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ON NORMAL SUBGROUPS OF DIRECT PRODUCTS

by F. E. A. JOHNSON
(Received 10th April 1989)

We investigate the equivalence classes of normal subdirect products of a product of free groups F,, x -+ x F,,
under the simultaneous equivalence relations of commensurability and conjugacy under the full automorphism
group. By abelianisation, the problem is reduced to one in the representation theory of quivers of free abelian
groups. We show there are infinitely many such classes when k=3, and list the finite number of classes when
k=2.

1980 Mathematics subject classification (1985 Revision): 20E07; 20 E 36.

0. Introduction

Two subgroups H,, H, of a group G are said to be conjugate in the generalised sense
when a(H,)=H, for some automorphism a of G. Similarly, we may consider generalised
commensurability, by which we mean that a(H,) n H, has finite index in both «(H,) and
H,. In this paper, we investigate the generalised conjugacy and commensurability classes
of normal subgroups in a direct product of free groups; let F, denote the free group
with basis (X); <;<4» and for 0<d <min {n,m}, let N(n,m,d) be the subgroup of F,xF,,

(Xi, X)) 1=isd

(X, 1) d+1=<isn
generated by

(1,X;) d+1Zj=m

(X,,1) 1si<jsd

where X; is the commutator X ;=X X X7 'X;'. Then N(n,m,d) is a finitely generated
normal subgroup, with infinite index when d21; it is, moreover, a subdirect product;
that is, it projects epimorphically onto each factor.

We will show that, up to generalised commensurability, these are the only normal
subdirect products.

Theorem A. Let N be a normal subdirect product of F,x F,, where n, m>2. Then
there exists a unique integer d with 0 <d <min {n,m} such that, for some automorphism a
of F,x F,, a(N) has finite index in N(n,m,d).
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By contrast, matters become more complicated when the number of factors exceeds
three. ’

Theorem B. The set of generalised commensurability classes of normal subdirect
products in F, x---x F,_is infinite when k=3 and each n;22.

We note that the presence of the automorphism « in Theorem A is essential; the set of
commensurability classes is infinite when k=2 (see, for example, Remark (2.5) below).
The number of generalised commensurability classes is also infinite for a product of two
Surface groups [3].

Theorem A also allows us to give the following description of finitely generated
normal subgroups of F, x F,,.

Corollary C. A nontrivial finitely generated normal subgroup H of F, x F,, has either
finite index in one of the factors, or finite index in a subgroup isomorphic to N(m,,m,,d),
where m,=1+j{n,— 1), and j, is the index of the projection of H in F,_.

The following consequence of Theorem A seems, despite its naturality, to have gone

previously unremarked.

Corollary D. Let G,,...,G, be an arbitrary sequence of groups and let H<1G x --- x
G, be a normal subgroup. Then H is finitely generated if and only if each n{H) is finitely
generated where n;: G, X -+ x G,— G, is the projection onto the ith factor.

The author is indebted to his colleague. Dr A. H. Schofield for some invaluable
discussions on the subject of “quivers”.

1. Product structures and abelianisation

Let G,,...,G, be groups and let n;: G, x - x G,—G; denote the ith projection. We
denote by S(G,,...,G,) the set of normal subdirect products of G; x - x G;; that is

k
N:N is a normal subgroup of [] G;

S LGY)= o
(Gl’ B k) and TC[(N)=G| for eaCh i

The following proposition is elementary.

Proposition 1.1. Let ¢;: G;— H; be surjective group homomorphisms for 1<igk. If N
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is a normal subdirect product of H,x --* x H,, then (¢, % - x @) YN) is a normal
subdirect product of G, X -+ x G,.

In particular, when [];:G;,—G? is the abelianisation map, we get a function
t‘“:S(G‘;”,...,G:”)—»S(Gl;...,G,‘).

Proposition 1.2. For any groups G,,...,G,, the map

0- 1:8(G%,...,G) > S8(G,,...,G,) is bijective.

Proof. Since []~' is clearly injective, we show that it is also surjective. Write

G, x - x G as an “internal direct sum” G=G,®--@®G,, in which G, centralises G, for
i#j. Then the commutator subgroup is also an internal direct sum [G,G]=[G,,G,]1®
-+-®[G,,G,]. When H is a normal subdirect product in G, we claim that each
[G:,G 1< H. To see this, fix i: let x;, y;€ G, and choose he H such that n{h)=y,; that is,
h is a product h=h,..., h, with h;e G, for j#i, and h;=y;.

Since (~}~, centralises G, for i#j, and H is normal in G, x;yx; 'y; '=xhx; *th™ '€ H, so
that [G;, G;]< H. Hence also [G,G] <= H. Thus

H=H[G,G1=0""0(H)
so that [:‘ ~! is surjective, and hence also bijective. a

Put Aut(G,,...,G,)=][]t- Aut(G)), considered as the group of product-preserving
automorphisms of G, x---xG, in the obvious way. We consider the relation of
conjugacy of subdirect products under Aut(G,,...,G,), strengthened by taking commen-
surability into account. Recall that two subgroups 4, B are commensurable when A N B
has finite index in both A and B: when A and B are normal subgroups, this is
equivalent to saying that both 4 and B have finite index in 4B. We obtain an
equivalence relation ’~’ on $(G4,...,G,) as follows;

N,x~N, ifand only if «(N,)is commensurable with N, for some ac Aut(G,,...,Gy);
we write

%(Gy,...,G)=8(Gy,...,G)/=.
Let F, denote the free group of rank n. Abelianisation gives a map
B:F,, x  xF, > Zm@® - ®Z™

and a bijection
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0:S(F,... Fa)-s@m, ... 2%,

namely, the inverse of the map of (1.2). Let {(N) denote the class of NeS(G,,...,G,) in
%(G,,...,Gy). If e Aut(F,,...,F,), let a® e AutZ™,...,Z™) denote its abelianisation. If
H and K are subgroups of F, x---xF,, then

[y G A e T K STH; H 0 a(K)]
so that the mapping ¥:4(F,,,...,F, )€ (Z",...,Z™)

W(NY =<

i1s well defined.

Theorem 1.3. Y:4(F,,,...,F,)>%(Z",...,Z"™) is bijective.

Proof. For Ne¥(Z",...,Z™), ‘PD“(N):(N), so that ¥ is surjective. If N,, N, are
commensurable in Z"@---@Z"™, then ] Y(N,), D“(N ,) are commensurable in
F, x---xF,; if N, is conjugate to N, under Aut(Z™,...,Z™), it follows from the
Nielsen-Magnus Theorem ([7,8]) on lifting automorphisms from Z" to F,, that

| ~!(N,) is conjugate to [:l"‘(Nz) under Aut(F,,...,F,). Thus ¥ is injective. 0

2. Subdirect products of abelian groups

In this section, we consider generalised commensurability classes of subdirect products
in A, ®---@®A,, where (A4)), <;<, are finitely generated free abelian groups. We work in
the category Ab{k) of diagrams of homomorphisms of abelian groups over the diagram
scheme {*,k).

{*,k): the directed graph with vertex set {,1,...,k), having arrows

b, 57

for 1<i<k. (xk) is the dual of the “k-subspace quiver” ([2,4]). Subdirect products N
of A,®--- @A, may be considered as objects in Ab{k) of the form

A, A, A,
M /¢k
N(#)

in which each ¢, is surjective, and the canonical morphism N(*)—@®%., A4; is injective.
When A4,,..., A, are understood, we confuse N with N(*). Such a diagram is said to be
nondegenerate when ();.;Ker(¢;) =0 for each i. We write Supp (N)={j: 4;#0}.

Ab{k)> has coproducts, defined by taking coproducts at each vertex. Similarly, one
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gets exact sequences in Ab{k) by taking sequences which are exact at each vertex. Thus
for subdirect products in particular, one obtains a coproduct pairing

D:S(Ah-",Ak) X S(Bh"-,Bk)—)S(Al@Bla---9Ak®Bk)

by means of N (] M =y(N @ M) where

t= =

o()o()-dyaen

is the obvious shuffling isomorphism.

An abelian subdirect product Ne S(A,,...,A,) gives rise to a canonical exact sequence
as follows; let N;=N n A,, and let N(i) be the subdirect product with N(i}(*)=N,;= N(t),,
¢;=1d, and N(z), 0 for i#j; let N be the subdirect product in which N(x)=
N/N,+---+N,); N;=A/N;; and where ¢, N(x)=N, is the map induced from ¢;:N—
A;. The following is clear

Proposition 2.1. Each Ne S(A4 1,...,A,‘)~decomposes functorially as an exact sequence
0-N(1)J---ON(k)=>N—-N -0 in which N is nondegenerate, and Supp (N(i)) = {i}.
We define
r{N)=rkAN(@@)(*)) (=rkAN)),
d(N)=rk(N(*)) (=rkAN/N,+ - +N)).

When k=2, the triple (r,,r,,d) is a complete set of invariants for the generalised
commensurability class of N; to clarify the statement, consider the following subdirect
product diagrams:

{0 )N
1~

Theorem 2.2. Let A,, A, be free abelian groups of finite rank, and let Nc A, @A, be

G
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a subdirect product: if N is maximal in its commensurability class then there is an
isomorphism in Ab{2)

N~ TT(N) D TVZZ(N) D Ad(N)‘

Proof. The hypothesis that N be maximal in its commensurability class is clearly
equ1valent to requiring that (4,@A4,)/N be torsion free. Hence N;=A/N, and
N(*)=N/(N,+N,) are free abelian. Moreover, ¢, N(x)—N, is surjective; since N is
nondegenerate and k=2, each &, is also injective. (This fails for k=>3.) Hence N is a
diagram of isomorphisms of free abelian groups;

N, N
i N

from which it follows immediately that N =A™, since d(N) =rk,(N(x)).

Since N is torsion free, we may find a complementary subgroup A(N) to N;@®N, in
N; N=N,®N,®A(N). The restriction of each ¢; to A(N) is injective. Writing
C;=¢{A(N)), we see that A;=N,@®C,, and that N decomposes as a direct sum thus;

N=N1)®NQ)®A

where
C, C,
A= ~ N A9V
i NG /,52 > N AN,
A(N)
The result follows, since N(i) =™, O

If NcA, @A, is a subdirect product, rk;(A;)=r{N)+d(N). We may rephrase things
in the following way.

Corollary 2.3. If N is a subdirect product of Z"®Z", its class in €(Z",Z1") is
completely specified by the single integer-valued invariant d(N) which takes arbitrary
values in the range 0 <d(N) <min {m, n); in particular, €(Z™,Z") is finite.

By contrast, we have:

Proposition 24. If k=3, and each n;2> 1, then €(Z™,...,Z™) is infinite.
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Proof. Let (a,b): Z>—Z be the mapping (a,b)(x, y)=ax + by, where a, be Z. For each
integer n>1, the diagram

Z zZ .z
\
D(n)= (1,0) 0,1) _(1,n)

describes a nondegenerate subdirect product, maximal in its commensurability class, and
an easy computation shows that D{n) is not isomorphic to D(m) in Ab{3) unless n=m.
Thus 4(Z,Z,Z) is infinite: by imbedding {,3) in {x,k)>, for k>3, and adding suitable
degenerate summands, one sees that ¥(Z",...,Z"™) is infinite for k=3, ]

Remark 2.5. Observe that the set of commensurability classes obtained from
S(Z™,...,Z™) is always infinite, even for k=2: for example, two maximal subgroups of
rank 1 in Z@Z typically intersect in {0}; one obtains a corresponding statement for
S(F,,,...,F,) from (1.2). Thus the presence of the automorphism a in Theorem A is
essential.

One may compare this with the analogous problem for finite dimensional rational
vector spaces; then “commensurability” is the same as “identity”. When k=>4, (x,k) is
not the Dynkin diagram of any simple Lie group, and ¢(Q",...,Q") is infinite [2,4].
However, €(Q",...,Q"™) is finite when k<3. €(Q™,Q") is described by a triple in a
manner analogous to €(Z",Z™), on replacing ‘rk;’ by ‘dimg’; similarly €(Q™, Q" Q™)
is described by an 8-tuple, corresponding to the multiplicities of various indecomposable
diagrams over {*,3). We note, however, that (-)®,Q:4(Z™,...,Z™)~»%(Q",...,Q™)
fails to be injective for k=3.

3. Normal subgroups of a direct product of free groups

Our results so far depend for their expression on a particular product structure. In a
direct product of free groups F,, x---xF, with each n,=2, however, the product
structure is unique up to permutation of factors with the same rank ([S, Theorems 2.1,
2.7]), so for these groups, the notion of subdirect product is an intrinsic one. Indeed, the
following is true (see, for example, [5, Corollary 2.9]).

Proposition 3.1. The group []f-,Aut(F,) of product-preserving automorphisms of
F, x--xF, is a normal subgroup of finite index in the full automorphism group
Aut(F,, x -+ x F, ) when each n, = 2.

Our results thereby assume an absolute character:
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Theorem 3.2. The set 4(n,,...,n) of generalised commensurability classes of normal

subdirect products of F, x::+xF, is infinite when k=3 and finite when k=2, provided
that each n, =2,

Proof. Assume that each n;=2. Then %(n,,...,n,) is a quotient of €(F,,,...,F,) by
the finite group

k
®=Aut(F, x - xF,,k)/]—[ Aut(F,).
i=1

However, by (1.3), (2.3) and (2.4), ¢(F,,,...,F,) is finite when k=2, and infinite when
k=3, whence the result. 0O

In the case of two factors, F,x F,, we can give representatives for the generalised
commensurability classes: we have bijections

G(F,, F)—2>%(Z",2™—{0,1,...,min {n,m}}.
We define the diagonal rank 6(N) of a normal subdirect product, N, of F,x F,, by
I(N)=d(W{N)).
All ‘possible values of & in the range 0<d<min {n,m} can occur. We may see this
explicitly as follows; for 0<d<min{n,m}, let N(n,m,d) be the subgroup of F,xF,
generated by:
(Xo X)(ASisd) (X, 1) (d+1Zisn)(LX)(d+15j<m);
Xip D(1=i<j=d)

where {X,,...,X,} denotes a free basis for F,, and X;; denotes the commutator
Xi_i:XinXi_lXj_l.

Proposition 3.3. N(n,m,d) is a normal subdirect product of F,xF, with
H(N(n,m,d)=d.

Proof. Write N=N(n,m,d); £&;=n,=(X,;, X)) 1ZiLd;

L= X, )(d+1Zin);, n=(L,X)(d+15jSm);
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T=(X;, VA gi<jsn), 1=, X, )(1Sr<s<m),
By definition, each &; n,e N, and it is easy to see that &Y, n™eN for each i j,r,s with
1Si<jsn and 1<r<ssm. If W=W(X,,...,X,) is a word in {X,,...,X,}, let
w=w(&,,..., &) denote the corresponding word in {&,,...,&,}. Then

wéeliw ™ =(WX ;W 1, 1)

Since [F,, F,] is generated by elements of the form WX, ;W ™!, we see that [F,,F,}x {1}
©N. Replacing &, &/ by n,, 0", we see, by symmetry, that {1} x [F,,, F,]J<N. Hence
N= t] “'0(N), where

():F, x F,»Z'®Z"
=

is the abelianisation map, so that N is normal. N is obviously a subdirect product, and
O(N) clearly takes the value d. O

If n#£m, Aut(F,) x Aut(F,)=Aut(F,x F,), whilst Aut(F,)x Aut(F,) has index 2 in
Aut(F,x F,), with the swap involution representing the nontrivial coset. Since each
N(n,n,d) is invariant under the swap, we obtain:

Theorem 34. If 2<m=<n, F,xF,, has precisely m+1 generalised commensurability
classes of normal subdirect products: in particular, if N is a normal subdirect product of
F,xF,, there exists a unique integer d with 0<d<m such that, for some automorphism o
of F,x F,,, a(N) has finite index in N(n,m,d).

Proof. Observe that [J(N(n,m,d)) is maximal in its commensurability class in
Z2"®Z", so that N(n,m,d) is similarly maximal within F,x F,,. Note also that N(n,m,d)
is normal in F,x F,. If N is a normal subdirect product of F,x F,, it follows from (1.3),
(2.3) and (3.3), that one can find aeAut(F,x F,) such that a(N) and N(n,m,d) are
commensurable. By maximality of N(n,m,d), «(N) is contained with finite index in

N(n,m,d). O

In general, a normal subgroup H of F, xF,, is a normal subdirect product of
n,(H) x n,(H), where =, denotes projection onto the rth factor; by the Nielsen—Schreier
Theorem ([6, p. 104]), n,(H) is either trivial or free; we obtain:

Corollary 3.5. A nontrival finitely generated normal subgroup H of F, x F,, has either
finite index in one of the factors, or finite index in a subgroup isomorphic to N(m,,m,,d),
where m,=1+j/(n,—1), and j, is the index of the projection of H in F, .
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Finally, we observe:

Corollary 3.6. Let G,,...,G, be an arbitrary sequence of groups and let H<1G, x -+ x
G, be a normal subgroup. Then H is finitely generated <> each n{H) is finitely generated
where n;: G, X - x G,—G; is the projection onto the ith factor.

Proof. The implication “=>" is trivial. In proving “<", one may, by projection,
reduce the problem to that for a subdirect product; that is, it suffices to prove the
following for each k=2:

P(k). let Gy,...,G, be finitely generated groups, and let H be a normal
subdirect product of G; x --- x G,. Then H is finitely generated.

Suppose that k=2; in the special case where G,, G, are free, the conclusion follows
from (3.4), since H is isomorphic to a subgroup of finite index in a group of the form
N(n,m,d), which is finitely generated by definition. In general, let ¢;: F,—+G; be an
epimorphism from a finitely generated free group F, Then (¢, x ¢,) '(H) is a normal
subdirect product of F, x F, hence is finitely generated by the special case above. Thus
H is also finitely generated, being an epimorphic image of (¢, x ¢,) ™ *(H).

Suppose that H is a normal subdirect product of G, x - xG,,;. Let K be the
projection of H in G, x -- xG,,,; K is a normal k-fold subdirect product, hence is
finitely generated, by induction, and H is a normal subdirect product of G; x K, so is
finitely generated, by 2(2). O

The groups N(n,m,d) are not finitely presented unless d=0. This follows easily from
Theorem 2 of [1]. They also provide examples of Zariski dense, algebraically irreducible
discrete subgroups of SL,(R) x SL,(R), both of whose projections are discrete. Thus the
simple picture provided by Borel’s Density Theorem ([9, Ch. V]) breaks down for
Zariski dense subgroups of infinite covolume.
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