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Abstract. The axiom of comonotonic independence for a preference ordering was
introduced by Schmeidler [9]. It leads to the comonotonic additivity for the functional
representing the preference ordering, which is necessarily a Choquet integral.

The aim of this paper is to illuminate the concepts of comonotonicity, comonotonic
independence and comonotonic additivity. For example the seemingly weaker condition
of weak comonotonic independence used by Chateauneuf in [2] is seen to be equivalent to
comonotonic independence. Comonotonic additivity is characterized as additivity on
chains of sets. From this the characterization of Choquet integrals in [4], [1], [8] follows
easily.

1. Introduction. This paper was motivated by an interest in the representation of
preference orderings by generalizations of expected utility. Several recent papers ([8], [2])
have included axioms of comonotonic independence for these preference orderings. The
aim here is to make transparent the comonotonicity relationship and the nature of
comonotonic independence.

The framework is the simple one chosen by Chateauneuf in [2] where acts are just
real-valued functions on a set of states of nature, Q. Two such functions on Q are
comonotonic if they are mutually reinforcing, in the sense that a large value of one of
them at a given point of fl is not cancelled out by small value of the other (see Lemma 1
below). As Schmeidler points out in [9], the decision that an act / i s preferred to an act g
depends upon information about subsets of Q. Roughly speaking, if on a subset of Q,
which is known to occur with high probability, the values of / are more favourable than
the values of g, then it is likely that / will be preferred to g.

If "more favourable" means "larger", it seems natural, for an act / , to look at sets of
the form {/ ^ a} = {a» G Q :/(a>) S: a}, for a e R. This reveals the essential nature of the
comonotonicity relationship. Two functions / , g : Q—> U are comonotonic if and only if for
all a , j3sR the subsets {/^a} and {g > /3} of Q form a chain (see Proposition 4).
Denneberg [5] uses this property to define comonotonicity.

Suppose, now, that there is a preference ordering < on the set of acts and that <
may be represented by a functional / in the sense that / <g if and only if / ( / ) < I(g). The
axiom of comonotonic independence would require that / ( / + g) = / ( /) + I(g) for
comonotonic acts/and g, that is, that / be additive on comonotonic functions. This seems
to be a reasonable requirement, given that comonotonic functions can be thought of as
being mutually reinforcing in the sense of Lemma 1.

The main result is Theorem 7, which shows that, for a functional /, the property of
additivity on comonotonic functions is equivalent to additivity on chains of subsets of Q.
The importance of behaviour on chains of sets for Choquet integrals was brought out in
[1] and [10]. The characterization of Choquet integrals ([4], [1] and [8]), in terms of
additivity on comonotonic functions, follows easily from Theorem 7.
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2. Comonotonic functions. Let Q be a non-empty set and / , g : Q - » R . The
functions / and g are said to be comonotonic (see [8]) if for all s, t s Q

The definition can be reformulated as follows.

LEMMA 1. Functions f and g : Q—» R are comonotonic if and only if for all s . f e Q

f(s)>f(t) implies g(s)^g(t).

Some properties of comonotonicity are immediately clear: any function / and any
constant function are comonotonic. Also if / and g are comonotonic then so are af and g
for all a >0. For the case that Q = U, if the functions f,g : R—»R are both monotonic
non-decreasing (or both non-increasing) then they are comonotonic. The next lemma
gives some indication of the ways in which comonotonic functions may be combined.

L E M M A 2. For functions f , g , h : Q - » R;
(a ) if f and h are comonotonic and g and h are comonotonic, then f + g and h are

comonotonic;
(b) if f, g and h are pairwise comonotonic, then max{/, g] and h are comonotonic, as

are min{/, g} and h.

Comonotonicity is not transitive, as can easily be seen by considering indicator functions
of subsets Q. If C £ Q, its indicator function l c : fl-» R is defined by: lc(s) = 1 if s e C
and lc(s) = 0 if s e Q\C.

LEMMA 3. Let A, B c Q. Then 1A and 1B are comonotonic if and only if A £ B or
B^ A.

A family <# of subsets of Q is called a chain if for all Cu C2 e <# either Cj c d or
C 2 £Ci . For a finite family % with n elements this means that the members can be
labelled Cu C2,...,Cn in such a way that d 2 C2 2 . . . 2 Cn.

The lemma above generalizes to give the next result, which pinpoints the nature of
the comonotonicity relationship. The following, together with further characterizations of
comonotonicity can be found in [5, Proposition 4.5].

PROPOSITION 4. The functions f and g:Q-*U are comonotonic if and only if, for all
a, B eU.,the subsets {/ ^ a} and {g^^}o /Q form a chain.

REMARK. This is equivalent to the condition that the family of all subsets of Q taking
one of the four forms {/ ^ a}, {/ > a}, {g ^ B} or {g > B} for some a or B e R be a chain.

Proof. Suppose that, for all a, B e R, the sets {/ S: a} and {g ^ B) form a chain. Let
s,teQ be such that f(s)>f(t) and set a=f(s) and B=g(t). Since t g { / > a } and
t E {g > B) it must be that {/ > a} c {g > /3}. It follows that s € {g > /3}, that is g(s) >
By Lemma 1,/and g are comonotonic.
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Now suppose that there exist a, /3 e R such that {f^a} and {g 5: /3} do not form a
chain. Then there exist s, t e Q such that j e { / > a}\{g > /3} and r e {g > )3}\{/ s «}. This
means that /(s) 2: a >f(t) and g(f) > /3 > g(s), so that / and g are not comonotonic. •

3. Integral-like functionals. Consider B(Q) the space of all bounded functions
/ : Q—»R with the supremum norm: for/ e B(Q) the norm of/is ||/|| = sup \f(s)\.

Let si be a cr-algebra of subsets of Q.. A finite linear combination of indicator
n

functions / = 2 a,-l/» with au a2,... ,an sU and AUA2,.. • ,An e .stf is called a s/mp/e
i=i

n

function. I t i s w o r t h n o t i n g t h a t e v e r y s i m p l e f u n c t i o n / = 2 ) a , ! ^ , w i t h a , , a 2 , • • - , « « e
i=i '

m

R and AuA2,...,Anesi, can be written in "chain" form: / = Z y ; l c . with
7i. T2. • • • . Jm e R and Ci 2 C2 2 • • • 2 Cm in j ^ (see [10]). For this function, the sets
{/ > a} for a e R are just Q, C,, C2, . . . , Cm, 0 .

A function / : Q—> R is said to be measurable if f~\J) e >s£ for all sub-intervals J of R.
Clearly every simple function is measurable.

The reason for choosing s& to be a cr-algebra rather than just an algebra is that the
family of bounded measurable functions then coincides with the Banach space B(Q.,d)
which is the closure in B(Q), with respect to the supremum norm, of the family of all
simple functions. It is sometimes overlooked, that / + g need not be measurable for all
measurable / , g : Q - • R, if si is an algebra but not a c-algebra. An alternative way round
this difficulty would be to use the weaker definition of measurability, with respect to a
non-empty collection of subsets of Q, which is given in [7]. The resulting family of
measurable functions is closed under addition of comonotonic functions.

The next lemma shows that if / and g are comonotonic then / may be approximated
by simple functions, each of which is comonotonic with g.

LEMMA 5. Let f, g be comonotonic functions in B+(Cl,sf). Then there exists a
sequence (/,)neM of simple functions in B+(Cl,si), which is norm convergent to f, such
that, for each n BN, the functions fn and g are comonotonic and {/„ > 0} = {/ > 0}.

Proof. For n e M define

Then (/n)neM is norm-convergent to / , and for each n e N {fn >0} = {/>0}. Further /„
and g are comonotonic, for each n e N, by the characterization in Theorem 4. •

DEFINITION 1. Let B+(Q, si) be the cone of all functions in 5(Q, M) which assume
only non-negative values. An integral-like functional on B+(Cl, si) is a mapping
l:B+(Cl,si)^n such that

(i) / is monotone: if f,g e B+(Q,sl) a n d / < g then/( / )</(g) ,
(ii) / is positive homogeneous: if / s B+(Q, si) and y > 0 then I(yf) = y/(/).

/ is said to be additive on comonotonic functions if / ( / + g) = / ( / ) + /(g) for all
comonontoic f,gs B+(Q, si). I is said to be C-additive if I(yln + / ) = y/(ln) + /(/) for
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The properties of additivity on comonotonic functions and of C-additivity correspond
to those of comonotonic independence and certainty independence used in the papers [8],
[2] and [6] respectively.

Since a constant function and any other function are comonotonic, C-additivity is
implied by comonotonic additivity. The next lemma is well-known: for example, see
[6, Lemma 3.4].

LEMMA 6. / / / is a C-additive integral-like functional then I is uniformly continuous
with respect to the norm topology on 5+(Q, si).

Proof. Let f,g e B+(Q, si). Then

= 11/ ~g II /(In)-

Similarly I(g) - /(/) *\\f-g\\ /(1Q) so that |/(/) - I(g)\ < ||/ - g|| /(1Q). D

THEOREM 7. Let I be an integral-like functional on B+(Cl,si). Then the following
conditions are equivalent:

(i) / is additive on comonotonic functions;
(ii) for all/e5+(n,4y>0 and all C e sisuch that {/>0}g C,

(iii) / is uniformly continuous with respect to the norm-topology on B+(Q, si) and,
for all finite chains C] 2 C2 2 • • • 2 Cm in si, and all yu y2, • • • , ym ^ 0,

(iv) / is uniformly continuous with respect to the norm-topology on fl+(Q, si) and, for
all finite chains C\ 2 C2 2 • • • 2 Cm in si,

Proof, (ii) follows from (i) because/and l c are comonotonic.
If (ii) is assumed then / is uniformly continuous with respect to the norm by the

previous lemma, since / is, in particular, C-additive. The equation in (iii) follows by
induction on m: for m = 1 it holds because / is an integral-like functional. Suppose it holds

for m = k and consider 2 y;lc. with C] 2 C2 2 • • • 2 C*+1 in si, and yu y2 , . . . , y^+i ^ 0.

Choose / = 2 y;lc; then, by inductive assumption, / ( / ) = 2 jjIO-c) ar>d by (ii)
; = 2 • ' ; = 2 '

This proves the equation in (iii) for m = k + 1.
To prove that (i) follows from (iii), notice first, for / , g comonotonic simple functions
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in B+(Q, si), that (iii) already implies / ( / + g) = / ( / ) + I(g). For, suppose that / =
m n

X 7,1c a°d g = 2) S*1D4 are the two functions in "chain" form; then the co-

monotonicity of / and g means that the collection {Cu C2, • • • , Cm, Du D2,..., Dn} is a
chain. Hence, by (iii)

/(/ + g) = 1 yAic) + 1 Skl(lDk) = /(/) + l(g).
k=\

Now let g be a simple function and approximate / e B(Q, si) by a sequence (fn)ne\ with
the properties described in Lemma 5. Then /(/„ +g) = /(/„) + I(g) for all n s N so that
/ ( / + g) = / ( / ) + I(g) by the continuity of /. This procedure can be repeated for
/ , g E B(Cl, si), approximating g according to Lemma 5. This completes the proof that (iii)
implies (i).

It remains to show that (iii) and (iv) are equivalent. Clearly (iv) follows from (iii).
Assume (iv); this already implies the equation in (iii) for the case that yu y2,... , yn are
non-negative integers. Now suppose that yu y2, • • •, yn ̂  0 are rational and let k e N be
such that kyuky2,... , kyn are integers. Then

( m \ 1 / m \ 1 m m

2 y,lc,j = r /[2 kyjlc) = - 2 kyAlc) = S y,H\c)>
The equation now follows for any real non-negative yu y2,..., yn, since the rationals are
dense in U and by the continuity of /. •

The condition (ii) in the theorem above is the analogue for functionals of the axiom
of weak comonotonic independence in [2]. Another condition which is equivalent to those
in Theorem 7 is the weak additivity in [1, equations (9) and (10)]. The equivalence of (i)
and (iii), as will be seen in the next section, is the essence of the characterization ([4], [1]
and [8]) of the Choquet integral in terms of additivity on comonotonic functions.

4. The Choquet integral. Let v : si—* [0, °°) be a set function with v(0) = 0 which is
monotone; that is, for A, Be si, A^B implies v(A)<v(B). The Choquet integral,
introduced in [3], associated with v is the functional /„ on fi+(Q, si) defined by

U/)=f v({f>x})dx for all / eB+(Q,si).
Jo

Notice that /„ is an integral-like functional.
The second property of /„ listed in the next lemma can be found in [10] and [1]; the

first is well known.

LEMMA 8. Let lv be the Choquet integral associated with the monotone set function v.
(a) Iv is C-additive, hence uniformly continuous with respect to the norm-topology on

B+(Q,siy

(b) For f = 2 y,lCj with yu y2,..., yn ^ 0 and C, 2 C2 2 • • • 2 Cn in rt,

Uf) = 2 yiv(C,).
1=1
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Proof (a) Let / e B(Q, si) and y > 0; then for x e [0, »)

if 0 < x < y
>x - y} if JC ^ y.

Hence /„(/ + yln) = /J v(Q.) dx + /* u({/ ^ x - y}) dx = y/u(ln) + L(f)-
fk-\ k ]

(b) Define the intervals Jx = (0, yJ and Jk = S y,, E y,- , for /c = 2 ,3 , . . . ,« . Then
\i=i i=i J

for x e [0, °°)

Q ifx = 0

Q if A: e Jk for /: = 1,2,... , n

0 if * > £ y,-.
1=1

Hence
n f n= 2 f v(

* = i Jjk

The following result may now be proved using Theorem 7.

THEOREM 9 [4, page 81], [1, Theorem 3], [8, Proposition 2]. Let I be an integral-like
functional on B+(Q, stf), and let v be the set function on si defined by v(A) = I(lA) for all
A e si. Then I is the Choquet integral associated with the set function v if and only if I is
additive on comonotonic functions.

Proof. That /„ is additive on comonotonic functions is a direct consequence of
Theorem 7 and the above lemma. By Theorem 7 if / is additive on comonotonic functions
then / is uniformly norm-continuous and its values are fixed on simple functions by (iii) of
that theorem. By the lemma above these values coincide with the values of /„ on the
simple functions. Since /„ is also uniformly norm-continuous and the simple functions are
dense in fi+(fi, si), the two functionals / and /„ are equal. •
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