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Abstract

It is well known that if M is a module with finite spanning dimension, then one can talk of Sd(Af),
the spanning dimension of K only when AT is a supplement submodule in M. In this paper we extend
this concept to general submodules and obtained some important results. We characterize the set of
all supplement submodules of the module R/(x) over R where R is a Euclidean domain and x e R.
Moreover, it is proved that the number of distinct supplements in R/(x) is 2* and Sd(R/(x)) = k where
k is the number of distinct nonassociate prime factors of x.

1991 Mathematics subject classification (Amer. Math. Soc): 16A34, 16A53 and 16A64.

Introduction

Let R be a (not necessarily commutative) ring with unity. Throughout this paper by a
module we mean a unital left R-module. M stands for a module with finite spanning
dimension and A, B stand for submodules of M. We write f.s.d. for finite spanning
dimension. For fundamental definitions and results we refer to [1] - [5]. We now list
the following results from the literature which are used frequently.

LEMMA 0.1. (i) If A is a non-small submodule ofM then there exist two submodules
S and K such that S is a supplement of A, K c A, K is a supplement of S and also
K and S are mutual supplements.

(ii) If S is a submodule such that S + A = M then S is a supplement of A if and
only if S D A is small in S.

(iii) Every supplement of M has f.s.d.
(iv) If S* c S C M, and S is a supplement then S* is a supplement in M if and

only if S* is a supplement in S.
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1. Preliminary Results

DEFINITION. Suppose A is non-small in M. B is said to be an S-supplement for A
if B c A and there exist a supplement X of A such that B is a supplement of X. In
this case, we also say that B is an 5-supplement for A with X in A/.

LEMMA 1.1. For a non-small submodule S of M, the following conditions are
equivalent:

(i) There exists a submodule H of M such that S is a supplement of H in M;
(ii) For any submodule A of M such that A c. S we have that A is small in M if

and only if A is small in S.

PROOF, (i) implies (ii). Suppose A is non-small. Now A is small in S because
A + B - S implies A + B + H = S + H = M. This in turn implies B + H = M,
which implies B = S. The other part is clear.

(ii) implies (i). Since 5 is non-small, by Lemma 0.1, there exist two submodules
S' and H of M such that H is a supplement of S, S' is a supplement of H and 5' c S.
Now S' is an S-supplement for S with H. By [3, Lemma 3(ii)], 5' is a supplement of
H D S in S. Since H is a supplement of 5 we have H (1 S is small in H and so it is
small in M. Therefore H D S is small in S, which shows that S' = S.

THEOREM 1.2. Suppose A is a non-small submodule and B, B' are two S-supple-
mentsfor A with X, X' respectively. Then

(i) Sd(fi) = Sd(fl')
(ii) B is a maximal supplement contained in A.

PROOF. (i)By[3,Lemma4]wehaveSd(B)+Sd(X) = Sd(M) = Sd(B') + Sd(X')
and Sd(X) = Sd(M/A) = Sd(X'), which shows that Sd(B) = Sd(fi')-

(ii) Let A' be a supplement such that B c A' c A. Since A Pi X is small in M, so
is A' n X. By Lemma 1.1, A' n X is small in A'. Now A' + X 2 B + X = M shows
that A' is a supplement of X and hence £ = A'.

DEFINITION. A set of hollow submodules {//,• | 1 < i < Jfc} is said to satisfy
Property (S) if there exists a supplement X of Hi + •• • + Hk such that the sum
M = Hi-\ h Hk + X is non-redundant. In this case, we also say that //,, 1 < i < k
satisfy Property (S) with X.

EXAMPLE. If A and B are mutual supplements and //,-, 1 < i < k are hollow
submodules such that A = Hx -\ \- Hk and the sum is non-redundant then //,, 1 <
i < k satisfy Property (S) with B.
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LEMMA 1.3. If Ht,\ < i < k satisfy Property (S) with B then k < Sd(M).
Moreover, k + Sd(fi) = Sd(M).

PROOF. If Sd(B) = t then there exist hollow submodules #,, 1 < i < t such
that B — Bx + • • • + B, and the sum is non-redundant. Clearly the sum M =
Hx-\ h Hk + Bx H h B, is non-redundant and so Sd(M) = k + t >k.

LEMMA 1.4. Le? H be a non-small submodule and //,, 1 < / < k satisfy Property
(S) with B such that Ht c H,\ <i < k.

(a) If B is not a supplement of H then there exists Hk+1 C H fl B such that H,,
1 < / < k + 1 satisfy Property (S).

(b) The following two conditions are equivalent:
(i) B is a supplement of H;
(ii) {//, | 1 < / < k] is a maximal set ofhollow submodules that satisfy'Property

(S) and Hi c H,\ <i < k.

PROOF, (a) If B is not a supplement of H then there exist a minimal hollow non-
small submodule Hk+l c B C\ H. If Y is a supplement of Hk+l in B then Y and Hk+\
are mutual supplements in B. Now //,-, 1 < i < £ + 1 satisfy Property (S) with Y.

(b) (i) implies (ii). By Lemma 1.3, k + Sd(fi) = Sd(M). If {//, | 1 < / < k]
is not maximal with the required properties then by Lemma 1.3, we can find a
maximal set [Hu ..., Hm} of hollow submodules for some m > k such that //,,
1 < i < m satisfy Property (S) with X and Ht: c H, 1 < i < m. By Part (a), X is
a supplement of / / and by Lemma 1.3, Sd(X) + m = Sd(M). Since B and X are
supplements of H by [3, Lemma 4] we have Sd(fi) = Sd(M///) = Sd(X). Therefore
Sd(M) - £ = Sd(B) = Sd(X) = Sd(Af) - m which implies k = m,a contradiction.
(ii) implies (i) follows from Part (a).

2. Spanning Dimension of a Submodule

DEFINITION. For a submodule A of M we define SdM(A) as follows: If A is
small then SdM(A) = 0 and if A is non-small then SdM(A) = Sd(fi) where B is an
5-supplement for A.

THEOREM 2.1. Suppose A and B are non-small submodules ofM such that A+B =
M. Le? Y be a supplement of A such that Y c B, and X be a« S-supplement for A
with Y. Then the following conditions (i) to (iii)

(i) Sd(M) = Sd(M/A) + SdM(A);
(ii) Sdw(A) + Sd(F) = Sd(M);
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(iii) IfX n B is small in M then SdM(A) + SdM(B) = Sd(M).
Moreover, if A D B is small then the following (iv) to (vi) hold:

(vi) Sd(M/A) + Sd(M/B) = Sd(M).

PROOF. By [3, Lemma 4(i), 4(iv)] we have Sd(Y) = Sd(M/A) and Sd(X) +
Sd(Y) = Sd(M). Since Sd(X) = SdM(A) we have SdM(A) + SdM(Y) = Sd(M) and
Sd(M) = Sd(M/A) + SdM(A). This completes the proof of (i) and (ii).

By Lemma 1.1, X H B is small in X and so X is a supplement of B. By (ii),
SdM(B) + Sd(X) = Sd(M) and so we have (iii).

Equation (iv) follows from (iii), and (v) follows [3, Lemma 4(i)].
Equation (vi) follows from (iv) and (v).

LEMMA 2.2. If at least one of A and B is small then SdM (A)+ SdM(B) = SdM(A +
B) + SdM(AHB).

PROOF. If both A and B are small then the proof is clear. Suppose A is small and B
is non-small. It is enough to show SdM(B) = SdM(A + B). Let S be an S-supplement
for A + B with H. Since A is small, A + B + H = M implies B + H = M. Clearly
H is a supplement of B. Let 5' be an S-supplement for B with H. Now we have

SdM(B) = Sd(S') = Sd(M) - Sd(//) = Sd(S) = SdM(A + £).

LEMMA 2.3. Suppose H and H' are two non-small submodules of M.
(i) SdM(//) = /n where m = max{& | k = Sd(S) for some supplement S in M such

that S c / / } .
( i i) / / / / c / / ' then SdM(H) < SdM(//'.).

PROOF. Clearly SdM(H) < m. Let S be a supplement such that 5 c // and
Sd(S) = it. Let 7 be a supplement of 5. Now by Lemma O.l(ii) and Lemma 1.1,
we have that S and Y are mutual supplements. There exist hollow submodules //,,
1 < i < k such that S = H\ 4 - . . . + Hk, the sum is non-redundant and //,, 1 < i < k
satisfy Property (S) with Y. Now we can find a maximal set [H, \ 1 < / < n} for
some n > k satisfying Property (S) with X and each //, c / / . By Lemma 1.4, X is a
supplement of H. Let 5* be an S-supplement for H with X. Now by [3, Lemma 4]
and Lemma 1.3, we have Sd(S*) + Sd(X) = Sd(M) = n + Sd(X) which implies
SdM(//) = Sd(S*) = n>k. Now (ii) follows from (i).

THEOREM 2.4. IfS and S' are two supplements in M such that S+S' is a supplement
then Sd(S) + Sd(S') = Sd(S + S') + SdM(S n S').
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PROOF. If 5 n 5' is small in M then by Lemma 1.1, 5 n 5' is small in both 5 and 5',
and by Theorem 2.1(iv), Sd(5 + 5') = Sd(5) + Sd(S') and so the result follows. Now
suppose 5 D 5' is non-small. Let L be a supplement of 5 n 5' and 5* be a supplement
of L such that 5* c 5 n 5'. Now Sd(S*) = SdM(S n 5'). Since 5* is a supplement of
L we have that 5* n L is small in 5*. Now M = S* + L implies

s = M n s = (S* + L) n s = s* + L n s.

Since S* C\(L (~) S) = S* n L is small in S* we have that 5* is a supplement of L n 5
in 5. Let X be a supplement of 5* such that X c L !~\ 5. Now X is an 5-supplement
for L n 5 with 5* in 5. In a similar way, there exists a submodule X' which is an
5-supplement for L n 5' with 5* in 5". Then it is clear that Sd(5) = Sd(5*) + Sd(X),
Sd(S') = Sd(5*) + Sd(X') and Sd(5 + S') = Sd(S*) + Sd(X) + Sd(X'). Now the
result follows since SdM(S n 5') = Sd(S*).

3. Modules with a Property (B)

Now we state

PROPERTY (B). If X and Y are two submodules of M and S, S' are S-supplements
for X, Y respectively then 5 + 5' is an S-supplement for X + Y.

NOTE, (i) By Theorem 4.3(iii), R/(x) satisfies Property (B) where R is a Euclidean
domain and x e R.

(ii) If M satisfies Property (B) then the sum of two supplements in M is a supple-
ment.

THEOREM 3.1. If M satisfies Property (B) then SdM(A) + SdM(B) = SdM(A +

PROOF. If at least one of A and B is small then the result follows from Lemma 2.2.
Suppose both A and B are non-small. If A H B is small then for any 5-supplements
X, X' for A, B respectively we have SdM(A D B) - 0 = SdM(X n X') and hence the
proof follows from Theorem 2.4. We now suppose A l~l B is non-small. Let 5* be an
5-supplement for A n B, K a supplement of A, 5 a supplement of K + 5* such that
5 c A, K' a supplement of B and 5' a supplement of K' + S* such that 5' c B. Since
(5 + 5*)n£ c A n K we have (5+5*) n # is small. By Property (B) and Lemma 1.1,
we have (5 + 5*) fl K is small in 5 + 5* and hence 5 + 5* is an 5-supplement for A
with K. Similarly 5* + 5' is an 5-supplement for B with K'. By Property (B) we have
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SdM(A + B) = Sd(S + S* + S' + S*). Since5* c ((S + S*)n(S' + S*)) c SdM(ADB)
we have

Sd(5*) < SdM((5 + S*) n (S' + S*)) < SdM(A n B) = Sd(S').

By using Theorem 2.4, we have

SdM(A + B) = Sd(S + 5* + 5' + S*)

= Sd(S + 5*) + Sd(S' + 5*) - SdM((S + S') n (5' + S*))

- SdM(A n fl).

REMARK. Here Z stands for the ring of integers and Zn for the set of integers
modulo n.

(i) In general, the sum of two supplements of a module with f.s.d.may not be a
supplement. For example, consider M = Z4 © Z4 over Z. S = Z4 © (o) and
S* = (1, 2)Z4 are two supplements of (o) © Z4 where S + S* = Z4 © 2Z4 is not a
supplement. For one more example, consider M = Z@Z over Z. Then S = Z © (o),
S* = (1, 2)Z are supplements of (o) © Z, (o, 1)Z respectively, but 5 + 5* = Z © 2Z
is not a supplement. Let us verify these facts in the following:

Firstly we verify that S* = (1, 2)Z is a supplement of A = (o, \)Z. Note that
(1, o) = (1, 2) - (o, 1)2 e S* + A implies M = S* + A. Let B be any proper
submodule of S*. Then B = (a, 2a)Z for some a € Z such that a > 2. Supposing
fi + A = M, (1, o) e M = B + A implies (1, o) = (a, la)x + (o, l ) j for some
x, y e Z, implying a* = 1 and finally x = I/a, contradicting the fact that a > 2 and
I/a = x € Z. Hence £ + A # M for any proper submodule B of S*. This shows
that 5* is a supplement of A.

Next, we see that X = Z © 2Z is not a supplement. Suppose on the contrary
that X is a supplement of H in M. Then (o, 1) € M = X + / / implies (o, 1) =
(a, 6) + (x, y) for some (a, b) e X and (x, y) e / / implies 1 = 6 + j.Thus j is
an odd number since b is even. So there exist (x, y) e H, y ^ 0, y being odd.
Since (—jt, —y) is also in H we may take y > o. Let y* = min{y | y > o, there
exists x 6 Z such that (x,y) € / / and y is an odd number }. There exists x* such
that (*•, y*) e / / . If y* = 1 then (o, 1) = (-**, o) + (x\ y*) e (Z © o) + H.
This implies o © Z c (Z © o) + H, and so M c (Z © o) + H, contradicting the
fact that X is a supplement of H. Therefore y* > 1. which implies y* > 3. Thus
(o, 1) = (**, y* + 1) - (JC*, y*) G (Z © (y* + 1)Z) + H, Now as in the above steps
we get M = (Z © (y* + 1)Z) + H, a contradiction, since X is a supplement of H and
Z © (y* + 1)Z^X. Hence X cannot be a supplement.

(ii) We know that if 5 is a supplement then Sd(M) = Sd(S) implies M = S. But
for a general submodule this condition fails. For example, consider M = Z24 over Z.
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Since M = (8) + (3), the sum of two hollow submodules, we have Sd(M) = 2. If
H = (2) then H = (8) + (6) and so Sd(//) = 2. Thus we have Sd(M) = Sd(//) and
M ^ H.

4. Supplements in Modules over Euclidean Domains

Throughout this section R stands for a Euclidean domain and (y) stands for the
ideal generated by v e R. When we are considering (v) we may assume that
y = p*' pa

2 ... pa
k
k where p,-., 1 < i < k are non-associate primes and a, > 1 for each

/. We let x denote a fixed element of R with x = p°l ... pa
k
k, where p, , 1 < / < k are

non-associate primes and each a, > 1. Let f denote some permutation on {1, 2 , . . . , k]
and write bt = af(i), 1 < / < k. We write qt = p*' ( 1 ) . . . pb

f\n and r, = p*'(0 ... pb
f\k)

for 1 < i < k. We define 5,, 1 < i < k as S\ = t2, sk = qk_\ and s-t — qi-\.ti+i for
2 < i < A: - 1. We write A, = (st), B, = (?,) and C, = (^,). n denotes the canonical
mapping from R to R/{x) and IC(;c) denotes the set of all ideals of R containing (x).

LEMMA 4.1. (i) If H elC(x) then H — (y) where y = p\l ... py
k with 0 < y, < a,

for 1 < i < k.
(ii) U(Cm) is a supplement ofT\(Bm+1).
(iii) Yl(Am) is hollow for 1 < m < k.
(iv) YliAi) + ••• + n(Ak) = Tl(R) and Sd(n(/?)) = k.
(v) There is no H e lC(x) such that Bm^H^Bm+i and H is a supplement in Tl(R).

PROOF, (i) is clear.
(ii) Clearly U{Cm) + n(Bm+1) = U{R). Let A e IC(x) be such that Tl(A) +

Tl(Bm+l) = Tl(R) and A c Cm. Suppose A = (s1) where s' = p*} , , . . . ph/(k)

and 0 < hj < bj, I < i < k. Since A C Cm we have qm divides s' and hence
hi = bt, 1 < / < m. If A ^ Cm then hq ^ 0 for some m + 1 < <7 < fc. Now
A + fim+i c (PJ;9)) ^ /?, a contradiction to n (A) + Tl(Bm+l) = U(R).

(iii) A straightforward verification.
(iv) Since pb

f\X) and pb
f\2) are relatively prime there exist a, b e R such that 1 =

a-Pbf\\) + ^-Pf(2) an<^ s o f3 = fl52 + bs\ e A2 + A\, which shows that At + A2 =
B3. Similarly we can verify A, + A2 + A3 = fi4,..., Ax + • • • + At_, = Bt and
Ax-\ \-Ak = Bk + Ak = R. Thusn(Ai)H \-U{Ak) = U{R). Non(A, )can
be deleted from this sum because A, c (p*^) for j ^ i and 1 < j < yt. By (iii) each
n(A,-) is hollow and by [1, Theorem 3.1], Sd(n(7?)) = jfc.

(v) Since for any module M, Sd(M) = max{& | there exists a proper chain
Sk D Sk-i D . . . D So = (0) of supplements in M} , we have T\(R) D n (B t ) D
. . . D n ( 6 i ) = (0) is a maximal proper chain of supplements in Yl(R) and so the
result follows.
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One can easily verify the following two theorems using the simple techniques
developed already.

THEOREM 4.2. (i) / / A e IC(x) and A = (ph
f\X)... phf(m))for some 1 < m < k and

hi ^ 0, 1 < / < m then Tl(Cn) is the unique supplement for Tl(A). Moreover, if
Tl(A) is a supplement then A = Cm.

(ii) The set of all non-zero supplements in Tl(R) is precisely {Yl(Y) \ Y = (y),
y = py

g'0)... py
g"m) where g is a permutation on {1, 2, ...,k], 1 < m < k and

yi =agU), 1 < / < m}.
(iii) n(Cm) = T\(Am+l) + ... + Tl(Ak) andSd(U(Cm)) = k-m.
(iv) IfU(A) is a supplement with Sd(Yl(A)) = k - m > 0 and A = (y) e lC(x)

then the number of non-associate prime factors of y is m.
(v) The number of distinct supplements T\{A) with A e \C(x) and Sd(Y\(A))

= k — m,iskCm. The total number of distinct supplements in \\{R) is 2k.

THEOREM 4.3. LetA,B,S,S'& IC(x) such that Yl(S) andYl(S') are supplements
in Tl(R). Then the following hold:

(i) ri(S) + n(S') is a supplement with

Sd(FI(S) + n(S')) > max{Sd(n(5)), Sd(n(5'))}.

(ii) 11(5) n n(S') is a supplement with

Sd(n(5) n n(5')) < min{Sd(n(S)), Sd(n(5'))}.

(iii) / /n (5) , n(S') are S-supplementsfor U{A), U{B) respectively then U{S) +
Tl(S') is an S-supplementfor U(A) + Yl(B).
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