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SEQUENTIALLY RELATIVELY UNIFORMLY COMPLETE 
RIESZ SPACES AND VULIKH ALGEBRAS 

C. T. TUCKER 

Throughout this paper V will denote an Archimedean Riesz space with a 
weak unit e and a zero element 6. A sequence fi,f2,fz, . . . of points of V is 
said to converge relatively uniformly to a point / (with regulator the point g 
of V) if, for each e > 0, there is a number N such that, if n is a positive 
integer and n > N, then \f — fn\ < eg- In an Archimedean Riesz space a 
relatively uniformly convergent sequence has a unique limit. The sequence 
fuf2,fz, . . . is called a relatively uniform Cauchy sequence (with regulator g) if, 
for each e > 0, there is a number TV such that if n and m are positive integers 
and n, m > N, then \fn — fm\ < eg. A subset M of V is said to be sequentially 
relatively uniformly complete, written s.r.u.-complete, whenever every relatively 
uniform Cauchy sequence of points of M (with regulator in V) converges to 
a point of M. This property was defined by Luxemburg and Moore in [4] 
and some related conditions were derived. The property of being Archi
medean and s.r.u.-complete is intermediate to the properties of being Archi
medean and being d-complete (see Vulikh [7, p. 127]). Several important 
Riesz spaces, such as C[0, 1], QC[0, 1] (the space of all quasi-continuous 
functions on the interval [0, 1]), Ba[0, 1] (the ath Baire class, a finite), and 
the space of all functions on [0, 1] which are Rieman-Stieltjes integrable with 
respect to a given function of bounded variation are Archimedean and s.r.u.-
complete, but not c-complete. 

The pair (V, e) will be said to be a Vulikh algebra if a multiplication can 
be defined on V which makes it an associative, commutative algebra with 
multiplicative unit e which is positive in the sense that if / ^ 0 and g ^ 6 
then fg S; 6. For some properties of Vulikh algebras see Rice [5] or Vulikh [7]. 

When necessary, it will be assumed that F is a subspace of the set of all 
almost finite extended real valued continuous functions on an extremally 
disconnected compact Hausdorff space S and that e is the function identically 
equal to 1. If each of/ and g belong to V their pointwise product will be defined 
as follows: Both / and g are finite on a dense subset Q of S. Their pointwise 
product on Q is a continuous function on Q and can be extended uniquely to a 
continuous function on 5, since S is extremally disconnected. 

There is at most one multiplication which makes (V, e) a Vulikh algebra 
(see [3] or [1, Theorem 5.1]). If (F, e) is a Vulikh algebra and it is represented 
as a Riesz space as a subspace of the set of all almost finite extended rea 
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valued continuous functions on a extremally disconnected compact Hausdorff 
space with e the constant function 1, then the Vulikh algebra multiplication 
will be the same as the pointwise multiplication described above. 

THEOREM 1. Suppose V is s.r.u.-complete and e is a strong unit. Then (F, e) 
is a Vulikh algebra. 

In this case, V can be represented as the Riesz space C of all real-valued 
continuous functions on a compact Hausdorff space (see [2, Theorem 4.1]). 
Consequently, F is a Vulikh algebra since C is. 

THEOREM 2. Suppose V is s.r.u.-complete. There is an ideal M of V such that 
(M, e) is the largest Vulikh algebra contained in V, i.e., if H is a sub-Riesz 
space of V such that (if, e) is a Vulikh algebra then H is a subset of M. 

Proof. Let y be the collection to which the sub-Riesz space K of V belongs 
if and only if K contains e and (K, e) is a Vulikh algebra. Let N be the ideal 
generated by e. By Theorem 1, (N, e) is a Vulikh algebra and therefore N 
belongs to 7. Order 7 by inclusion. It follows from the remark about the 
uniqueness of multiplication in a Vulikh algebra that if K and / are in 7 and J 
is a subset of K then the multiplication on K restricted to / agrees with the 
multiplication on / . By a Zorn's lemma argument there exists a maximal 
set M of 7 containing N. 

Suppose H is a set in 7. We wish to show that H is a subset of M. If it can 
be shown that for each point / of H and g of M that fg is in V, then H \J M 
generates a Vulikh algebra which would contradict the maximality of M 
unless H is a subset of M. 

(1) Suppose/ is a positive point of H and g is a positive point of N. It can 
be assumed that g ^ e. If n is a positive integer, then / S (1/n)/2 + ne, and 
also ne ^ (l/n)f2 + ne, so t h a t / V ne — ne ^ (\/n)p. Therefore, 

6 Sfg - ( / A ne) g = fg - ( / + ne - f V ne)g 
= ( / V ne — ne)g ^ / V ne — ne ^ (l/n)f2. 

A s / A ne is in N, ( / A ne)g is in N, and/g is in F as F is s.r.u.-complete. 
(2) Suppose/ is a positive point of H and g is a positive point of M. Then 

0 ^ fg — f(g A ne) = f(g — g A ne) = f(g V ne — ne). We wish to showr 

t ha t / (g V ne — ne) S (l/n)(fs V g3). Suppose x is in S. If g(x) ^ n, then 
(g V ne — ne)(x) = 0 and f{g V ne — ne)(x) = 0 S (l/n)(f3 V g*)(x). If 
g(#) = w> then either f(x) ^ g(x) or g(x) ^ / ( # ) . If / (x) ^ g(x) then, 
/(g V ne - ne)(x) ^f(x) S (l/n)f(x) S (l/n)(f V g3)(x). If g(x) è / (* ) , 
then /(g V rce - »e) (*) ^ g2(x) ^ (l/w)g3(x) ^ (1/n) (g3 V f)(x). Thus /g 
is in F, since/(g A we) is in F for all n by (1). 

As if and M are lattice ordered (2) is sufficient to show that for any point 
/ of H and any point g of M, fg is in F. Therefore if is a subset of M. 

Now suppose each of / and g is a positive point of M and h is a point of F 
such that 6 ^ h ^ / . The sequence {g(h A ne)} converges relatively uni-
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formly to gh with regulator/3 V g3. Thus gh is in V. Similarly if hp is in V for 
some positive integer p, as 6 = hp

 = fp, hpg is in V for each point g of M. To 
show that h is in M it is sufficient to show that hp is in V for each positive 
integer p, because, then {h} KJ M would generate a Vulikh algebra, which 
would contradict the maximality of M unless h belongs to M. 

Suppose p is a positive integer such that hp is in V. Then 6 = hp+l — 
hv(h A ne) = hPQi - h A ne) = {l/n)jv+2 and F + 1 is in V. Thus, by induc
tion hp is in F for each positive integer p, h is in M, and ikf is an ideal. 

The following is a generalization of Theorem 1. (Note that in the following 
M is assumed to contain the limit of a relative uniform Cauchy sequence 
where the regulator may be in V, not just in M.) 

THEOREM 3. Suppose (F, e) is a Vulikh algebra and M is a s.r.u.-complete 
sub-Riesz space of V containing e. Then (M, e) is a Vulikh algebra. 

Proof. Suppose each of/ and g is a positive point of M. Let N be the ideal of 
M generated by e. By Theorem 1, (TV, e) is a Vulikh algebra. If g S e, 
( / A ne) g is in M. Hence 

0 ^fg - ( / A ne) g = fg - ( / + ne - / V ne)g 

= ( / V ne — ne)g ^ / V ne — ne ^ (l/n)f2 

and fg belongs to M. If it is not assumed that either / or g is in N, then 
f{g A ne), n = 1, 2, 3, . . . , is a sequence of points of M converging relatively 
uniformly to fg with regulator / 4 V g4. 

The following theorem gives a necessary and sufficient condition for (F, e) 
to be a Vulikh algebra under the assumption that V is s.r.u.-complete. Three 
sufficient conditions for (V, e) to be a Vulikh algebra were known before. One 
was that V be c-complete and have a strong unit [7]. This is generalized by 
Theorem 3 of this paper. Another was that V be complete and that every 
pairwise disjoint subset of the positive cone of V have a supremum (see 
[5] or [6]). Neither of these conditions are necessary. The condition given 
here is much weaker than either of these. Conrad and Diem [1, Theorem 5.1] 
give a necessary and sufficient condition that (F, e) be a Vulikh algebra with 
no further assumptions than that F is an Archimedean Riesz space and e is 
a weak unit. The following condition appears to be different in nature from 
theirs. 

THEOREM 4. Suppose V is s.r.u.-complete. Then (F, e) is a Vulikh algebra 
if and only if for each point f ^ 6 of V there is a point g of V such that 
il/n)g ^ \f-fAne\,n = 1 , 2 , 3 , . . . . 

Proof. If (F, e) is a Vulikh algebra then / 2 has the property required of g. 
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Suppose that for each positive / such a g exists. Then 

(l/n)g ^f - f Ane, 

(l/n)g ^ / V ne — ne, 

(l/n)g ^ / — ne, and 

g ^ nf — n2e. 

Suppose that / è 5e. Then f(x) = ft • n where n is a positive integer and 
3/2 ^ ft ^ 2. So g(x) è nkn - n2 = (ft - l)n2 = (ft - l)(f(x)/k)2 = 
((ft - l)/ft2)/2(*0 ^ (2/9)/2(x). If / J 5e, there exists an element g of F 
such that g è (2/9)If V 5e)2 è (2/9)/2. Thus for each / ^ 0, there is a 
point d of F such that d ^ /2 . Since d is a positive point of F, the same process 
can be applied to d and hence there is a point r of F such that r ^ d2 ^ f4. 

Then suppose each of ft and ft is a positive point of F. Let 5 be a point of F 
such that j §: ft4 and let £ be a point of F such that t ^ ft4. By Theorem 1, 
(ft A we) (ft A £e) belongs to F. The sequence (ft A ne) (ft A £e), £ = 1 ,2 , . . . , 
converges relatively uniformly to (ft A ne)ft with regulator s V L The sequence 
(ft A we)ft, w = 1 , 2 , . . . , converges relatively uniformly to ftft with regulator 
s V t. 
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