 𝑓 ) × (Lie(𝐺 (𝐹∞)) ⊗R C, 𝐾∞)-modules (see [22, Section 4.2])

5We call 𝜆 to be dominant (respectively, sufficiently dominant) if 〈𝜆, 𝛼〉 ≥ 0 (respectively, 〈𝜆, 𝛼〉 are sufficiently positive) for
all positive root 𝛼
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𝑗𝑃 : Hom𝑀 (A)

(
𝜋, 𝐿2 (𝐴𝑀𝑀 (𝐹)\𝑀 (A))

)
⊗ Ind𝐺 (A)

𝑃 (A) 𝜋 → A2
𝜋 (𝑃)

(similarly, 𝑗𝑄) that can be characterized by

𝑗𝑄 ◦
[
Id ⊗ 𝑀 I

𝑄 |𝑃 (𝜆, 𝜋)
]
= 𝑀𝑄 |𝑃 (𝜆, 𝜋) ◦ 𝑗𝑃

(see [48, (2.3)] and discussion around it).
Endowing Hom𝑀 (A)

(
𝜋, 𝐿2 (𝐴𝑀𝑀 (𝐹)\𝑀 (A))

)
with the inner product 〈 𝑓1, 𝑓2〉 = 𝑓 ∗2 𝑓1, where ∗

denotes adjoint (notice that by Schur’s lemma, 𝑓 ∗2 𝑓1 is a scalar), we note that 𝑗𝑃 is an isometry.
Now, in the rest of this subsection, let 𝑃 |𝛼𝑄 for some 𝛼 ∈ Σ𝑀 . In this case, 𝑀𝑄 |𝑃 (𝜆) depends only

upon 〈𝜆, 𝛼∨〉. Let 𝜛 ∈ 𝔞∗𝑀 be such that 〈𝜛, 𝛼∨〉 = 1. We have

𝑀𝑄 |𝑃 (𝑠𝜛) |A2
𝜋 (𝑃) ◦ 𝑗𝑃 = 𝑛𝛼 (𝜋, 𝑠) · 𝑗𝑄 ◦

(
Id ⊗ 𝑅𝑄 |𝑃 (𝜋, 𝑠)

)
, (3.2)

for any 𝑠 ∈ C avoiding poles of the operators on both sides of above. Here, 𝑛𝛼 (𝜋, 𝑠), a global normalizing
factor, is a meromorphic function in s. Moreover, if 𝑠 ∈ 𝑖R, then |𝑛𝛼 (𝜋, 𝑠) | = 1. The operator

𝑅𝑄 |𝑃 (𝜋, 𝑠) : Ind𝐺 (A)
𝑃 (A) 𝜋 → Ind𝐺 (A)

𝑄 (A)𝜋

is a factorizable normalized intertwining operator, so that

𝑅𝑄 |𝑃 (𝜋, 𝑠) =
∏
𝑣

𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠), 𝜋 = ⊗𝑣𝜋𝑣 .

Here, 𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠)1𝐾𝑣 = 1𝐾𝑣 for almost all v. Moreover, if 𝑠 ∈ 𝑖R, then 𝑅𝑄 |𝑃 (𝜋, 𝑠) is unitary (see [6,
Theorem 21.4] for details).

3.6. Langlands inner product formula

For 𝑄 ∈ P (𝑀), we let

𝜃𝑄 (Λ) := 𝑣−1
Δ𝑄

∏
𝛽∈Δ𝑄

〈Λ, 𝛽∨〉, Λ ∈ 𝔞∗𝑀0 ,C,

where 𝑣Δ𝑄 is the covolume of the lattice in 𝔞𝐺𝑄 spanned by {𝛽∨ | 𝛽 ∈ Δ𝑄}.
For 𝑇 ∈ 𝔞𝐺𝑀0

, we also define 𝑌𝑄 (𝑇) as the projection to 𝔞𝐺𝑀 of 𝑡−1(𝑇 − 𝑇0) + 𝑇0, where 𝑡 ∈ 𝑊0 is an
element, such that 𝑃0 ⊂ 𝑡𝑄, and 𝑇0 ∈ 𝑎𝐺𝑀 is the element defined by Arthur in [2, Lemma 1.1] (also see
the discussion around [6, (9.4)]).

Let 𝜒 = (𝑀, 𝜋) be a cuspidal datum and 𝜑, 𝜑′ ∈ A2
𝜒,𝜋 (𝑃), namely, 𝜑 and 𝜑′ are cusp forms. In this

case, Langlands, generalizing the classical Maass–Selberg relations, obtained a formula for the inner
product of two truncated Eisenstein series attached to 𝜑 and 𝜑′ (see [6, Proposition 15.3]). The formula
involves sums over various Weyl elements and parabolic subgroups of quantities involving (twisted)
intertwining operators, 𝜃𝑄, and 𝑌𝑄. There is also an approximate version of the formula, due to Arthur
in [5], when 𝜑 or 𝜑′ are not cuspidal. However, we do not need any of these formulæ here, but only a
special case that we describe below.

For any two parabolic subgroups 𝑃,𝑄 ⊃ 𝑃0, let 𝑊 (𝔞𝑃 , 𝔞𝑄) be the set of distinct linear isomorphisms
from 𝔞𝑃 ⊂ 𝔞𝑃0 to 𝔞𝑄 ⊂ 𝔞𝑃0 , induced by elements of 𝑊0. For any 𝑄 ∈ P (𝑀) and 𝑃0 ⊂ 𝑃, there is a
natural action of 𝑊 (𝔞𝑃 , 𝔞𝑄) on Π2(𝑀). Following [6, Section 15], we call 𝜒 unramified if, for every
(𝑀, 𝜋) ∈ 𝜒, the stabilizer of 𝜋 in 𝑊 (𝔞𝑃 , 𝔞𝑃) is trivial. We warn again that this notion should not be
confused with the unramifiedness of representations of reductive groups over local fields.

In the unramified case, we record the Langlands inner product formula.
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Lemma 3.1. Let 𝜒 := (𝑀, 𝜋) be any unramified cuspidal datum and 𝜑, 𝜑′ ∈ A2
𝜒,𝜋 (𝑃). Then we have

〈Λ𝑇 Eis(𝜑, 𝜆),Λ𝑇 Eis(𝜑′, 𝜆)〉A2 (𝐺) = lim
Λ→0

∑
𝑄∈P (𝑀 )

𝑒 〈Λ,𝑌𝑄 (𝑇 ) 〉
〈𝑀𝑄 |𝑃 (𝜆 + Λ)𝜑, 𝑀𝑄 |𝑃 (𝜆)𝜑′〉A2 (𝑄)

𝜃𝑄 (Λ)
.

Proof. We refer to [21, pp.185] and note that 𝑀𝑄 |𝑃 (1, 𝜆) in this reference is the same as 𝑀𝑄 |𝑃 (𝜆). �

4. Local preliminaries

4.1. Parameters associated with a representation

Let 𝑀 ∈ L. The goal of this subsection is to associate various parameters measuring the complexity of
a certain representation 𝜋 ∈ Π2(𝑀).

4.1.1. Non-Archimedean complexity
First, following [22, Section 5.1], for any open-compact subgroup𝐾 ⊂ 𝐾 𝑓 , we recall the notion level(𝐾).
Fix 𝜄 : 𝐺 → GL(𝑉) a faithful F-rational representation and an 𝔬-lattice Λ ⊂ 𝑉 so that the stabilizer
of �̂� ⊗ Λ ⊂ A 𝑓 ⊗ 𝑉 in 𝐺 (A 𝑓 ) is 𝐾 𝑓 . Then, for any ideal 𝔮 ⊂ 𝔬, we define the principal congruence
subgroup of level𝔮 by

𝐾 (𝔮) := {𝑘 ∈ 𝐾 𝑓 | 𝜄(𝑘)𝑣 ≡ 𝑣 mod (𝔮(�̂� ⊗ Λ)), 𝑣 ∈ �̂� ⊗ Λ}.

Now, we define level(𝐾) to be the index [𝔬 : 𝔮𝐾 ], where𝔮𝐾 ⊂ 𝔬 is the largest ideal𝔮, such that 𝐾 ⊃ 𝐾 (𝔮).
On the other hand, given a representation 𝜋 𝑓 of 𝐺 (A 𝑓 ), we define level(𝜋 𝑓 ) as the minimum over
level(𝐾), such that 𝜋 𝑓 has a nontrivial K-invariant vector.6

Given a representation 𝜋 𝑓 of 𝑀 (A 𝑓 ) and 𝛼 ∈ Σ𝑀 , we recall the quantity level𝑀 (𝜋 𝑓 , �̂�+
𝛼), as defined

in [22, Sections 5.1–5.2], which measures the complexity of 𝜋 𝑓 . In this paper, we do not need to know
level𝑀 (𝜋 𝑓 , �̂�+

𝛼) explicitly, but only an upper bound that we describe below.

Lemma 4.1. Let 𝐾 ⊂ 𝐾 𝑓 be an open-compact subgroup. Assume that 𝜋 ∈ Π2 (𝑀) is such that
A2
𝜋 (𝑃)𝐾 ≠ {0} for some 𝑃 ∈ P (𝑀), that is the parabolic induction of 𝜋 𝑓 to 𝐺 (A 𝑓 ) has a K-invariant

vector. Then we have

level𝑀 (𝜋 𝑓 , �̂�+
𝛼) ≤ level(𝐾).

Proof. It follows from [22, Lemma 5.12] that

level𝑀 (𝜋 𝑓 , �̂�+
𝛼) ≤ level(𝐾;𝐺+

𝑀 ),

where 𝐺+
𝑀 ⊂ 𝐺 is a certain subgroup and level(𝐾;𝐺+

𝑀 ) denotes the relative level of K in respect to
𝐺+
𝑀 as defined in [22, Section 5.1]. The lemma follows from the fact that level(𝐾;𝐺+

𝑀 ) ≤ level(𝐾) (see
[22, Section 5.1]). �

4.1.2. Archimedean complexity
Let 𝜋∞ be a smooth representation of 𝑀 (𝐹∞). Let 𝛼 ∈ Σ𝑀 . We recall the quantity Λ𝑀 (𝜋∞; �̂�𝛼), as
defined in [22, Sections 5.1–5.2], which measures the complexity of 𝜋∞ as a representation of 𝑀 (𝐹∞).
In this paper, we do not need to know Λ𝑀 (𝜋∞; �̂�𝛼) explicitly, but only an upper bound that we describe
below.

Let 𝜈(𝜋∞) be the eigenvalue for 𝜋∞ of the Casimir operator of 𝑀 (𝐹∞). Similarly, given 𝜏 ∈ 𝐾∞, let
𝜈(𝜏) be the Casimir eigenvalue of 𝜏.

6We remark that when 𝐺 = GL𝑛, the above definition of the level a representation of is different than the usual definition of
the level, which is defined with respect to the Hecke congruence subgroup 𝐾0 (𝔮) (see [31], also [22, Lemma 5.6]).
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Lemma 4.2. Let 𝜏 ∈ 𝐾∞. Assume that 𝜋 ∈ Π2 (𝑀) is such that A2
𝜋 (𝑃)𝜏 ≠ {0} for some 𝑃 ∈ P (𝑀),

that is, the parabolic induction of 𝜋∞ to 𝐺 (𝐹∞) has a nonzero vector whose 𝐾∞-type is 𝜏. Then we have

Λ𝑀 (𝜋∞; �̂�𝛼) 
 1 + 𝜈(𝜋∞)2 + 𝜈(𝜏)2.

Proof. It follows from [22, (10)–(11)] that

Λ𝑀 (𝜋∞; �̂�𝛼) 
 𝜈(𝜋∞)2 +min
𝜏′

𝜈(𝜏′)2,

where 𝜏′ ∈ 𝐾∞ runs over the lowest 𝐾∞-types of Ind𝐺 (𝐹∞)
𝑃 (𝐹∞) 𝜋∞. We conclude by noting that the lowest

𝐾∞-types have the smallest Casimir eigenvalues (equivalently, the smallest infinitesimal characters). �

4.2. The spherical function

In the rest of this section, we only work over the Archimedean places, that is 𝐹∞ (see [15, Section 3] for
references to the material below).

Let 𝐺∞ := 𝐴𝐺\𝐺 (𝐹∞) and 𝐾∞ be a maximal compact subgroup in 𝐺∞. Choose a maximal R-
split torus 𝑇∞ ⊂ 𝐺∞, which we may assume to contain 𝑇0 (𝐹∞) and contained in 𝑀0 (𝐹∞). Let
𝑊∞ := 𝑁𝐺∞ (𝑇∞)/𝑇∞ be the Weyl group of 𝐺∞ relative to 𝑇∞. Let 𝑇0

∞ be the connected component
of the identity of 𝑇∞ and 𝔞∞ be the Lie algebra of 𝑇0

∞.
We remark that for any Levi 𝑀 ⊃ 𝑀0, the embedding 𝑇∞ → 𝑀 (𝐹∞) defines a projection 𝔞∞ � 𝔞𝐺𝑀

and an embedding (𝔞𝐺𝑀 )
∗ ↩→ 𝔞∗∞ (see [6, pp.118]).

We let 𝑀0,∞ be the Levi subgroup, which is the normalizer of 𝑇∞ in 𝐺∞. Let 𝐵∞ be a Borel subgroup
containing 𝑀0,∞ as a Levi subgroup and also containing 𝑃0 (𝐹∞). Let 𝑁∞ be the unipotent radical of
𝐵∞. We have the Iwasawa decomposition 𝐺∞ = 𝐵∞𝐾∞ = 𝑁∞𝑇

0
∞𝐾∞.

Using the exponential map from 𝔞∞ to 𝑇0
∞, each element 𝜇 ∈ 𝔞∗∞,C := (𝔞∞ ⊗R C)∗ defines a

character 𝜒𝜇 of 𝑇∞, which is trivial on 𝑇∞/𝑇0
∞. It extends, via 𝑁∞-invariance, to a character of 𝐵∞. Let

𝛿∞ : 𝐵∞ → R>0 be the modular character of 𝐵∞, which is attached to the character 𝜒2𝜌∞ , where 2𝜌∞ is
the sum of all the roots of the action of 𝑇∞ on the Lie algebra of 𝑁∞, weighted by the dimensions of the
corresponding root spaces.

Given 𝑔 ∈ 𝐺∞, we let 𝑎(𝑔) be its 𝑇0
∞ part according to the Iwasawa decomposition 𝐺∞ = 𝑁∞𝑇

0
∞𝐾∞.

We define the spherical function 𝜂𝜇 : 𝐺∞ → C corresponding to 𝜇 ∈ 𝔞∗∞,C by

𝜂𝜇 (𝑔) :=
∫
𝐾∞

𝜒𝜇+𝜌∞ (𝑎(𝑘𝑔)) d𝑘.

Thus, 𝜂𝜇 is bi 𝐾∞-invariant. Here, d𝑘 denotes the probability Haar measure on 𝐾∞.

4.3. Spherical representation

We call an irreducible admissible representation (𝜋,𝑉) of 𝐺∞ spherical if 𝜋 has a nonzero 𝐾∞-invariant
vector. We can construct all irreducible admissible spherical representations of 𝐺∞ from the unitarily
induced principal series representations. Let 𝜇 ∈ 𝔞∗∞,C and Ind𝐺∞𝐵∞ 𝜒𝜇 denotes the normalized parabolic
induction of 𝜒𝜇 from 𝐵∞ to 𝐺∞. It is an admissible representation and has a unique irreducible spherical
subquotient. Conversely, for any irreducible spherical representation (𝜋,𝑉), we can find a (unique up
to 𝑊∞-action) 𝜇𝜋 ∈ 𝔞∗∞,C, such that 𝜋 appears as the unique spherical subquotient of Ind𝐺∞𝐵∞ 𝜒𝜇𝜋 . In this
case, we call 𝜇𝜋 the Langlands parameter of 𝜋. When 𝜋 is also unitary, it holds that ‖�(𝜇𝜋)‖ ≤ ‖𝜌∞‖
and 1 + ‖𝜇𝜋 ‖2 � 1 + 𝜈(𝜋) (more precisely, 𝜈(𝜋) = ‖𝜌∞‖2 − ‖�(𝜇𝜋)‖2 + ‖�(𝜇𝜋)‖2) (see [15, (3.17)]).

If 𝜋 is spherical, then the 𝐾∞-invariant vector of 𝜋 is unique up to multiplication by a scalar. Let
1𝐾∞ be the characteristic function on 𝐾∞. Then 𝜋(1𝐾∞) is well-defined and acts as a projection onto
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the 𝐾∞-invariant subspace of V. Let 0 ≠ 𝑣 ∈ 𝜋 be a 𝐾∞-invariant vector. It follows from the definition
of the spherical function that 𝜋(1𝐾∞)𝜋(𝑔)𝑣 = 𝜂𝜇𝜋 (𝑔)𝑣.

Let 𝑀∞ be any Levi subgroup of 𝐺∞, having 𝑇∞ as a maximal split torus. We can associate to
each irreducible admissible spherical (containing a nonzero 𝐾∞ ∩ 𝑀∞-invariant vector) representation
𝜋 of 𝑀∞ a Langlands parameter 𝜇𝜋 ∈ 𝔞∗∞,C, defined up to 𝑊𝑀,∞ = 𝑁𝑀∞ (𝑇∞)/𝑇∞ ⊂ 𝑊∞. More-
over, if 𝑄∞ is a parabolic subgroup of 𝐺∞ with 𝑀∞ as its Levi subgroup, Ind𝐺∞𝑄∞𝜋 has a unique
spherical subrepresentation. On the other hand, if Ind𝐺∞𝑄∞𝜋 has a 𝐾∞-invariant vector, then 𝜋 neces-
sarily has a 𝐾∞ ∩ 𝑀∞-invariant vector. In any case, by the transitivity of induction, 𝜇𝜋 is also the
Langlands parameter of the spherical subquotient of Ind𝐺∞𝑄∞𝜋 (however, the new parameter is defined
up to 𝑊∞).

4.4. The spherical transform

We call the convolution algebra on 𝐶∞𝑐 (𝐾∞\𝐺∞/𝐾∞) the spherical Hecke algebra of 𝐺∞. For
ℎ ∈ 𝐶∞𝑐 (𝐾∞\𝐺∞/𝐾∞), we let ℎ̃ : 𝔞∗∞,C → C be the spherical transform of h, defined by

ℎ̃(𝜇) :=
∫
𝐺∞

ℎ(𝑔)𝜂𝜇 (𝑔) d𝑔.

If 𝜋 is spherical and 0 ≠ 𝑣 ∈ 𝜋 is a 𝐾∞-invariant vector, then it holds that

𝜋(ℎ)𝑣 =
∫
𝐺∞

ℎ(𝑔)𝜋(𝑔)𝑣 d𝑔 = ℎ̃(𝜇𝜋)𝑣.

We define the Abel–Satake transform (also known as Harish-Chandra transform) to be the map S :
𝐶𝑐 (𝐾∞\𝐺∞/𝐾∞) → 𝐶𝑐 (𝑇∞) defined by

ℎ ↦→ Sℎ : 𝑎 ↦→ 𝛿∞(𝑎)1/2
∫
𝑁∞

ℎ(𝑎𝑛) d𝑛,

where d𝑛 is a Haar measure on 𝑁∞. Since Sℎ is left-𝐾∞ ∩ 𝑇∞-invariant, it is actually a map on 𝑇0
∞. We

have the exponential map exp: 𝔞∞ → 𝑇0
∞, which gives an identification of 𝔞∞ with 𝑇0

∞. So we may as
well realize Sℎ ∈ 𝐶𝑐 (𝔞∞) after precomposing with the exp map. It holds that S 𝑓 is 𝑊∞-invariant. In
fact, Gangolli showed that

S : 𝐶∞𝑐 (𝐾∞\𝐺∞/𝐾∞) → 𝐶∞𝑐 (𝔞∞)𝑊∞

is an isomorphism of topological algebras (see [15, eq.(3.21)] (also see [25]). Let us denote the Fourier–
Laplace transform 𝐶𝑐 (𝔞∞) → 𝐶 (𝔞∗∞,C) by the map

ℎ ↦→ ℎ̂ : 𝜇 ↦→
∫
𝔞∞

ℎ(𝛼)𝑒 〈𝜇,𝛼〉 d𝛼,

Harish-Chandra showed that the spherical transform ℎ̃ = �S (ℎ). Here, d𝛼 denotes the Lebesgue measure
inherited from the R-vector space structure of 𝔞∞.
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4.5. The Paley–Wiener theorem

Recall the Abel–Satake transform S above. Gangolli (see [15, eq.(3.22)]) proved that if ℎ ∈ 𝐶∞𝑐 (𝔞∞)𝑊∞

is such that supp(ℎ) ⊂ {𝛼 ∈ 𝔞∞ | ‖𝛼‖ ≤ 𝑏}, then

supp(S−1ℎ) ⊂ 𝐾∞{exp𝛼 | 𝛼 ∈ 𝔞∞, ‖𝛼‖ ≤ 𝑏}𝐾∞. (4.1)

We also record the classical Paley–Wiener theorem, which implies that for ℎ ∈ 𝐶∞𝑐 (𝔞∞)𝑊∞ with
support in {𝛼 ∈ 𝔞∞ | ‖𝛼‖ ≤ 𝑏}, we have

| ℎ̂(𝜇) | 
𝑁 ,ℎ exp(𝑏‖�(𝜇)‖)(1 + ‖𝜇‖)−𝑁 (4.2)

for every 𝑁 ≥ 0.

5. A bound on an intertwining operator

In this section, we prove Theorem 2 and provide one of the main ingredients of the proof of Theorem 3.
First, we record the required estimates of the logarithmic derivatives of the normalizing factors and

the normalized intertwining operators, denoted by properties (TWN+) and (BD), respectively.

5.1. Property (TWN+)

In [18, Definition 3.3]7, the authors defined the (TWN+) property, strong version, of a reductive group.
Property (TWN+) is a global property that concerns the size of the logarithmic derivative of 𝑛𝛼 (𝜋, 𝑠).
Below, we record an implication of property (TWN+) which we will use in this article.

Lemma 5.1. Let G satisfy property (TWN+). Let 𝑀 ∈ L be proper, 𝜋 ∈ Π2(𝑀) and 𝛼 ∈ Σ𝑀 . Let
𝐾 ⊂ 𝐾 𝑓 be open-compact and 𝜏 ∈ 𝐾∞ so that A2

𝜋 (𝑃)𝜏,𝐾 ≠ {0} for some 𝑃 ∈ P (𝑀). Then it holds that

𝑡0+1∫
𝑡0

����𝑛′𝛼 (𝜋, 𝑖𝑡)𝑛𝛼 (𝜋, 𝑖𝑡)

���� d𝑡 
 log(1 + |𝑡0 | + 𝜈(𝜋∞) + 𝜈(𝜏) + level(𝐾)),

for any 𝑡0 ∈ R.

Proof. Note that |𝑛𝛼 (𝜋, 𝑖𝑡) | = 1. Now the proof follows immediately by applying Lemmas 4.1 and 4.2
to the inequality in [18, Definition 3.3]. �

Finally, we keep a record that property (TWN+) is not vacuous.

Proposition 5.2. [18, Theorem 3.11]. Property (TWN+) holds for G being GL𝑛 and its inner form, a
quasi-split classical group8, and 𝐺2. Moreover, it holds for any group whose derived group coincides
with the derived group of any group mentioned above.

5.2. Property (BD)

In [19, Definitions 1–2], the authors defined the (BD) property of a reductive group. Property (BD) is a
local property that concerns the size of the logarithmic derivative of 𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠). Below, we record an
implication of property (BD) which we will use in this article.

7The quantities Λ(𝜋∞; 𝑝sc) and level(𝜋, 𝑝sc) are denoted by Λ(𝜋∞; �̂�𝛼) and level(𝜋 𝑓 ; �̂�+
𝛼) , respectively, in this article,

following [22].
8The proof of [18] for the classical groups crucially depends on the endoscopic classification of automorphic representations,

due to Arthur [7] and Mok [46].
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Lemma 5.3. Let G satisfy property (BD) at every place. Let 𝑀 ∈ L be proper, 𝜋 ∈ Π2(𝑀) and
𝑃,𝑄 ∈ P (𝑀) be adjacent. Let 𝐾 ⊂ 𝐾 𝑓 be open-compact and 𝜏 ∈ 𝐾∞ so that A2

𝜋 (𝑃)𝜏,𝐾 ≠ {0}. Then
it holds that

𝑡0+1∫
𝑡0

�����𝑅𝑄 |𝑃 (𝜋, 𝑖𝑡)−1𝑅′𝑄 |𝑃 (𝜋, 𝑖𝑡) |(Ind𝐺 (A)
𝑃 (A) 𝜋

) 𝜏,𝐾
�����

op

d𝑡 
 log(1 + 𝜈(𝜏) + level(𝐾)),

for any 𝑡0 ∈ R.

To prove Lemma 5.3, we use a different formulation of property (BD), namely, [22, Definition 5.9].
This formulation is implied by the formulation in [19, Definitions 1–2] (see [19, Remark 3]).

Proof. We closely follow the proof of [22, Proposition 5.16]. As 𝑅𝑄 |𝑃 (𝜋, 𝑠) =
∏
𝑣 𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠) and as

𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠) |(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣

)𝐾𝑣 is independent of s for almost all v (see [22, Remark 5.13]), it is enough to

show that

𝑡0+1∫
𝑡0

����𝑅𝑄 |𝑃 (𝜋∞, 𝑖𝑡)−1𝑅′𝑄 |𝑃 (𝜋∞, 𝑖𝑡) |(Ind𝐺 (𝐹∞)
𝑃 (𝐹∞) 𝜋∞

) 𝜏����
op

d𝑡 
 log(1 + 𝜈(𝜏)),

and for each non-Archimedean v

𝑡0+1∫
𝑡0

�����𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑖𝑡)−1𝑅′𝑄 |𝑃 (𝜋𝑣 , 𝑖𝑡) |(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣

)𝐾𝑣
�����

op

d𝑡 
 log(1 + level(𝐾𝑣 )),

where 𝐾 =
∏
𝑣<∞ 𝐾𝑣 and level(𝐾𝑣 ) is the v-adic factor of level(𝐾) and the implied constant is uniform

in v (i.e. uniform in the order 𝑞𝑣 of the corresponding residue fields).
To prove the non-Archimedean part, we only modify [22, (14)]. Keeping the same notations (in

particular, denoting 𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑠) |(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣

)𝐾𝑣 = 𝐴𝑣 (𝑞−𝑠𝑣 )) and assumptions as in [22], we bound

𝑡0+1∫
𝑡0

�����𝑅𝑄 |𝑃 (𝜋𝑣 , 𝑖𝑡)−1𝑅′𝑄 |𝑃 (𝜋𝑣 , 𝑖𝑡) |(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣

)𝐾𝑣
�����

op

d𝑡

= log 𝑞𝑣

𝑡0+1∫
𝑡0

‖𝐴′𝑣 (𝑞−𝑖𝑡𝑣 )‖op d𝑡 
 log 𝑞𝑣

∫
𝑆1

‖𝐴′𝑣 (𝑧)‖op | d𝑧 |,

where the last estimate follows by changing variable 𝑞−𝑖𝑡𝑣 ↦→ 𝑧. In the first equality above, the factor
log 𝑞𝑣 comes from

𝑅′𝑄 |𝑃 (𝜋𝑣 , 𝑠) = − log 𝑞𝑣 𝐴
′
𝑣 (𝑞−𝑠𝑣 ).

In the second estimate above, we have changed variable

𝑞−𝑖𝑡𝑣 ↦→ 𝑧,
d𝑧
𝑧

= −𝑖 log 𝑞𝑣 d𝑡.

On the other hand, as t moves along [𝑡0, 𝑡0 + 1] ⊂ R, the variable z winds 𝑆1 asymptotically log 𝑞𝑣
times, uniformly in 𝑡0. From here, we follow the discussion after [22, (14)] and conclude.
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To prove the Archimedean part, we first modify [22, Lemma 5.19] and its proof. Keeping the same
notations and assumptions as in [22], we claim that

𝑡0+1∫
𝑡0

‖𝐴′(𝑖𝑡)‖op d𝑡 

∑

1≤ 𝑗≤𝑚:𝑢 𝑗≠0
min

(
1,

1
|𝑢 𝑗 |

)
.

Here, 𝐴(𝑠) = 𝐴∞(𝑠) = 𝑅𝑄 |𝑃 (𝜋∞, 𝑠) |(Ind𝐺 (𝐹∞)
𝑃 (𝐹∞) 𝜋∞

) 𝜏 . Following the proof of [22, Lemma 5.19], we see

that the above claim follows from the following claim

𝑡0+1∫
𝑡0

|𝜙′𝑤 (𝑖𝑡) | d𝑡 
 min(1, 1/|𝑢 |),

where 𝑤 = 𝑢 + 𝑖𝑣 with 𝑢, 𝑣 ∈ R,

𝜙𝑤 (𝑧) :=
𝑧 + 𝑤

𝑧 − 𝑤
, |𝜙′𝑤 (𝑖𝑡) | =

2|𝑢 |
𝑢2 + (𝑡 − 𝑣)2

.

If 𝑢 ≠ 0, we clearly have

𝑡0+1∫
𝑡0

|𝜙′𝑤 (𝑖𝑡) | d𝑡 

𝑡0+1∫
𝑡0

1
|𝑢 | d𝑡 
 1

|𝑢 | .

We also have
𝑡0+1∫
𝑡0

|𝜙′𝑤 (𝑖𝑡) | d𝑡 ≤
∫
R

2|𝑢 |
𝑢2 + (𝑡 − 𝑣)2

d𝑡 = 2 arctan
(
𝑡 − 𝑣

|𝑢 |

)����∞−∞ = 2𝜋.

Thus, the claim follows.
Now, it follows from the discussion and the proof in [22, pp.620–621] that

𝑡0+1∫
𝑡0

����𝑅𝑄 |𝑃 (𝜋∞, 𝑖𝑡)−1𝑅′𝑄 |𝑃 (𝜋∞, 𝑖𝑡) |(Ind𝐺 (𝐹∞)
𝑃 (𝐹∞) 𝜋∞

) 𝜏����
op

d𝑡 

𝑟∑
𝑗=1

𝑚∑
𝑘=1

min
(
1,

1
|𝑢 𝑗 − 𝑐𝑘 |

)
,

where |𝑢 𝑗 |, 𝑟 
𝐺 1,

𝑚 
 1 + ‖𝜏‖ � 1 + 𝜈(𝜏)2,

and 𝑐 > 0 depends only on M. We conclude the proof in the Archimedean case by noting that the double
sum above is bounded by 
𝐺,𝑀 log𝑚. �

Finally, we keep a record that the property (BD) is not vacuous.

Proposition 5.4. [19, Corollary 1]. Property (BD) holds at every place if G is GL𝑛 or its inner form, or
a split group of rank 2. It also holds at every non 2-adic place if G is special orthogonal, or symplectic.

Fix 𝑇 ∈ 𝔞𝐺𝑀0
. Let 𝑀 ∈ L, and fix 𝑃 ∈ P (𝑀). For 𝑄 ∈ P (𝑀) and 𝜆,Λ ∈ 𝑖(𝔞𝐺𝑀 )

∗, we define an
operator M𝑇

𝑄 (𝜆,Λ, 𝑃) acting on A2(𝑃) by

M𝑇
𝑄 (𝜆,Λ, 𝑃) := 𝑒 〈Λ,𝑌𝑄 (𝑇 ) 〉𝑀𝑄 |𝑃 (𝜆)−1𝑀𝑄 |𝑃 (𝜆 + Λ). (5.1)
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Similarly, for 𝐿 ∈ L(𝑀), 𝑄 ∈ P (𝐿) and 𝜆,Λ ∈ 𝑖(𝔞𝐺𝐿 )
∗ ⊂ 𝑖(𝔞𝐺𝑀 )

∗, we define

M𝑇
𝑄 (𝜆,Λ, 𝑃) := M𝑇

𝑄1
(𝜆,Λ, 𝑃),

for arbitrary 𝑄1 ⊂ 𝑄, 𝑄1 ∈ P (𝑀). The choice of 𝑄1 does not matter here. Here, in the left-hand side,
𝜆,Λ are realized as restrictions on 𝔞𝐿 (see [6, pp.133]).

Following definitions in [6, Section 21], the set {M𝑇
𝑄 (𝜆,Λ, 𝑃)}𝑄∈P (𝐿) is an example of a ‘(𝐺, 𝐿)-

family’ (see [6, Section 17] for a general discussion on (𝐺, 𝑀)-family). For 𝐿 ∈ L(𝑀) and 𝜆 ∈ 𝑖(𝔞𝐺𝐿 )
∗,

we define the operator M𝑇
𝐿 (𝜆, 𝑃) as the value at Λ = 0 of

∑
𝑄∈P (𝐿)

M𝑇
𝑄 (𝜆,Λ, 𝑃)
𝜃𝑄 (Λ)

.

Below, we prove the main estimate on the operator norm of M𝑇
𝐿 (𝜆, 𝑃).

Proposition 5.5. Assume that G satisfies properties (TWN+) and (BD). Fix 𝑀 ∈ L, 𝑃 ∈ P (𝑀) and
𝐿 ∈ L(𝑀). Let 𝜏 ∈ 𝐾∞, 𝐾 ⊂ 𝐾 𝑓 be an open-compact and 𝜋 ∈ Π2 (𝑀). Then, for every 𝜆0 ∈ 𝑖(𝔞𝐺𝐿 )

∗,∫
𝜆∈𝑖 (𝔞𝐺𝐿 )

∗

‖𝜆−𝜆0 ‖≤1

���M𝑇
𝐿 (𝜆, 𝑃) |A2

𝜋 (𝑃) 𝜏,𝐾
���

op
d𝜆 
 (‖𝑇 ‖ log(1 + 𝜈(𝜏) + 𝜈(𝜋∞) + ‖𝜆0‖ + level(𝐾)))dim𝔞𝐺𝐿 ,

where 𝑇 ∈ 𝔞𝐺𝑀0
with sufficiently large 𝑑 (𝑇).

Before proving Proposition 5.5, we give a proof of Theorem 2.

Proof of Theorem 2. Using Lemma 3.1 and the fact that 𝑀𝑄 |𝑃 (𝜆) unitary for 𝜆 ∈ 𝑖(𝔞𝐺𝑀 )
∗, and recalling

Equation (5.1), we can write

‖Λ𝑇 Eis(𝜑, 𝜆)‖2
2 = 〈M𝑇

𝑀 (𝜆, 𝑃)𝜑, 𝜑〉A2 (𝑃) .

We conclude using Proposition 5.5 and that 𝜑 is a unit. �

The rest of this section is devoted to the proof of Proposition 5.5.
Let 𝑃 |𝛼𝑄 for some 𝛼 ∈ Σ𝑀 . Let 𝜛 ∈ 𝔞∗𝑀 be such that 〈𝜛, 𝛼∨〉 = 1. We define

𝛿𝑄 |𝑃 (𝜆) := 𝑀−1
𝑄 |𝑃 (𝜆)𝐷𝜛𝑀𝑄 |𝑃 (𝜆) (5.2)

as in [22, Section 4.3] as an operator from A2 (𝑃) to A2(𝑃). Here 𝐷𝜛𝑀𝑄 |𝑃 (𝜆) is the derivative of
𝑀𝑄 |𝑃 (𝜆) in the direction 𝜛. The definition is independent of the choice of 𝜛; see [22, pp.608].

Lemma 5.6. Keep the notations as above and assumptions as in Proposition 5.5. We have

𝑡0+1∫
𝑡0

���𝛿𝑄 |𝑃 (𝑖𝑡𝜛) |A2
𝜋 (𝑃) 𝜏,𝐾

���
op

d𝑡 
 log(1 + 𝜈(𝜏) + 𝜈(𝜋∞) + |𝑡0 | + level(𝐾)),

for any 𝑡0 ∈ R.

Proof. We take the inverse on both sides of (3.2) and compose it with the derivative of (3.2) and obtain

𝑗−1
𝑃 ◦ 𝛿𝑄 |𝑃 (𝑠𝜛) ◦ 𝑗𝑃 =

𝑛′𝛼 (𝜋, 𝑠)
𝑛𝛼 (𝜋, 𝑠)

Id + 𝑅−1
𝑄 |𝑃 (𝜋, 𝑠)𝑅

′
𝑄 |𝑃 (𝜋, 𝑠).
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Recall that 𝑗𝑃 can be chosen to be isometric, that is ‖ 𝑗𝑃 ‖ = 1. We conclude the proof by applying
Lemmas 5.1 and 5.3. �

Given 𝐿 ∈ L(𝑀), we let 𝔅𝑃,𝐿 be the set of tuples 𝛽 = (𝛽∨1 , ..., 𝛽
∨
𝑚) of Σ∨𝑃 with 𝑚 := dim𝔞𝐺𝐿 , such

that their projection to 𝔞𝐺𝐿 form a basis of 𝔞𝐺𝐿 . We denote vol(𝛽) to be the covolume of the lattice
generated by the projection of 𝛽∨1 , ..., 𝛽

∨
𝑚 in 𝔞𝐺𝐿 . Let

Ξ𝐿 (𝛽) := {(𝑃1, ..., 𝑃𝑚, 𝑃
′
1, ..., 𝑃

′
𝑚) ∈ P (𝑀)2𝑚 | 𝑃𝑖 , 𝑃′𝑖 ∈ P (𝑀), 𝑃𝑖 |𝛽𝑖𝑃′𝑖}.

In [21, pp.179–180], (also see [22, pp.608–609]) the authors define a map9

𝔅𝑃,𝐿 � 𝛽 ↦→ 𝜉 (𝛽) ∈ Ξ𝐿 (𝛽).

For 𝑃 |𝛽𝑃′, we find 𝛼𝑃,𝑃′ ∈ 𝔞∗𝑀 , such that

𝑌𝑃 (𝑇) − 𝑌𝑃′ (𝑇) = 〈𝛼𝑃,𝑃′ , 𝑇 − 𝑇0〉𝛽∨.

Such an 𝛼𝑃,𝑃′ exists (see [21, pp.186]). Finally, for 𝜉 ∈ Ξ𝐿 (𝛽), we define the operator

Δ𝑇𝜉 (𝑃, 𝜆) :=
vol(𝛽)
𝑚!

𝑀𝑃 |𝑃′1 (𝜆)
(
𝛿𝑃1 |𝑃′1 (𝜆) + 〈𝛼𝑃1 ,𝑃

′
1
, 𝑇 − 𝑇0〉Id

)
𝑀𝑃′1 |𝑃

′
2
(𝜆)

. . .

(
𝛿𝑃𝑚 |𝑃′𝑚 (𝜆) + 〈𝛼𝑃𝑚 ,𝑃′𝑚 , 𝑇 − 𝑇0〉Id

)
𝑀𝑃′𝑚 |𝑃 (𝜆). (5.3)

Note that the definition of Δ𝑇𝜉 (𝑃, 𝜆), here, looks a little different from [21, pp.186], although they are
the same. This is because the definition of 𝛿𝑃𝑖 |𝑃′𝑖 in [21, pp.179] is different than ours (also compare
with the definition of Δ𝑇𝜉 (𝑃, 𝜆) in [22, pp.609]).

Following, Proposition 5.7 expresses the operator M𝑇
𝐿 in terms of Δ𝑇𝜉 . A proof of this is essentially

contained in [21, Theorem 4].

Proposition 5.7. Keep the same notations as in Proposition 5.5. We have

M𝑇
𝐿 (𝑃, 𝜆) =

∑
𝛽∈𝔅𝑃,𝐿

Δ𝑇𝜉 (𝛽) (𝑃, 𝜆)

as operators on A2
𝜋 (𝑃)𝜏,𝐾 .

Proof. We closely follow the proof of [21, Theorem 4]. The Taylor expansion A𝑄 of

𝑀𝑄 |𝑃 (𝜆)−1𝑀𝑄 |𝑃 (𝜆 + Λ), at Λ = 0

form a compatible family (in the sense of [21]), when restricted to the finite-dimensional subspace
A2
𝜋 (𝑃)𝜏,𝐾 . This follows from the argument in [21, pp.185] for 𝑠 = 1. On the other hand, the Taylor

series 𝑐𝑄 of 𝑒 〈Λ,𝑌𝑄 (𝑇 ) 〉 at Λ = 0 form a scalar-valued compatible family. Thus, following the argument in
[21, pp.186], we conclude that 𝑐𝑄A𝑄 form a compatible family when restricted to the finite-dimensional
subspace A2

𝜋 (𝑃)𝜏,𝐾 . Hence, as in [21], we compute the limit of (5.1) at Λ = 0 using [17, Theorem 8.1],
which concludes the proof. �

Finally, we can prove Proposition 5.5.

9The definition of 𝜉 also depends on L and on a certain 𝜇 ∈ 𝔞∗𝑀 , but we do not need the precise definition of the map.
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Proof of Proposition 5.5. Using Proposition 5.7, we see that it is enough to bound for each 𝛽 ∈ 𝔅𝑃,𝐿 ,∫
𝜆∈𝑖 (𝔞𝐺𝐿 )

∗

‖𝜆−𝜆0 ‖≤1

���Δ𝑇𝜉 (𝛽) (𝑃, 𝜆) |A2
𝜋 (𝑃) 𝜏,𝐾

���
op

d𝜆 
 (‖𝑇 ‖ log(1 + 𝜈(𝜏) + 𝜈(𝜋∞) + ‖𝜆0‖ + level(𝐾)))𝑚.

Let 𝜗𝑖 ∈ (𝔞𝐺𝐿 )
∗ be the dual basis to 𝛽∨𝑗 . Using this basis, the above integral can be majorized by



∫

𝜆=𝑖
∑𝑚
𝑗=1 𝑡 𝑗𝜗 𝑗

𝑡 𝑗 ∈R, |𝑡 𝑗−𝑡0, 𝑗 | ≤𝐶

���Δ𝑇𝜉 (𝛽) (𝑃, 𝜆) |A2
𝜋 (𝑃) 𝜏,𝐾

���
op

d𝜆,

where 𝑖𝑡0, 𝑗 := 〈𝜆0, 𝛽
∨
𝑗 〉 and C is a constant, depending only on the root system. Now we recall (5.3) and

use the fact that 𝑀𝑄 |𝑃 (𝜆) is unitary for purely imaginary 𝜆 to see that the above integral can be bounded
by

𝑚∏
𝑗=1

∫
|𝑡 𝑗−𝑡0, 𝑗 | ≤𝐶

(���𝛿𝑃𝑗 |𝑃′𝑗 (𝑖𝜗 𝑗 𝑡 𝑗 ) |A2
𝜋 (𝑃′𝑗 ) 𝜏,𝐾

���
op
+ ‖𝑇 ‖

)
d𝑡 𝑗 .

We conclude the proof by dividing the above interval in the j’th integral in 𝑂 (1) number of length
one subinterval centring the points of size 𝑂 (𝑡0, 𝑗 ) and applying Lemma 5.6 for the integral over each
subinterval. �

6. The spectral side of the trace formula

For any 𝑀 ∈ L and 𝜋 ∈ Π2(𝑀), we denote B𝜒,𝜋 (𝑃) to be an orthonormal basis of A2
𝜒,𝜋 (𝑃). Let

ℎ ∈ 𝐶∞𝑐 (𝐺 (A)1) be a 𝐾∞𝐾 𝑓 -finite function and 𝑇 ∈ 𝔞𝐺𝑀0
with sufficiently large 𝑑 (𝑇).

Let 𝜒 be cuspidal data. In [1, Section 3], Arthur defined a distribution 𝐽𝑇𝜒 (ℎ) via a geometric expansion
(for 𝑑 (𝑇) sufficiently large) and showed that 𝐽𝑇𝜒 (ℎ) is a polynomial in T. We do not need to know the
exact definition of the distribution 𝐽𝑇𝜒 (ℎ) but will record spectral formulæ for it that will be useful for us.

We recall certain norm ‖𝑔‖ on 𝐺 (A) � 𝑔 as defined in [3, pp.1252–1253]. For 𝑃 ⊃ 𝑃0, we let

𝑛𝑃 :=
∑

𝑃0⊂𝑃′∼𝑃
|𝑊 (𝔞𝑃 , 𝔞𝑃′ ) |,

where ∼ denotes association.

Proposition 6.1. [3, Proposition 2.2] There is a constant 𝐶0 > 0, such that if

𝑑 (𝑇) ≥ 𝐶0 (1 + sup{log ‖𝑔‖ | 𝑔 ∈ supp(ℎ)}),

then

𝐽𝑇𝜒 (ℎ) =
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜒,𝜋 (𝑃)

∫
𝑖 (𝔞𝐺𝑃 )∗

〈Λ𝑇 Eis(𝜌(𝑃, 𝜆, ℎ)𝜑, 𝜆),Λ𝑇 Eis(𝜑, 𝜆)〉A2 (𝐺) d𝜆,

and moreover, is a polynomial in T.

The 𝜋-sum in Proposition 6.1 is actually finite (see [3, pp.1245]), although we will not use this fact
in this paper.
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The polynomial expression of 𝐽𝑇𝜒 (ℎ) can be explicitly calculated. We record the expression in the
following Proposition 6.2.

For 𝐿 ∈ L(𝑀), let 𝑊𝐿 (𝑀𝑃) be the set of 𝑤 ∈ 𝑊 (𝑀), such that

{𝐻 ∈ 𝔞𝑀 | 𝑤𝐻 = 𝐻} = 𝔞𝐿 .

We record the following important proposition. For each 𝑤 ∈ 𝑊𝐿 (𝑀𝑃), we consider the intertwining
operator 𝑀 (𝑃, 𝑤) defined in [4, pp.1309]. We do not need an explicit definition (which is a bit convo-
luted) of this operator but only need some of its properties, which are described below.

Proposition 6.2. The quantity 𝐽𝑇𝜒 (ℎ) is equal to

∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝐿∈L(𝑀𝑃)

∑
𝑤 ∈𝑊 𝐿 (𝑀𝑃)

𝜄𝑤

∫
𝑖 (𝔞𝐺𝐿 )∗

tr
(
M𝑇

𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃)

)
d𝜆,

where 𝜄𝑤 :=
���det

(
(𝑤 − 1) |𝔞𝐿𝑀

)���.
Arthur in [3, 4] proved Proposition 6.2 only for 𝑇 = 𝑇0, but below, we show that the same arguments

can also be made to work for general T.

Proof. We fix a Weyl group invariant test function 𝐵 ∈ 𝐶∞𝑐 (𝑖(𝔞𝐺𝑀0
)∗)𝑊0 with 𝐵(0) = 1. As in [3,

pp.1273], for 𝜖 > 0 and 𝜋 ∈ Π2 (𝑀), we define

𝐵𝜖𝜋 (𝜆) := 𝐵(𝜖 (𝑖�(𝜇𝜋) + 𝜆)), 𝜆 ∈ 𝑖(𝔞𝐺𝐿 )
∗,

where 𝜇𝜋 ∈ 𝔞∗𝑀0 ,C
is the infinitesimal character of 𝜋. Combining [3, Theorem 6.3(ii)] and [4, Theorem

4.1], we obtain that 𝐽𝑇𝜒 (ℎ) is equal to the limit of

∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝐿∈L(𝑀𝑃)

∑
𝑤 ∈𝑊 𝐿 (𝑀𝑃)

𝜄𝑤
∑

𝜋∈Π2 (𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

tr
(
M𝑇

𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃)

)
𝐵𝜖𝜋 (𝜆) d𝜆

as 𝜖 → 0. Now, if we show that for each 𝑃 ∈ P , 𝐿 ∈ L(𝑀𝑃), and 𝑤 ∈ 𝑊𝐿 (𝑀𝑃)∑
𝜋∈Π2 (𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

���tr(M𝑇
𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2

𝜒,𝜋 (𝑃)

)��� d𝜆 < ∞,

then by dominated convergence, we can pass the 𝜖 → 0 limit inside and conclude.
Now we work as in [21, Section 5.1] to show the above absolute convergence. As the intertwiner

𝑀 (𝑃, 𝑤) commutes with the group action 𝜌 and is unitary (see [21, pp.184]), we have

tr
(
M𝑇

𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃)

)
≤

���M𝑇
𝐿 (𝑃, 𝜆)𝜌(𝑃, 𝜆, ℎ) |A2

𝜒,𝜋 (𝑃)

���
1
.

Here, on the right-hand side above and elsewhere, ‖ · ‖1 denotes the trace norm of the corresponding
operator. Moreover, using Proposition 5.7, it suffices to show that∑

𝜋∈Π2 (𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

���Δ𝑇𝜉 (𝑃, 𝜆)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃)

���
1

d𝜆 < ∞,
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for any 𝛽 ∈ B𝑃,𝐿 and 𝜉 ∈ Ξ𝐿 (𝛽). As h is 𝐾 𝑓 -finite, there exists an open-compact 𝐾ℎ ⊂ 𝐾 𝑓 , such that h
is right 𝐾ℎ-invariant. Now decomposing into 𝐾∞-types, it suffices to show that∑

𝜏∈�̂�∞

∑
𝜋∈Π2 (𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

���Δ𝑇𝜉 (𝑃, 𝜆)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃) 𝜏,𝐾ℎ

���
1

d𝜆 < ∞.

Working, as in [21, Section 5.1], with the Laplacian on 𝐺 (𝐹∞), noting that h is compactly supported
and using ‖𝐴 |𝑉 ‖1 ≤ dim(𝑉)‖𝐴‖op, we obtain the above integral is bounded by


ℎ,𝑁 dim
(
A2
𝜒,𝜋 (𝑃)𝜏,𝐾ℎ

) ∫
𝑖 (𝔞𝐺𝐿 )∗

(1 + ‖𝜆‖ + 𝜈(𝜋∞) + 𝜈(𝜏))−𝑁
���Δ𝑇𝜉 (𝑃, 𝜆) |A2

𝜒,𝜋 (𝑃) 𝜏,𝐾ℎ

���
op

d𝜆,

for any 𝑁 > 0. Now we use (5.3) and work as in the proof of Proposition 5.5 to bound���Δ𝑇𝜉 (𝑃, 𝜆) |A2
𝜒,𝜋 (𝑃) 𝜏,𝐾ℎ

���
op

𝑇

∏
𝑗

(
1 +

���𝛿𝑃𝑗 |𝑃′𝑗 (𝑖𝜗 𝑗 𝑡 𝑗 ) |A2
𝜋 (𝑃′𝑗 )

𝜏,𝐾ℎ

���
op

)
,

where, following the notation in the proof of Proposition 5.5, above, we have written 𝜆 = 𝑖
∑
𝑗 𝑡 𝑗𝜗 𝑗 with

𝜗 𝑗 ∈ (𝔞𝐺𝐿 )
∗. Finally, from here on, proceeding as in [21, Section 5.1], we conclude the proof. �

We denote A2
𝜋 (𝑃) :=

⊕
𝜒A2

𝜒,𝜋 (𝑃) and B𝜋 (𝑃) :=
⋃
𝜒 B𝜒,𝜋 (𝑃), which is an orthonormal basis of

A2
𝜋 (𝑃). On the other hand, the sum

𝐽𝑇 (ℎ) :=
∑
𝜒

𝐽𝑇𝜒 (ℎ), (6.1)

where 𝜒 runs over all equivalence classes of cuspidal data, is absolutely convergent (see [6, pp.80]).

Proposition 6.3. Let T be as in Proposition 6.1. Then

𝐽𝑇 (ℎ) =
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜋 (𝑃)

∫
𝑖 (𝔞𝐺𝑃 )∗

〈Λ𝑇 Eis(𝜌(𝑃, 𝜆, ℎ)𝜑, 𝜆),Λ𝑇 Eis(𝜑, 𝜆)〉A2 (𝐺) d𝜆

=
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝐿∈L(𝑀𝑃)

∑
𝑤 ∈𝑊 𝐿 (𝑀𝑃)

𝜄𝑤

∫
𝑖 (𝔞𝐺𝐿 )∗

tr
(
M𝑇

𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2
𝜋 (𝑃)

)
d𝜆,

where 𝜄𝑤 and 𝑀 (𝑃, 𝑤) are as in Proposition 6.2.

Proof. The proofs are similar (almost verbatim) to those of Propositions 6.1 and 6.2, after replacing
A2
𝜒,𝜋 and B𝜒,𝜋 with A2

𝜋 and B𝜋 , respectively. �

7. Bounds for a specific maximal compact

In this section, we prove Theorem 3. First, we develop some necessary local ingredients that go in the
proof.

7.1. Choice of test function

We freely use the notations of Section 4.2. Recall that 𝔞∞ is the Lie algebra of a maximal R-split torus
of 𝐺 (𝐹∞). Let 𝛿 > 0 be a sufficiently small constant. We choose a fixed 𝐿1-normalized nonnegative test
function 𝑓0, 𝛿 on 𝔞∞ supported on the ball of radius 𝛿/2 around 0. Let 𝑓𝛿 := 𝑓0, 𝛿 ∗ 𝑓 ∗0, 𝛿 , where for any
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𝑓 ∈ 𝐶𝑐 (𝔞∞), we define 𝑓 ∗(𝛼) := 𝑓 (−𝛼). It holds that �̂� ∗(𝜇) = 𝑓 (−𝜇). Thus, �̂�𝛿 is nonnegative on 𝑖𝔞∗∞.
Note that 𝑓𝛿 is also nonnegative, 𝐿1-normalized and supported on the ball of radius 𝛿 around 0.

We fix

𝐶0 := 2‖𝜌∞‖ + 1. (7.1)

Now, we make 𝛿 > 0 small enough so that

�( �̂�𝛿 (𝜇)) ≥ 1/2, for ‖𝜇‖ ≤ 𝐶0. (7.2)

This follows from continuity and the fact that �̂�𝛿 (0) = 1.
Given 𝜇0 ∈ 𝑖𝔞∗∞, we define 𝑓𝜇0 ∈ 𝐶∞𝑐 (𝔞∞)𝑊∞ by

𝑓𝜇0 (𝛼) :=
∑
𝑤 ∈𝑊∞

𝑓𝛿 (𝑤𝛼)𝑒−〈𝜇0 ,𝑤𝛼〉 ,

so that

�̂�𝜇0 (𝜇) =
∑
𝑤 ∈𝑊∞

�̂�𝛿 (𝑤𝜇 − 𝜇0), 𝜇 ∈ 𝔞∗∞,C.

Finally, we define

ℎ𝜇0 := S−1( 𝑓 ∗𝜇0 ∗ 𝑓𝜇0) ∈ 𝐶∞𝑐 (𝐾∞\𝐺 (𝐹∞)/𝐾∞).

Thus, the spherical transform of ℎ𝜇0 is

ℎ̃𝜇0 (𝜇) = �̂�𝜇0 (𝜇) �̂�𝜇0 (−𝜇)

(see Section 4.4). Then ℎ𝜇0 satisfies the following properties:

1. The support of ℎ𝜇0 is bounded independently of 𝜇0, which follows from (4.1).
2. ℎ̃𝜇0 (𝜇) ≥ 0, if 𝜇 = −𝑤𝜇 for some 𝑤 ∈ 𝑊∞; in particular, if 𝜇 ∈ 𝑖𝔞∗∞, or more generally, if 𝜇 is the

Langlands parameter of a unitary representation. This is immediate from 𝑊∞-invariance of �̂�𝜇0 .
3. There is a constant b depending only on the support of 𝑓𝛿 , such that for every 𝑁 > 0, it holds that

| ℎ̃𝜇0 (𝜇) | 
𝑁

∑
𝑤 ∈𝑊∞

exp(𝑏‖�(𝜇)‖)(1 + ‖𝑤𝜇 − 𝜇0‖)−𝑁 ,

which follows from (4.2).
4. For 𝐶0 as in (7.1), we have that if ‖𝜇 − 𝜇0‖ ≤ 𝐶0, then | ℎ̃𝜇0 (𝜇) | ≥ 1/10, perhaps after making 𝛿 > 0

smaller.

To see the last claim, it suffices to show that

�
(
�̂�𝜇0 (𝜇)

)
≥ 1/3, for ‖𝜇 − 𝜇0‖ = ‖ − 𝜇 − 𝜇0‖ < 𝐶0.

Working similarly to the proof of [21, Lemma 3.2], below, we prove the above sufficient formulation.
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We see that

�̂�𝛿 (𝜇) =
∫
𝔞∞

𝑓𝛿 (𝛼)
(
𝑒𝑖 〈�(𝜇) ,𝛼〉 − 𝑒𝑖 〈�(𝜇) ,𝛼〉 + 𝑒 〈𝜇,𝛼〉

)
d𝛼

= �̂�𝛿 (𝑖�(𝜇)) +
∫
𝔞∞

𝑓𝛿 (𝛼)𝑒𝑖 〈�(𝜇) ,𝛼〉
(
𝑒 〈�(𝜇) ,𝛼〉 − 1

)
d𝛼.

As ‖�(𝜇)‖ ≤ 𝐶0, we have |𝑒 〈�(𝜇) ,𝛼〉 − 1| < 𝐶1𝛿 for 𝛼 lying in a 𝛿-radius ball around the origin and
for certain 𝐶1 depending on 𝐶0. Consequently, we have

�( �̂�𝛿 (𝜇)) ≥ −𝐶1𝛿,

as �̂�𝛿 (𝑖�(𝜇)) ≥ 0. Thus, upon applying (7.2), and the fact that

‖�(𝑤𝜇 − 𝜇0)‖ = ‖�(𝜇)‖ = ‖�(𝜇 − 𝜇0)‖ ≤ ‖𝜇 − 𝜇0‖ ≤ 𝐶0,

we obtain

�( �̂�𝜇0 (𝜇)) = �( �̂�𝛿 (𝜇 − 𝜇0)) +
∑
𝑤≠1

�( �̂�𝛿 (𝑤𝜇 − 𝜇0)) ≥ 1/2 − 𝐶2𝛿,

for some 𝐶2 depending on 𝐶0 and the group. We conclude by making 𝛿 sufficiently small.

7.2. Langlands parameters

Let 𝜒 := (𝑀1, 𝜋1) be a cuspidal datum, determined by a Levi subgroup 𝑀1 and a representation
𝜋1 ∈ Π2(𝑀1). Let 𝑃1 ⊃ 𝑃0 be such that 𝑀1 = 𝑀𝑃1 . We assume that 𝜋1,∞ is spherical, that is, has a
nonzero 𝐾∞ ∩ 𝑀1 (𝐹∞)-invariant vector, so we may associate to it a Langlands parameter 𝜇𝜋1 .

We first notice that 𝜒 is actually an equivalence class, whose size by [6, Section 12], is at most

𝑛𝑃1 =
∑

𝑃0⊂𝑃′∼𝑃1

|𝑊 (𝔞𝑃1 , 𝔞𝑃′ ) |.

We let (𝑀1, 𝜋1), ..., (𝑀𝑘 , 𝜋𝑘 ) be the elements in this equivalence class, with 𝑘 ≤ 𝑛𝑃1 ≤ 𝑛𝑃0 , and
𝑀𝑖 = 𝑀𝑃𝑖 for 𝑃𝑖 ⊃ 𝑃0, all associated with 𝑃1. Notice that the Langlands parameter 𝜇𝜋𝑖 is in the
𝑊∞-orbit of 𝜇𝜋1 , so ‖𝜇𝜋𝑖 ‖ = ‖𝜇𝜋1 ‖.

Now, let 𝑃 ⊃ 𝑃0 and 𝜋 ∈ Π2 (𝑀𝑃) so that A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 ≠ {0}. It follows from the Langlands

construction of the residual spectrum that 𝜋 is defined using iterated residues from an Eisenstein series
of one of the 𝜋𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , for some 𝑃𝑖 ∼ 𝑃. Let 𝜌𝜋 ∈ (𝔞𝑀𝑀𝑖 )

∗ ⊂ (𝔞𝐺𝑀0
)∗ ⊂ (𝔞∞)∗ be the point where

the residual representation is defined by iterated residues (see, e.g. [5, Section 2]). Then 𝜇𝜋 = 𝜇𝜋𝑖 + 𝜌𝜋 .
The crucial point here is that 𝜌𝜋 is real and universally bounded (in fact, ‖𝜌𝜋 ‖ ≤ ‖𝜌∞‖, where 𝜌∞ is as
in Section 4.2). Therefore, ‖𝜇𝜋 − 𝜇𝜋𝑖 ‖ ≤ ‖𝜌∞‖ and

1 + ‖𝜇𝜋 ‖ � 1 + ‖𝜇𝜋𝑖 ‖. (7.3)

The above properties of 𝜌𝜋 follow from Langlands’ construction of the residual spectrum (see e.g. [47,
pp.1152, Proof of Lemma 4.3]).

Next, the Langlands parameter of Ind𝐺 (𝐹∞)
𝑃 (𝐹∞)

(
𝜋∞ ⊗ 𝑒 〈𝜆,𝐻𝑀𝑃 ( ·) 〉

)
for 𝜆 ∈ (𝔞𝐺

𝑃,C
)∗ is 𝜇𝜋,𝜆 := 𝜇𝜋 + 𝜆.10

If 𝜆 ∈ 𝑖(𝔞𝐺𝑃 )
∗, then this induction is unitary. Correspondingly, it holds that

10Here, we identify 𝑖 (𝔞𝐺𝑃 )
∗ ⊂ 𝔞∗∞,C.
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◦ ‖�(𝜇𝜋,𝜆)‖ ≤ ‖𝜌∞‖, and
◦ there is a 𝑤 ∈ 𝑊∞ so that−𝜇𝜋,𝜆 = 𝑤𝜇𝜋,𝜆 (as a matter of fact, we may choose 𝑤 ∈ 𝑁𝑀𝑃 (𝐹∞) (𝑇∞)/𝑇∞ ⊂

𝑊∞)

(see, e.g. [15, Proposition 3.4].
We now prove Theorem 3.

Proof of Theorem 3. We use property (3) in Section 3.4 to assume that T in Theorem 3 is such that
𝑑 (𝑇) is sufficiently large (in terms of G and F) but fixed.

We assume that the cuspidal datum 𝜒 := (𝑀, 𝜋0) with the equivalence class (𝑀1, 𝜋1), . . . , (𝑀𝑘 , 𝜋𝑘 )
as above. Recall that ‖𝜇𝜋0 ‖ � ‖𝜇𝜋𝑖 ‖.

Let 𝑖𝔞∞ � 𝜇 𝑗 := 𝑖�(𝜇𝜋 𝑗 ) + 𝜆0 for 𝑗 = 1, . . . , 𝑘 . We construct ℎ𝜇 𝑗 as in Section 7.1, with the choice
of 𝐶0 given in (7.1). Now let ℎ 𝑗 ∈ 𝐶∞𝑐 (𝐺 (A)1) be of the form

ℎ 𝑗 (𝑔∞, 𝑔 𝑓 ) := ℎ𝜇 𝑗 (𝑔∞)
1𝐾 (𝑔 𝑓 )
vol(𝐾) .

Note that Item 1 implies that support of ℎ 𝑗 has bounded measure.
Clearly, for any 𝑃 ⊃ 𝑃0 and 𝜆 ∈ 𝑖(𝔞𝐺𝑃 )

∗, the operator 𝜌(𝑃, 𝜆, ℎ 𝑗 ) projects on A2(𝑃)𝐾∞𝐾 . Moreover,
for any 𝜋 ∈ Π2(𝑀𝑃) and 𝜑 ∈ A2

𝜒,𝜋 (𝑃)𝐾∞𝐾 , we have

𝜌(𝑃, 𝜆, ℎ)𝜑 = ℎ̃𝜇 𝑗 (𝜇𝜋,𝜆)𝜑.

Recall from the discussion about the Langlands parameters above that there exists 𝑤 ∈ 𝑊∞ so that
𝑤𝜇𝜋,𝜆 = −𝜇𝜋,𝜆. Thus, using Item 2, we obtain that

ℎ̃𝜇 𝑗 (𝜇𝜋,𝜆) ≥ 0.

On the other hand, if ‖𝜆 − 𝜆0‖ ≤ 1, and 𝑃 ⊃ 𝑃0 and 𝜋 ∈ Π2 (𝑀𝑃) are such that A2
𝜒,𝜋 (𝑃) ≠ {0}, then

by the discussion above, there is 1 ≤ 𝑗 ≤ 𝑘 , such that

‖𝜇𝜋,𝜆 − 𝜇 𝑗 ‖ ≤ ‖�(𝜇𝜋 𝑗 )‖ + ‖𝜌𝜋 ‖ + ‖𝜆 − 𝜆0‖ ≤ 2‖𝜌∞‖ + 1 = 𝐶0.

Hence, applying Item 4 it holds that

ℎ̃𝜇 𝑗 (𝜇𝜋,𝜆) ≥ 1/10.

Now, we fix 𝑇 ∈ 𝔞𝐺𝑀0
with sufficiently large 𝑑 (𝑇) and apply Proposition 6.1 to write

𝐽𝑇𝜒 (ℎ 𝑗 ) =
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜒,𝜋 (𝑃)𝐾∞𝐾

∫
𝑖 (𝔞𝐺𝑃 )∗

ℎ̃𝜇 𝑗 (𝜇𝜋,𝜆)‖Λ𝑇 Eis(𝜑, 𝜆)‖2
2 d𝜆.

Here, B𝜒,𝜋 (𝑃)𝐾∞𝐾 is an orthonormal basis of A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 . Using the above properties of ℎ̃𝜇 𝑗 , we

obtain that ∑
𝑗

𝐽𝑇𝜒 (ℎ 𝑗 ) �
∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜒,𝜋 (𝑃)𝐾∞𝐾

∫
𝜆∈𝑖 (𝔞𝐺𝑃 )

∗

‖𝜆−𝜆0 ‖≤1

‖Λ𝑇 Eis(𝜑, 𝜆)‖2
2 d𝜆.

Note that the right-hand side above equals to the left-hand side of the estimate in Theorem 3.
Hence, it remains to bound 𝐽𝑇𝜒 (ℎ 𝑗 ) for 𝑗 = 1, . . . , 𝑘 . As the proof is the same for all j without loss of

generality, we will bound for 𝑗 = 1 and write ℎ = ℎ1.

https://doi.org/10.1017/fms.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.59


Forum of Mathematics, Sigma 31

Using Proposition 6.2, we see that

𝐽𝑇𝜒 (ℎ) 

∑
𝑃⊃𝑃0

max
𝐿∈L(𝑀𝑃)

max
𝑤 ∈𝑊 𝐿 (𝑀𝑃)

∑
𝜋∈Π2 (𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

tr
(
M𝑇

𝐿 (𝑃, 𝜆)𝑀 (𝑃, 𝑤)𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃)

)
d𝜆.

Recall that 𝜌(𝑃, 𝜆, ℎ) |A2
𝜒,𝜋 (𝑃) projects on A2

𝜒,𝜋 (𝑃)𝐾∞𝐾 and acts there by the scalar ℎ̃𝜇1 (𝜇𝜋 +𝜆). Noting
that 𝑀 (𝑃, 𝑤) is unitary and commutes with 𝜌(𝑃, 𝜆, ℎ), we get that the integral on the right-hand side
above is bounded by

dim
(
A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

) ∫
𝑖 (𝔞𝐺𝐿 )∗

ℎ̃𝜇1 (𝜇𝜋 + 𝜆)
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

���
op

d𝜆.

Applying Item 3, we can bound the inner integral in the above display by


𝑁 max
𝑤 ∈𝑊∞

∫
𝑖 (𝔞𝐺𝐿 )∗

(
1 + ‖𝑤𝜆 + 𝑤𝑖�(𝜇𝜋) − 𝜆0 − 𝑖�(𝜇𝜋1 )‖

)−𝑁 ���M𝑇
𝐿 (𝑃, 𝜆) |A2

𝜒,𝜋 (𝑃)𝐾∞𝐾
���

op
d𝜆. (7.4)

For each 𝑤 ∈ 𝑊∞, we define

𝜆1 := 𝜆1,𝑤, 𝜋, 𝜋1 := 𝑤−1 (𝜆0 − 𝑖�(𝑤𝜇𝜋 − 𝜇𝜋1)
)
∈ 𝑖(𝔞∞)∗.

Using (7.3), we obtain

‖𝜆1‖ 
 ‖𝜆0‖ + ‖𝜇𝜋 ‖ + ‖𝜇𝜋1 ‖ � ‖𝜆0‖ +
√
𝜈(𝜋1,∞).

Thus, for each w, we bound the integral on the right-hand side of (7.4) by∫
𝑖 (𝔞𝐺𝐿 )∗

(1 + ‖𝜆 − 𝜆1‖)−𝑁
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

���
op

d𝜆

≤
∞∑
𝑚=1

1
𝑚𝑁

∫
𝜆∈𝑖 (𝔞𝐺𝐿 )

∗

𝑚−1≤‖𝜆−𝜆1 ‖≤𝑚

���M𝑇
𝐿 (𝑃, 𝜆) |A2

𝜒,𝜋 (𝑃)𝐾∞𝐾
���

op
d𝜆. (7.5)

We can find {𝜂𝑙}𝑛𝑙=1 ⊂ 𝑖(𝔞𝐺𝐿 )
∗ with ‖𝜂𝑙 ‖ ≤ 𝑚 and 𝑛 
 𝑚dim𝔞𝐺𝐿 , such that

{𝜆 : ‖𝜆 − 𝜆1‖ ≤ 𝑚} ⊂ ∪𝑛𝑙=1{𝜆 : ‖𝜆 − 𝜆1 − 𝜂𝑙 ‖ ≤ 1}.

Thus, the integral on the right-hand side of (7.5) is bounded by

𝑛∑
𝑙=1

∫
𝜆∈𝑖 (𝔞𝐺𝐿 )

∗

‖𝜆−𝜆1−𝜂𝑙 ‖≤1

���M𝑇
𝐿 (𝑃, 𝜆) |A2

𝜒,𝜋 (𝑃)𝐾∞𝐾
���

op
d𝜆.
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We apply Proposition 5.5 to estimate the above integral and obtain that∫
𝑖 (𝔞𝐺𝐿 )∗

ℎ̃𝜇1 (𝜇𝜋 + 𝜆)
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

���
op

d𝜆


𝑁 max
𝑤 ∈𝑊∞

∞∑
𝑚=1

1
𝑚𝑁

𝑛∑
𝑙=1
(‖𝑇 ‖ log(1 + ‖𝜆1 + 𝜂𝑙 ‖ + 𝜈(𝜋∞) + level(𝐾)))dim𝔞𝐺𝐿 .

Using the bounds of 𝜆1, 𝜂𝑙 , and n, the right-hand side above is bounded by


𝑁

∞∑
𝑚=1

1
𝑚𝑁−dim𝔞𝐺𝐿

(
‖𝑇 ‖ log

(
1 + 𝑚 + ‖𝜆0‖ + 𝜈(𝜋1,∞) + level(𝐾)

) )dim𝔞𝐺𝐿



(
‖𝑇 ‖ log

(
1 + ‖𝜆0‖ + 𝜈(𝜋1,∞) + level(𝐾)

) )dim𝔞𝐺𝐿 ,

by making N large enough. Thus, we obtain

𝐽𝑇𝜒 (ℎ) 

∑
𝑃⊃𝑃0

max
𝐿∈L(𝑀𝑃)

∑
𝜋∈Π2 (𝑀𝑃)

dim
(
A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

)
×

(
‖𝑇 ‖ log

(
1 + ‖𝜆0‖ + 𝜈(𝜋1,∞) + level(𝐾)

) )dim𝔞𝐺𝐿 .

We conclude noting that max𝐿∈L(𝑀𝑃) dim𝔞𝐺𝐿 = dim𝔞𝐺𝑀 . �

We now prove Corollary 1.6 and Theorem 1.

Proof of Corollary 1.6. By symmetries of the Eisenstein series, we may assume that 𝑃 ⊃ 𝑃0. Let
𝜒 = (𝑀, 𝜋0) be as in the statement of the corollary. Then, by (7.3), it holds that 1+ 𝜈(𝜋∞) � 1+ 𝜈(𝜋0,∞)
and the claim follows from Theorem 3. �

Proof of Theorem 1. We will prove the slightly stronger statement given in Remark 1.2.
The classification of the residual spectrum for GL𝑛 due to Mœglin and Waldspurger [45] (see Section

3.2) implies that for every 𝜒 and 𝑃 ⊃ 𝑃0 it holds that

#{𝜋 ∈ Π2(𝑀𝑃) | A2
𝜒,𝜋 (𝑃) ≠ {0}} 
𝑛 1.

The classification also implies that the multiplicity of 𝜋 in 𝐿2
disc,𝜒 (𝐴𝑀𝑃𝑀𝑃 (𝐹)\𝑀 (A)) is at most 1.

So the representation 𝜌(𝑃, 0, ·) on A2
𝜒,𝜋 (𝑃) is isomorphic to Ind𝐺 (A)

𝑃 (A) 𝜋, and, in particular

A2
𝜒,𝜋 (𝑃)𝐾∞𝐾 = (Ind𝐺 (A)

𝑃 (A) 𝜋)
𝐾∞𝐾.

On the other hand, we may write 𝜋 = ⊗′𝑣𝜋𝑣 and obtain

(Ind𝐺 (A)
𝑃 (A) 𝜋)

𝐾∞𝐾 =
⊗

′(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣 )

𝐾𝑣 ,

where 𝐾∞𝐾 =
∏
𝑣 𝐾𝑣 .

Now using uniform admissibility due to Bernstein [10], which says that

dim(Ind𝐺 (𝐹𝑣 )
𝑃 (𝐹𝑣 ) 𝜋𝑣 )

𝐾𝑣 
𝐾𝑣 1,
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we deduce that

𝐹 (𝜒; triv, 𝐾) =
∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)

dim
(
A2
𝜒,𝜋 (𝑃)𝐾∞𝐾

)

𝑛,𝐾 1.

Let 𝜒0 be a cuspidal datum and 𝜋0 ∈ Π2 (𝑀𝑃), such that 𝜑0 ∈ A2
𝜒0 , 𝜋0 (𝑃)

𝐾∞𝐾 . Then we have
𝜈(𝜑0) � 𝜈(𝜋0,∞). Now the result follows from Corollary 1.6 along with Propositions 5.2 and 5.4. �

8. Optimal lifting after Assing–Blomer

In this section, we prove Theorems 4 and 5. Aligning with our usual convention of suppressing the
dependence on G in Vinogradov’s notations, we also suppress the dependence on n in this section.

We start with a discussion of the link between the adelic setting of the group GL𝑛 and the classical
setting of SL𝑛 (R). A good place to follow is [39, Section 3].

From now on, let 𝐺 := GL𝑛 over Q. We identify 𝐴𝐺 as the positive scalar matrices in 𝐺 (R). Note
that 𝐺 (R)/𝐴𝐺 � SL𝑛 (R) × {±1}. We can therefore identify

𝐺 (A)1 = (𝐺 (R)/𝐴𝐺) ×
∏′

𝑝

𝐺 (Q𝑝),

where ′ denotes the restricted product relative to 𝐺 (Z𝑝).
Given an integer 𝑞 > 0 with prime factorization 𝑞 =

∏
𝑝<∞ 𝑝𝑟𝑝 with 𝑟𝑝 ∈ Z≥0, let 𝐾 (𝑞) ⊂ 𝐺 (A 𝑓 )

be the principal congruence subgroup of level q. We have 𝐾 (𝑞) =
∏

𝑝<∞ 𝐾𝑝 (𝑞), where

𝐾𝑝 (𝑞) := {𝑔 ∈ 𝐺 (Z𝑝) | 𝑔 ≡ 𝐼 mod 𝑝𝑟𝑝 }.

The group SL𝑛 (R) acts from the right on the space 𝐺 (Q)𝐴𝐺\𝐺 (A)/𝐾 (𝑞). The space decomposes into
𝜑(𝑞) (𝜑 being Euler’s totient function) connected components, determined by the determinant map into

R>0Q
×\A×/

∏
𝑝 |𝑞
{𝑎 ∈ Z×𝑝 | 𝑎 ≡ 1 mod 𝑝𝑟𝑝Z𝑝} � (Z/𝑞Z)×.

Each orbit is isomorphic to Γ(𝑞)\SL𝑛 (R), where Γ(𝑞) is the principal congruence subgroup of level q
of Γ(1) := SL𝑛 (Z).

Let 𝐾0
∞ = SO(𝑛), which is a maximal compact subgroup of SL𝑛 (R), and an index 2 subgroup of

the maximal compact subgroup 𝐾∞ := O(𝑛) of 𝐺 (R). Let ‖ · ‖ denote the Frobenius norm on SL𝑛 (R),
given by 𝑔 ↦→

√
tr(𝑔�𝑔). We note that the norm is both left and right 𝐾0

∞-invariant. It holds that

‖𝑔1𝑔2‖ ≤ ‖𝑔1‖‖𝑔2‖.

For 𝑅 > 𝑛, we define

𝐵𝑅 := {𝑔 ∈ SL𝑛 (R) | ‖𝑔‖ ≤ 𝑅}.

Note that

vol(𝐵𝑅) = 𝑐𝑛𝑅
𝑛(𝑛−1) (1 + 𝑜(1)), (8.1)

see [16, Appendix 1], which also calculates the precise coefficient 𝑐𝑛.
We now construct a test function in the Archimedean Hecke algebra following [8, Section 2.7]. Let

ℎ0 : R≥0 → [0, 1] be a smooth nonnegative function with ℎ0 (𝑥) = 1 for 𝑥 ∈ [0, 𝑛] and ℎ0 (𝑥) = 0 for
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𝑥 > 2𝑛. For 𝑅 > 0, we define

ℎ𝑅 ∈ 𝐶∞𝑐 (𝐾0
∞\SL𝑛 (R)/𝐾0

∞), 𝑔 ↦→ 1
‖ℎ0 ( ‖ · ‖𝑅 )‖𝐿1

ℎ0

(
‖𝑔‖
𝑅

)
.

A direct consequence of [8, (2.34)–(2.35)] is that the spherical transform of ℎ𝑅 satisfies

| ℎ̃𝑅 (𝜇) | 
𝑁 ,𝜖 (1 + ‖𝜇‖)−𝑁 𝑅−
𝑛(𝑛−1)

2 +𝑛‖�(𝜇) ‖∞+𝜖 (8.2)

for 𝜇 ∈ 𝔞∗0,C, such that 𝑤𝜇 = −𝜇 for some 𝑤 ∈ 𝑊∞ (and, in particular, for any 𝜇 ∈ 𝔞∗0,C corresponding
to the Langlands parameters of a unitary representation). Here, ‖𝜇‖∞ denotes the ℓ∞-norm of 𝜇 when
𝔞∗0,C is realized as a complex n-tuple.

For the non-Archimedean part, we let ℎ𝑞 ∈ 𝐶∞𝑐 (𝐺 (A 𝑓 )) be the normalized characteristic function
of 𝐾 (𝑞), that is

ℎ𝑞 :=
1

vol(𝐾 (𝑞))1𝐾 (𝑞) .

Let ℎ𝑅,𝑞,1 ∈ 𝐶∞𝑐 (𝐺 (A)1) be given by

ℎ𝑅,𝑞,1 (𝑔∞, 𝑔 𝑓 ) := ℎ𝑅 (𝑔∞)ℎ𝑞 (𝑔 𝑓 ).

Finally, let ℎ𝑅,𝑞 = ℎ𝑅,𝑞,1 ∗ ℎ∗𝑅,𝑞,1, where ℎ∗(𝑔) := ℎ(𝑔−1). In other words, we have

ℎ𝑅,𝑞 (𝑔∞, 𝑔 𝑓 ) = (ℎ𝑅 ∗ ℎ∗𝑅) (𝑔∞)ℎ𝑞 (𝑔 𝑓 ).

Clearly, ℎ𝑅,𝑞 ∈ 𝐶∞𝑐 (𝐺 (A)1) and is bi-𝐾0
∞𝐾 𝑓 -finite.

The following is the main technical result of this section and will be used to prove Theorems 4 and 5.
First, we recall the definition of 𝐽𝑇 (ℎ) from (6.1).

Proposition 8.1. For any q square-free and any 𝑅 > 1, it holds that for every 𝜖 > 0

𝐽𝑇 (ℎ𝑅,𝑞) 
𝜖 ‖𝑇 ‖𝑛−1 (𝑅𝑞) 𝜖 (𝑞 + 𝑅−𝑛(𝑛−1)𝑞𝑛
2 ),

for any 𝑇 ∈ 𝔞𝑀0 .

Remark 8.2. As will be evident from the proof, the summand q comes from the 𝜑(𝑞) possible Dirichlet
characters modulo q. The factor 𝑅−𝑛(𝑛−1)𝑞𝑛

2 comes from the contribution of cusp forms. The number
of such forms with bounded Laplacian eigenvalues is � [𝐾 (1) : 𝐾 (𝑞)] 
 𝑞𝑛

2 , and the contribution
of each such form to 𝐽𝑇 (ℎ𝑅,𝑞) assuming the (GRC) is 𝑅−𝑛(𝑛−1) . The results of Assing and Blomer [8,
Theorem 1.1] on the density hypothesis allow us to prove the proposition unconditionally of the GRC.
However, a significant difficulty arises to control the continuous spectrum, as also experienced in [8],
managing that is the main contribution of Proposition 8.1.

We will assume Proposition 8.1 for now and prove Theorems 4 and 5. In the next subsection, we
prove Proposition 8.6 using Proposition 8.1 and then deduce these two theorems from it in the following
two subsections. At the end of this section, we prove Proposition 8.1.

8.1. Initial reductions

Let us fix 𝑅0 > 𝑛 and a compact domain Ω ⊂ 𝐺 (Q)\𝐺 (A)1 of the form Ω := 𝐺 (Q)\𝐵𝑅0 × 𝐾 (1). The
implied constants in various estimates below are allowed to depend on 𝑅0, however, we will not mention
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it in the notations. We define the adelic kernel 𝐾ℎ𝑅,𝑞 (𝑥, 𝑦) by

𝐾ℎ𝑅,𝑞 (𝑥, 𝑦) :=
∑

𝛾∈𝐺 (Q)
ℎ𝑅,𝑞 (𝑥−1𝛾𝑦),

for 𝑥, 𝑦 ∈ 𝐺 (A)1.

Proposition 8.3. There is a constant C (possibly depending on 𝑅0), such that if 𝑑 (𝑇) ≥ 𝐶 (1 + log(𝑅)),
then it holds that ∫

Ω

𝐾ℎ𝑅,𝑞 (𝑥, 𝑥) d𝑥 ≤ 𝐽𝑇 (ℎ𝑅,𝑞),

for any R and q.

Proof. We start with the spectral decomposition of 𝐾ℎ𝑅,𝑞 (𝑥, 𝑥) (see, e.g. [6, (7.6)]) which implies that∫
Ω

𝐾ℎ𝑅,𝑞 (𝑥, 𝑥) d𝑥

=
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜋 (𝑃)

∫
𝑖 (𝔞𝐺𝑃 )∗

∫
Ω

Eis(𝜌(𝑃, 𝜆, ℎ𝑅,𝑞)𝜑, 𝜆) (𝑥)Eis(𝜑, 𝜆) (𝑥) d𝑥 d𝜆.

Note that absolute convergence of the spectral side [21] allows us to pull the Ω-integral inside. Here,
we choose a basis B𝜋 (𝑃), such that each of its elements is either 𝐾0

∞𝐾 (𝑞)-invariant or orthogonal to
the 𝐾0

∞𝐾 (𝑞)-invariant subspace.
From the definition of ℎ𝑅,𝑞 , we note that the operator 𝜌(𝑃, 𝜆, ℎ𝑅,𝑞) projects A2

𝜋 (𝑃) onto
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞) , and acts on it by the scalar ( ℎ̃𝑅 · ℎ̃∗𝑅) (𝜇𝜋 + 𝜆) = | ℎ̃𝑅 (𝜇𝜋 + 𝜆) |2. Focusing on the

innermost integral above and assuming that 𝜑 is 𝐾0
∞𝐾 (𝑞)-invariant, we have∫

Ω

Eis(𝜌(𝑃, 𝜆, ℎ𝑅,𝑞)𝜑, 𝜆) (𝑥)Eis(𝜑, 𝜆)) (𝑥) d𝑥 = | ℎ̃𝑅 (𝜇𝜋 + 𝜆) |2
∫
Ω

|Eis(𝜑, 𝜆) (𝑥) |2 d𝑥.

On the other hand, by property (2) of Section 3.4, we have∫
Ω

|Eis(𝜑, 𝜆) (𝑥) |2 d𝑥 ≤
∫

𝐺 (Q)\𝐺 (A)

|Λ𝑇 Eis(𝜑, 𝜆) (𝑥) |2 d𝑥

for 𝑑 (𝑇) sufficiently large. Plugging this into the above integral and reverse engineering the above
manipulation with ℎ𝑅,𝑞 , we deduce that∫

Ω

𝐾 𝑓 (𝑥, 𝑥) d𝑥

≤
∑
𝑃⊃𝑃0

1
𝑛𝑃

∑
𝜋∈Π2 (𝑀𝑃)

∑
𝜑∈B𝜋 (𝑃)

∫
𝑖 (𝔞𝐺𝑃 )∗

〈Λ𝑇 Eis(𝜌(𝑃, 𝜆, ℎ𝑅,𝑞)𝜑, 𝜆),Λ𝑇 Eis(𝜑, 𝜆)〉A2 (𝐺) d𝜆.

Now, the statement of the proposition follows from Proposition 6.3. �

Corollary 8.4. Let q be square-free. There is an 𝑥 ∈ Ω, such that

𝐾ℎ𝑅,𝑞 (𝑥, 𝑥) 
𝜖 (𝑅𝑞) 𝜖 𝑞(1 + 𝑅−𝑛(𝑛−1)𝑞𝑛
2−1),

for every 𝜖 > 0.
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Proof. The corollary is immediate from Propositions 8.1 and 8.3. �

We move the discussion to the classical language. We let 𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑥, 𝑦) be the classical automorphic
kernel of ℎ𝑅 ∗ ℎ∗𝑅, that is

𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑥, 𝑦) =
∑

𝛾∈Γ(𝑞)
(ℎ𝑅 ∗ ℎ∗𝑅) (𝑥

−1𝛾𝑦),

where 𝑥, 𝑦 ∈ Γ(𝑞)\SL𝑛 (R).
Lemma 8.5. Let q be square-free, there is an 𝑥 ∈ Γ(𝑞)\𝐵𝑅0 ⊂ Γ(𝑞)\SL𝑛 (R), such that

𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑥, 𝑥) 
𝜖 (𝑅𝑞) 𝜖 (𝑞−(𝑛
2−1) + 𝑅−𝑛(𝑛−1) ),

for every 𝜖 > 0.

Proof. This follows from the classical-adelic dictionary. Let 𝑥0 ∈ 𝐵𝑅0 × 𝐾 (1) ⊂ 𝐺 (A)1 be a represen-
tative point from Corollary 8.4, and let 𝑥 := 𝑥0,∞ ∈ 𝐵𝑅0 ⊂ SL𝑛 (R) be its ∞-coordinate.

We claim that

𝐾ℎ𝑅,𝑞 (𝑥0, 𝑥0) = vol(𝐾 (𝑞))−1𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑥, 𝑥),

which implies the claim together with Corollary 8.4 and the fact that vol(𝐾 (𝑞)) 
𝜖 𝑞−𝑛
2+𝜖 .

Indeed,

𝐾ℎ𝑅,𝑞 (𝑥0, 𝑥0) =
∑

𝛾∈𝐺 (Q)
ℎ𝑅,𝑞 (𝑥−1

0 𝛾𝑥0) =
∑

𝛾∈𝐺 (Q)
(ℎ𝑅 ∗ ℎ𝑅)∗(𝑥−1

0,∞𝛾𝑥0,∞)ℎ𝑞 (𝑥−1
0, 𝑓 𝛾𝑥0, 𝑓 ).

An element 𝛾 ∈ 𝐺 (Q) that has nonzero contribution to the above sum must satisfy 𝑥−1
0,∞𝛾𝑥0,∞ ∈

SL𝑛 (R), so 𝛾 ∈ SL𝑛 (R). Also, it must hold that 𝑥−1
0, 𝑓 𝛾𝑥0, 𝑓 ∈ 𝐾 (𝑞). In addition, since 𝑥0, 𝑓 ∈ 𝐾 (1) and

𝐾 (𝑞) is normal in 𝐾 (1), it holds that 𝛾 ∈ 𝐾 (𝑞). Therefore, 𝛾 ∈ Γ(𝑞) ⊂ SL𝑛 (Z), and ℎ𝑞 (𝑥−1
0, 𝑓 𝛾𝑥0, 𝑓 ) =

1
vol(𝐾 (𝑞)) . Therefore,

𝐾ℎ𝑅,𝑞 (𝑥0, 𝑥0) = vol(𝐾 (𝑞))−1
∑

𝛾∈Γ(𝑞)
(ℎ𝑅 ∗ ℎ𝑅)∗(𝑥−1𝛾𝑥) = vol(𝐾 (𝑞))−1𝐾𝑞

ℎ𝑅∗ℎ∗𝑅
(𝑥, 𝑥),

and the proof is complete. �

We now claim that we may replace 𝑥 ∈ 𝐵𝑅0 with 𝑥 = 𝑒 in Lemma 8.5.

Proposition 8.6. Let q be square-free. It holds that

𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑒, 𝑒) 
𝜖 (𝑅𝑞) 𝜖 (𝑞−(𝑛
2−1) + 𝑅−𝑛(𝑛−1) ),

for every 𝜖 > 0.

Proof. Let x be the point from Lemma 8.5. We choose for x a representative in 𝐵𝑅0 . This implies that
for 𝐶 > 0 sufficiently large and for every 𝑔 ∈ SL𝑛 (R), we have

‖𝑥−1𝑔‖ ≤ 𝐶‖𝑔‖, ‖𝑔𝑥‖ ≤ 𝐶‖𝑔‖.

From the definition of ℎ𝑅, the above implies that for 𝑐 > 0 sufficiently small (e.g. 𝑐 = 𝐶−1/2) and every
𝑔 ∈ SL𝑛 (R)

ℎ𝑐𝑅 (𝑔) 
 ℎ𝑅 (𝑥−1𝑔), ℎ∗𝑐𝑅 (𝑔) 
 ℎ∗𝑅 (𝑔𝑥),
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and therefore, for every 𝛾 ∈ Γ(𝑞),

(ℎ𝑐𝑅 ∗ ℎ∗𝑐𝑅) (𝛾) 
 (ℎ𝑅 ∗ ℎ∗𝑅) (𝑥
−1𝛾𝑥).

We deduce using Lemma 8.5 that

𝐾𝑞
ℎ𝑐𝑅∗ℎ∗𝑐𝑅

(𝑒, 𝑒) 
 𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑥, 𝑥) 
𝜖 (𝑅𝑞) 𝜖 (𝑞−(𝑛
2−1) + 𝑅−𝑛(𝑛−1) ).

After changing R to 𝑐𝑅, the proposition follows. �

8.2. Proof of Theorem 4

We adopt the notations developed for the classical spectral decomposition of 𝐿2 (Γ(𝑞)\SL𝑛 (R)/𝐾0
∞) in

[8, Section 2.5]. We write the spectral decomposition of the kernel of ℎ ∈ 𝐶∞𝑐 (𝐾0
∞\SL𝑛 (R)/𝐾0

∞) as

𝐾𝑞
ℎ (𝑥, 𝑦) =

∫
Γ(𝑞)

ℎ̃(𝜇𝜛)𝜛(𝑥)𝜛(𝑦) d𝜛, (8.3)

where
∫
Γ(𝑞) 𝑉𝜛 d𝜛 is a spectral decomposition of 𝐿2 (Γ(𝑞)\SL𝑛 (R)/𝐾0

∞), respecting the unramified
Hecke algebra (see [8, Section 2.5] for more details). This classical spectral decomposition may be
deduced from the more precise adelic spectral decomposition (e.g. [6, (7.6)]). The value 𝜇𝜛 is the
Langlands parameter of the 𝐾0

∞-invariant representation 𝑉𝜛 .

Lemma 8.7. We have

𝐾𝑞
ℎ∗ℎ (𝑒, 𝑒) ≤ 𝐾𝑞

ℎ∗ℎ∗ (𝑒, 𝑒)

for any ℎ ∈ 𝐶∞𝑐 (𝐾0
∞\SL𝑛 (R)/𝐾0

∞).

Proof. We have

𝐾𝑞
ℎ∗ℎ (𝑒, 𝑒) =

∫
Γ(𝑞)

ℎ̃(𝜇𝜛)2 |𝜛(𝑒) |2 d𝜛 ≤
∫

Γ(𝑞)

| ℎ̃(𝜇𝜛) |2 |𝜛(𝑒) |2 d𝜛 = 𝐾𝑞
ℎ∗ℎ∗ (𝑒, 𝑒),

where the first and last equalities follow from the spectral decompositions of the corresponding kernels
as in (8.3). �

Proof of Theorem 4. Let ℎ (1)𝑅 := 1
vol(𝐵𝑅)1𝐵𝑅 be the normalized characteristic function of the ball 𝐵𝑅. It

holds for every 𝑔 ∈ SL𝑛 (R) that ℎ (1)𝑅 (𝑔) 
 ℎ𝑅 (𝑔), which, upon applying Lemma 8.7 and Proposition
8.6, implies that

𝐾𝑞

ℎ (1)𝑅 ∗ℎ (1)𝑅
(𝑒, 𝑒) 
 𝐾𝑞

ℎ𝑅∗ℎ𝑅 (𝑒, 𝑒) ≤ 𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑒, 𝑒) 
𝜖 (𝑅𝑞) 𝜖 (𝑞−(𝑛
2−1) + 𝑅−𝑛(𝑛−1) ). (8.4)

Notice that the kernel 𝐾𝑞

ℎ (1)𝑅 ∗ℎ (1)𝑅
(𝑒, 𝑒) is well-defined even though ℎ (1)𝑅 is not smooth. The same will be

true for other functions below.
Next, we claim that for 𝑐 > 0 sufficiently small and R sufficiently large, it holds that for every

𝑔 ∈ SL𝑛 (R)

ℎ (1)
𝑐𝑅2 (𝑔) 
 (ℎ (1)𝑅 ∗ ℎ (1)𝑅 ) (𝑔). (8.5)
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To prove this claim, notice that

1𝐵𝑅 ∗ 1𝐵𝑅 (𝑔) = vol(𝐵𝑅 ∩ 𝑔𝐵−1
𝑅 ).

For 𝑐 > 0 small enough and R large enough, the above is � 1 as long as ‖𝑔‖ ≤ 𝑐𝑅2. Indeed, we
may assume that g is diagonal with positive values on the diagonal. Then 𝐵𝑅 ∩ 𝑔𝐵−1

𝑅 contains all the
element of the form 𝑔1/2𝑥, for ‖𝑥‖ ≤ 𝐶 (for 𝑐 > 0 sufficiently small relative to C). Therefore, for every
𝑔 ∈ SL𝑛 (R),

1𝐵𝑐𝑅2 (𝑔) 
 (1𝑅 ∗ 1𝑅) (𝑔).

Using (8.1), we deduce that (8.5) holds. Thus, using (8.4), we obtain

1
vol(𝐵𝑅2)

∑
𝛾∈Γ(𝑞)

1𝐵𝑅2 (𝛾) = 𝐾𝑞

ℎ
(1)
𝑅2
(𝑒, 𝑒) 
 (𝑅𝑞) 𝜖 (𝑞−(𝑛2−1) + 𝑅−𝑛(𝑛−1) ).

Using (8.1) once again and changing R to
√
𝑅, we complete the proof. �

8.3. Proof Theorem 5

To prove the theorem, we first prove a couple of lemmata. Fix 𝜂 > 0. We consider the function
𝑚𝑅 := ℎ𝑅 ∗ ℎ𝑅𝜂 .

Lemma 8.8. There is a 𝛿 > 0 depending only on 𝜂, such that for every q square-free and 𝑅 ≥ 𝑞1+1/𝑛

𝐾𝑞
𝑚𝑅∗𝑚∗𝑅

(𝑒, 𝑒) − 1
vol(Γ(𝑞)\SL𝑛 (R))


 𝑅−𝛿𝑞−(𝑛
2−1) .

Proof. We apply the spectral decomposition as in (8.3) to obtain

𝐾𝑞
𝑚𝑅∗𝑚∗𝑅

(𝑒, 𝑒) =
∫

Γ(𝑞)

|�̃�𝑅 (𝜇𝜛) |2 |𝜛(𝑒) |2 d𝜛.

Among the automorphic forms 𝜛 appearing in the spectral decomposition, we have the 𝐿2-normalized
constant function 𝜛triv, for which it holds that

|𝜛triv (𝑒) |2 =
1

vol(Γ(𝑞)\SL𝑛 (R))
.

Also, using the facts that �̃�𝑅 (𝜆) = ℎ̃𝑅 (𝜆) ℎ̃𝑅𝜂 (𝜆) and ℎ̃𝑅 (𝜇𝜛triv ) = ‖ℎ𝑅 ‖1 = 1, it follows that
�̃�𝑅 (𝜇𝜛triv) = 1 = ‖𝑚𝑅 ‖1.

On the other hand, there is a 𝛿1 > 0, such that for every 𝜛 ≠ 𝜛triv, it holds that ‖�(𝜇𝜛)‖∞ ≤
(𝑛 − 1)/2 − 𝛿1. This follows from the explicit property (T) for 𝑛 ≥ 3 (where we may actually take
𝛿1 = 1/2), and from Selberg’s spectral gap theorem for 𝑛 = 2 (see [50]).

Using (8.2), we deduce that there is a 𝛿2 > 0 depending only on 𝜂 (and n), such that for 𝜛 ≠ 𝜛triv

|�̃�𝑅 (𝜇𝜛) | ≤ 𝑅−𝛿2 | ℎ̃𝑅 (𝜇𝜛) |.
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Combining all the information above, we obtain

𝐾𝑞
𝑚𝑅∗𝑚∗𝑅

(𝑒, 𝑒) − 1
vol(Γ(𝑞)\SL𝑛 (R))

=
∫

𝜛≠𝜛triv

|�̃�𝑅 (𝜇𝜛) |2 |𝜛(𝑒) |2 d𝜛

≤ 𝑅−2𝛿2

∫
𝜛≠𝜛triv

| ℎ̃𝑅 (𝜇𝜛) |2 |𝜛(𝑒) |2 d𝜛 ≤ 𝑅−2𝛿2𝐾𝑞
ℎ𝑅∗ℎ∗𝑅

(𝑒, 𝑒).

The claim now follows from Proposition 8.6. �

Lemma 8.9. Let 𝑀𝑞
𝑅 : Γ(𝑞)\SL𝑛 (R) → R be the function 𝑀𝑞

𝑅 (𝑥) :=
∑
𝛾∈Γ(𝑞) 𝑚𝑅 (𝛾𝑥). Then

𝐾𝑞
𝑚𝑅∗𝑚∗𝑅

(𝑒, 𝑒) = ‖𝑀𝑞
𝑅 ‖

2
2 .

Proof. We see that

𝐾𝑞
𝑚𝑅∗𝑚∗𝑅

(𝑒, 𝑒) =
∑

𝛾∈Γ(𝑞)
(𝑚𝑅 ∗ 𝑚∗

𝑅) (𝛾) =
∑

𝛾∈Γ(𝑞)

∫
𝑥∈SL𝑛 (R)

𝑚𝑅 (𝑥)𝑚𝑅 (𝛾−1𝑥) d𝑥.

Folding the integral over Γ(𝑞), we obtain the above equals∫
𝑥∈Γ(𝑞)\SL𝑛 (R)

∑
𝛾1∈Γ(𝑞)

𝑚𝑅 (𝛾1𝑥)
∑

𝛾∈Γ(𝑞)
𝑚𝑅 (𝛾−1𝛾1𝑥) d𝑥 =

∫
𝑥∈Γ(𝑞)\SL𝑛 (R)

𝑀𝑞
𝑅 (𝑥)𝑀

𝑞
𝑅 (𝑥) d𝑥.

We conclude that the above is ‖𝑀𝑞
𝑅 ‖

2
2 as 𝑚𝑅 is real-valued. �

Proof of Theorem 5. Let 𝑈𝑞 ∈ 𝐿2 (Γ(𝑞)\SL𝑛 (R)) be the 𝐿1-normalized constant function on
Γ(𝑞)\SL𝑛 (R). Then by Lemma 8.9, the fact that∫

Γ(𝑞)\SL𝑛 (R)

𝑀𝑞
𝑅 (𝑥) d𝑥 =

∫
SL𝑛 (R)

𝑚𝑅 (𝑥) d𝑥 = 1,

and Lemma 8.8, we have that there is a 𝛿 > 0 depending only on 𝜂 > 0, such that for 𝑅 ≥ 𝑞1+1/𝑛

‖𝑀𝑞
𝑅 −𝑈𝑞 ‖2

2 = ‖𝑀𝑞
𝑅 ‖

2
2 −

1
vol(Γ(𝑞)\SL𝑛 (R))


 𝑅−𝛿𝑞−(𝑛
2−1) . (8.6)

We identify 𝑔 ∈ Γ(𝑞)\Γ(1) � SL𝑛 (Z/𝑞Z) with some representative of it in Γ(1) := SL𝑛 (Z) ⊂
SL𝑛 (R). We notice that if 𝑔 has no lift to Γ(1) of size bounded by 𝐶1𝑅

1+𝜂 for certain sufficiently large
but fixed 𝐶1 > 0, then for all 𝛾 ∈ Γ(𝑞), we have

‖𝛾𝑔𝑤‖ ≥ ‖𝛾𝑔‖‖𝑤−1‖−1 ≥ 𝐶3𝑅
1+𝜂 ,

for certain 𝐶3 > 0 sufficiently large, where 𝑤 ∈ Γ(1)\SL𝑛 (R) with ‖𝑤‖ ≤ 𝐶2 for certain 𝐶2 ≥ 𝑛.
Consequently, noting that the support of 𝑚𝑅 is on 𝑔 ∈ SL𝑛 (R), such that ‖𝑔‖ ≤ 𝐶4𝑅

1+𝜂 for certain
fixed 𝐶4 > 0, we conclude that

𝑀𝑞
𝑅 (𝑔𝑤) = 0.
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Thus, for such 𝑔, we have∫
𝑤 ∈F

‖𝑤 ‖≤𝐶2

����𝑀𝑞
𝑅 (𝑔𝑤) −

1
vol(Γ(𝑞)\SL𝑛 (R))

����2 d𝑤 � 1
vol(Γ(𝑞)\SL𝑛 (R))2

� 1
𝑞2(𝑛2−1)

,

where F ⊆ SL𝑛 (R) is the standard (i.e. containing identity) fundamental domain of Γ(1)\SL𝑛 (R).
Summing the above over such 𝑔, we obtain

𝑁 (𝑞, 𝐶1𝑅
1+𝜂)

𝑞2(𝑛2−1)



∑
𝑔∈Γ(𝑞)\Γ(1)

∫
F

����𝑀𝑞
𝑅 (𝑔𝑤) −

1
vol(Γ(𝑞)\SL𝑛 (R))

����2 d𝑤,

where 𝑁 (𝑞, 𝑅) is the number of 𝑔 ∈ SL𝑛 (Z/𝑞Z) without a lift to Γ(1) of norm bounded by R. Note that

∑
𝑔∈Γ(𝑞)\Γ(1)

����𝑀𝑞
𝑅 (𝑔𝑤) −

1
vol(Γ(𝑞)\SL𝑛 (R))

����2
as a function of w is left-invariant by Γ(1). Thus, we can write the w-integral of the above over F as

∑
𝑔∈Γ(𝑞)\Γ(1)

∫
Γ(1)\SL𝑛 (R)

����𝑀𝑞
𝑅 (𝑔𝑤) −

1
vol(Γ(𝑞)\SL𝑛 (R))

����2 d𝑤 = ‖𝑀𝑞
𝑅 −𝑈𝑞 ‖2

2 .

On the other hand, for 𝑅 ≥ 𝑞1+1/𝑛, we have

‖𝑀𝑞
𝑅 −𝑈𝑞 ‖2

2 
 𝑅−𝛿𝑞−(𝑛
2−1) ,

which follows from (8.6). Finally, plugging in 𝑅 = 𝑞1+1/𝑛, we get that for 𝐶 > 0 sufficiently large

𝑁 (𝑞, 𝐶1𝑞
1+1/𝑛+𝜂 (1+1/𝑛) ) 
 𝑞𝑛

2−1−𝛿 .

Modifying 𝜂, we conclude the proof. �

8.4. Proof of Proposition 8.1

We start by applying the second formulation of 𝐽𝑇 (ℎ) as in Proposition 6.3. Note that
𝜌(𝑃, 𝜆, ℎ𝑅,𝑞) |A2

𝜋 (𝑃) projects onto A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞) . Thus, working as in the proof of Theorem 3, it

suffices to show that∑
𝑃⊃𝑃0

max
𝐿∈L(𝑀𝑃)

∑
𝜋∈Π2 (𝑀𝑃)

dim
(
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

)
×

∫
𝑖 (𝔞𝐺𝐿 )∗

| ℎ̃𝑅 (𝜇𝜋 + 𝜆) |2
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

���
op

d𝜆 
𝜖 ‖𝑇 ‖𝑛−1 (𝑅𝑞) 𝜖 (𝑞 + 𝑅−𝑛(𝑛−1)𝑞𝑛
2 ). (8.7)

We apply (8.2) to bound the inner integral on the left-hand side of the above by


𝑁 ,𝜖 𝑅−𝑛(𝑛−1)+2𝑛‖�(𝜇𝜋 ) ‖∞+𝜖
∫

𝑖 (𝔞𝐺𝐿 )∗

(1 + ‖𝜇𝜋 + 𝜆‖)−𝑁
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

���
op

d𝜆.
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As 𝜋 is a representation of 𝑀 (A)1 and 𝜆 ∈ 𝑖(𝔞𝐺𝑀 )
∗, we have 〈𝜇𝜋 , 𝜆〉 = 0, consequently, we have

‖𝜇𝜋 + 𝜆‖2 � ‖𝜇𝜋 ‖2 + ‖𝜆‖2. Thus, the above integral can be bounded by

(1 + ‖𝜇𝜋 ‖)−𝑁 /2
∫

𝑖 (𝔞𝐺𝐿 )∗

(1 + ‖𝜆‖)−𝑁 /2
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

���
op

d𝜆.

To estimate the above integral, we proceed exactly as in the proof Theorem 3. We first write it as the sum
of the subintegrals over 𝑚 − 1 ≤ ‖𝜆‖ ≤ 𝑚 where m varies over N. We further majorize each subintegral
by a sum of integrals over ‖𝜆− 𝜂‖ ≤ 1 with 𝜂 ∈ 𝑖(𝔞𝐺𝐿 )

∗ and ‖𝜂‖ 
 𝑚. Finally, we apply Proposition 5.5
to bound each integral after making N large enough. This gives us

∫
𝑖 (𝔞𝐺𝐿 )∗

(1 + ‖𝜆‖)−𝑁 /2
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

���
op

d𝜆 
 (‖𝑇 ‖ log(1 + ‖𝜇𝜋 ‖ + level(𝐾 (𝑞)))dim𝔞𝐺𝐿 .

Hence, we obtain

max
𝐿∈L(𝑀𝑃)

∫
𝑖 (𝔞𝐺𝐿 )∗

| ℎ̃𝑅 (𝜇𝜋 + 𝜆) |2
���M𝑇

𝐿 (𝑃, 𝜆) |A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

���
op

d𝜆


𝜖 ,𝑁 ‖𝑇 ‖𝑛−1 (𝑅𝑞) 𝜖 𝑅−𝑛(𝑛−1)+2𝑛‖�(𝜇𝜋 ) ‖∞ (1 + ‖𝜇𝜋 ‖)−𝑁 , (8.8)

for all sufficiently large 𝑁 > 0.
Now, we move on to estimate the 𝜋-sum in (8.7). First, let us estimate the contribution for ‖𝜇𝜋 ‖ ≥

(𝑅𝑞) 𝜖 . Dividing into dyadic intervals, and using (8.8) and the fact that ‖�(𝜇𝜋)‖∞ 
 1, we estimate
this contribution by


 (𝑅𝑞)𝑂 (1)
∑

𝑚≥(𝑅𝑞) 𝜖

∑
𝜋∈Π2 (𝑀𝑃)
‖𝜇𝜋 ‖�𝑚

dim
(
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

)
‖𝜇𝜋 ‖−𝑁 .

There is an absolute K, such that the inner sum is bounded by 
 𝑚−𝑁 (𝑚𝑞)𝐾 , which follows from
[8, (7.2)], classification of discrete series [44] and local Weyl law [49] (also see the discussion in [8,
pp.35]). Making N large enough, we can bound the above double sum by 
𝑁 (𝑅𝑞)−𝑁 . Thus, we may
restrict the 𝜋-sum in (8.7) with ‖𝜇𝜋 ‖ ≤ (𝑅𝑞) 𝜖 . We conclude the proof by applying Lemma 8.10 below.

Lemma 8.10. We have

∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)
‖𝜇𝜋 ‖≤(𝑅𝑞) 𝜖

dim
(
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

)
𝑅2𝑛‖�(𝜇𝜋 ) ‖∞ 
𝜖 (𝑅𝑞) 𝜖 𝑞(𝑅𝑛(𝑛−1) + 𝑞𝑛

2−1),

with 𝑅, 𝑞 as in Proposition 8.1.

The statement and the proof below are quite similar to those of [8, Theorem 7.1]. To make the
similarities comprehensible, we make the dictionary that T and M in [8] are 𝑅𝑛 and (𝑅𝑞) 𝜖 , respectively,
in our case.
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Proof. First, trivially, we have∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)
‖𝜇𝜋 ‖≤(𝑅𝑞) 𝜖

dim
(
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

)
𝑅2𝑛‖�(𝜇𝜋 ) ‖∞

≤
∑
𝑃⊃𝑃0

∑
𝜋∈Π2 (𝑀𝑃)
‖𝜇𝜋 ‖≤(𝑅𝑞) 𝜖

dim
(
A2
𝜋 (𝑃)𝐾

0
∞𝐾 (𝑞)

)
𝑅2𝑛‖�(𝜇𝜋 ) ‖∞

∫
𝜆∈𝑖 (𝔞𝐺𝑃 )

∗

‖𝜆‖≤(𝑅𝑞) 𝜖

d𝜆.

In the classical language as in [8, Theorem 7.1], the right-hand side above is bounded by

𝑞

∫
Γ(𝑞)

‖𝜇𝜛 ‖≤2(𝑅𝑞) 𝜖
𝑅2𝑛‖�(𝜇𝜛 ) ‖∞ d𝜛. (8.9)

For the relevant notations, we refer to [8, Section 2]. The factor q comes from the 𝜑(𝑞) ≤ 𝑞 possible
twists by Dirichlet characters when moving from the adelic to the classical language (see [8, Section
2.6.2] and also [39, Section 3.4]).

If 𝑅 ≤ 𝑅0 := 𝑞1+1/𝑛 (𝑅𝑞)−𝜖 for sufficiently small 𝜖 > 0, we directly apply [8, Theorem 7.1] to bound
the integral in (8.9) by 
𝜖 (𝑅𝑞) 𝜖 𝑞𝑛

2−1.
If 𝑅 > 𝑅0, then we work as in [8, Section 8.2]. Note that ‖�(𝜇𝜛)‖∞ ≤ 𝑛−1

2 (which is attained when
𝜛 is one-dimensional). In this case, we write the integral in (8.9) as

(𝑅/𝑅0)𝑛(𝑛−1)
∫

Γ(𝑞)
‖𝜇𝜛 ‖≤2(𝑅𝑞) 𝜖

𝑅
2𝑛‖�(𝜇𝜛 ) ‖∞
0 d𝜛 
𝜖 (𝑅𝑞) 𝜖 𝑅𝑛(𝑛−1) .

This completes the proof. �
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