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1. Introduction

Milne-Thomson's well-known circle theorem [1] gives the stream func-
tion for steady two-dimensional irrotational flow of a perfect fluid past a
circular cylinder when the flow in the absence of the cylinder is known.
Butler's sphere theorem [2] gives the corresponding result for axially
symmetric irrotational flow of a perfect fluid past a sphere. Collins [3]
has obtained a sphere theorem for axially symmetric Stokes flow of a
viscous liquid which gives a stream function satisfying the appropriate
viscous boundary conditions on the surface of a sphere when the stream
function for irrotational flow in the absence of the sphere is known.

In each of these theorems, the stream function satisfies an equation
which is a special case of the iterated equation of generalized axially sym-
metric potential theory (GASPT). If r, d are polar coordinates in the plane
of the flow for two-dimensional flow or in any meridian plane in axially
symmetric flow (6 being measured from the axis of symmetry), the operator
Lk can be defined as

8 \ ^P* 8*

where fi = cos 6. The iterated equation of GASPT is then

(2) m) = o.
In each of the three theorems mentioned above the stream function

satisfies an equation obtained from (2) by giving k and n special values:
n — 1, k = 0, — 1 for Milne-Thomson's and Butler's theorems respectively,
n = 2, k = —1 for Collins's theorem. In this paper a generalized circle
theorem which holds for equation (2) is given and this includes these three
theorems among its special cases.

Collins [4] has also given a sphere theorem in which the stream function
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for axially symmetric Stokes flow past a sphere is given in terms of the
stream function for the corresponding Stokes flow in the absence of the
sphere. This theorem can be extended so that it applies to solutions of
equation (2) for general k and with n = 2, 3, 4 and it is conjectured that
the theorem can be extended further to a general value of n.

These circle theorems give solutions of equation (2) satisfying given
boundary conditions on the circle r = a and valid in the region outside this
circle; there are corresponding theorems which hold in the region inside this
circle.

Circle theorems can be regarded as applications of the method of images
which is more easily applied when the rigid boundary involved is a straight
line rather than a circle and theorems applicable to a region bounded by a
rigid straight line boundary are also obtained.

A discussion of the use of these circle theorems in specific physical
problems is outside the scope of this paper but some well-known examples
are mentioned briefly in the concluding section.

2. Generalized circle theorem

THEOREM 2.1. If the functfon fo{r, 6) is a solution of the equation
LM(f) = 0 which has all its singularities outside the circle r = a, then a
solution fn{r, 6) of the equation L£(/) = 0 which has the same singularities
outside r = a as fo(r, 6) and which satisfies the conditions

(3) /„(«, 9) = | ? (a, 6) = • • • = ^ (a, 6) = 0

is given by

(4) fn(r,6)=fo(r,0)-f*(r,0)

where

and An(g) is defined as follows:

for k # 0, AUI-) ^ |

The expression for fn(r, 0) can be obtained, in simple cases at least,
by assuming a solution of the form

n - l oo /r\-k+2>~t
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each term of which is known to be a solution of equation (2) (theorem 5.7
of [5]). The boundary conditions (3) lead to equations which are linear
relations between

/„(«, 0), | ? (a, 0) • • -.

Equating the coefficients of each of these terms in each of the equations
leads to equations which can be solved for the coefficients Atf at any rate
when n is a small integer. This is essentially the method used by Collins
[3] in the case n = 2, k = —1 .

The general solution given by (4) and (5) is suggested by the form of
the solution for n = 2, 3, • • • and it remains to prove that this is the required
solution. The proof falls into three parts.

(i) fn(r, 8) is a solution of the equation -£.£(/) = 0.
In fact, each term in the expression for fn(r, 0) is a solution of the

equation (2). The first term, fo(r, 6), being a solution of Lk(f) = 0, is
certainly a solution of the iterated equation. The general term in f*(r, 0)
involves |M*_x_t(|) where f replaces 1—r2/a2. For k =£ 0, this is a poly-
nomial in £ of degree »—1 while for k = 0 it is equal to f*. Since t ^ »—1,
f'.d£_i_((f) is in both cases a polynomial in £ of degree at most n—1.
Replacing f by 1— ra/a2 gives a polynomial in r2/a2 of degree at most n— 1
which will be denoted by Pn-i{r2/az). It follows that the general term in the
expression (5) for f* (r, 6) is of the form

which, by theorem 5.7 of [5], is a solution of L"(/) = 0.

(ii) fn(r, 0) has the same singularities outside r = a as fo(r, 6).

Since the singularities of fo(r, 6) all lie outside the circle r = a, it is
clear that those of f*(r, 0) all lie inside this circle so fn(r, 6) and fo(r, 0)
have the same singularities outside the circle.

(iii) fn(r, 6) satisfies the boundary conditions (3) on r = a.
It must be proved that

for 0 ^ s ^ n—1. It is obvious that ft(a, 6) = fo(a, 0) so fn(a, 6) = 0
as required but to evaluate the derivatives of fn(r, 6) at r = a it is helpful
first to separate each term in the expression for f*(r, 6) into two parts.

It is easily seen that for |£| < 1,
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where Rm+i(£) is used here (and later) to denote a function of £ which
vanishes, together with its first m derivatives, when £ = 0.

In a small neighbourhood of the sphere, |1—r2\a2\ < 1 so

Since the general term of f*(r, 0) already contains a factor (1—r/a)*,
fn(r, 0) can be written in the form

from which it is again apparent that fn(a, 0) = 0.
If (6) is now differentiated with respect to r, it is easily shown that the

result is to replace /0 everywhere it occurs in (6) by dfjdr, to reduce by one
the number of terms in the sum and to change the remainder term from
Rn(l—rja) to Rn_1(l—rla). This process can be repeated so that for

Since i?B_,(l—r\a) = 0 when r = a for 0 5g s 5S «—1, it is apparent that
fn(r, 0) and its first n—1 derivatives with respect to r all vanish when
r = a.

A similar proof can be given for the corresponding internal sphere
theorem:

THEOREM 2.2. If the function /0(r, 0) is a solution of the equation
Lk(f) = 0 which has all its singularities inside the circle r = a, then a
solution of the equation L%(f) = 0 which has the same singularities inside
r = a as fo(r, 6) and which satisfies the condition (3) is given by (4) and (5).

3. Reflection in a straight line boundary

A general theorem applicable to a straight line boundary can be ob-
tained which corresponds to the general circle theorem just proved. The
simplest examples of such a theorem are well-known (e.g. in classical
hydrodynamics or electrostatics) and Collins [3] has given the theorem for
axially symmetric Stokes flow of a viscous fluid.

In discussing the solution of equation (2) in a half-plane it is natural
to use rectangular cartesian coordinates (a;, y) chosen so that x = r cos 6,
y = r sin 0 and the axis of symmetry is the axis y = 0. The half-plane
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under consideration will be taken to be the region x S: 0. In these coor-
ordinates, the operator Lh becomes

8* 8* k 8
L + +

THEOREM 3.1. / / the function fo(x,y) is a solution of the equation
Lk(f) = 0 which has all its singularities in the region x > 0, then a solution
fn{x, y) of the equation L"(/) = 0 which has the same singularities in
x > 0 as fo(x, y) and which satisfies the conditions

(7) /.(O, y) = ^ (0, y) = • • • = ^ (0, y) = 0

is given by

(8) fn{x,y)=h{*,y)-ti(*,y)

where

(9) it^y) = l%^A-x>y)-
«=o *' ox

As in the case of the circle theorem, the solution fn(x, y) can be found,
for small values of n, by assuming a solution of appropriate form and using
the boundary condition to deduce the unknown coefficients. Once the general
solution given by (8) and (9) has been recognised it remains only to verify
that it is the required solution.

In this case it is evident from Theorem 2.5 of [5] that fn(x, y) given by
(8) and (9) does satisfy the equations ££(/) = 0 and it is clear that fn(x, y)
and fo(x, y) have the same singularities in the region x > 0. As for the
boundary conditions (7) on x = 0, it is seen at once that /„((), y) = 0.
When fn(x, y) is differentiated with respect to x, the resulting expression
can be written as

df 8f n~2 2*

Tx {x> *> = £ I*- * > - 2 T\
where the remainder term Rn-i(x) vanishes together with its first n—2
derivatives when x = 0. Thus the result of differentiation of fn(x, y) with
respect to x is to replace /„ everywhere it appears by 8f$\8x, to reduce by
one the number of terms in the sum and to introduce a remainder term of
the form •??„_!(#). Since differentiation of Rn_x\p) leads to a function of the
form Rn-z{x), repeated differentiation of fn(x, y) gives

d'f d'L "- '-1 2*
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Since i?B_,(0) = 0 for 0 <: s ^ n—1, it follows that fn(x, y) and its first
n— 1 derivatives vanish when x = 0.

4. Further generalization of the circle theorem

Collins [4] has obtained a sphere theorem for Stokes flow which takes
as its starting point a known stream function for Stokes flow which is a
solution of the equation Lt-iif) = 0 b u t need not be a solution also of the
equation L_^(xp) = 0 as is required for his original theorem [3]. Collins's
result is easily extended to give a theorem which applies to solutions of the
equation !,£(/) = 0 for any value of k and further extension to the general
iterated equation L\(f) = 0 can be carried out, solutions having been
obtained for the cases n = 2, 3, 4.

The general problem is as follows: given a solution fo(r, 8) of the equa-
tion L%(f) = 0 which has a known distribution of singularities all of which
lie outside the circle r = a, to find a solution fn(r, 8) of the same equation
which has the same singularities as fo(r, 8) in the region outside r = a and
which satisfies the condition that /„ and its first w—1 derivatives with
respect to r vanish on r = a. (There will be a corresponding problem for
the case in which the singularities of fo(r, 8) are all inside r = a.)

When n = 1, the problem is solved by theorem 2.1. When n = 2,
the result (given by Collins [4] for the special case k == — 1) is

r2 / r2\2 r/r\~k /a2 \1(10) /,(,, 8) = F2(r, 6)- - ( l - - ) Lk [ (-) /o ( - . o)J

where F2(r, 0) is formally identical with the solution f2(r, 6) given by (4)
and (5) of theorem 2.1 in the case n = 2 but with the fo(r, 8) which appears
in that expression now having the meaning associated with it for this
theorem, namely a solution of L\(f) = 0 which need not be a solution of
Lk(f) = 0.

When n = 3, the result is

where F3(r, 6) is defined in the same way as F2(r, 0).
In both (10) and (11) (and in the corresponding solution for n = 4
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which has not been quoted) it is clear from theorem 5.7 of [5] that these
solutions reduce to those given by theorem 2.1 when fo(r, 0) is a solution
ofLs(/) = 0.

A proof of the case n = 2 for general k can be modelled on Collins's
proof [4] for the case k = — 1 . The procedures used to obtain the solutions
for n = 3 and n = 4 could be used to obtain the solutions for higher values
of n and presumably it would be possible eventually to anticipate the form
for general n. Once this is done, the procedures used for verifying the
solutions for the cases n — 3, 4 could be applied to verify the solution
in the general case.

The extension of the theorem from n = 2 to higher values is not im-
mediate and new features appear in the proof which are not needed when
n = 2. However, as the general result has not yet been obtained, no account
of the proof will be given.

5. Applications of circle theorems

A full discussion of the applications of these circle theorems to particular
problems is outside the scope of this paper but some examples of the first
theorem (2.1) will be given which lead to well-known results.

As mentioned in the introduction, the stream function for irrotational
flow of a perfect fluid or Stokes flow of a viscous fluid satisfies equation (2)
with n = 1, 2 respectively and the flow in each case is two-dimensional or
axially symmetric according as k = 0, — 1 . For flow past a circular cylinder
or sphere, the stream function satisfies the boundary conditions (3) in
each case.

The stream function for an undisturbed uniform flow parallel to the
axis of symmetry is given by

Ur1-* sin1-* 0
*( ' • *) = !-k

and theorem 2.1 can now be used to give the stream function when the
flow is disturbed by the rigid boundary r = a. When n = 1, the theorem
gives

W* sin*-* 0 I /a\«-*l
^•6)= l-k V-ir) )

and putting k = 0, — 1 gives the results obtained from Milne-Thomson's
and Butler's theorems respectively. When n = 2, theorem 2.1 gives the
stream function for Stokes flow when a uniform stream is disturbed by the
circle r = a as
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When k = — 1 this is the familiar Stokes result for a sphere in a uniform
stream and when k = 0 the result is xp = 0. It is of course well known that
the Stokes flow problem for a circular cylinder in a uniform stream has only
this trivial solution.

Butler [2] and Collins [3] have given other applications of then-
theorems to flow problems such as the flow due to a source or dipole in the
presence of a sphere and the general theorem 2.1 can be used to derive formal
expressions which reduce to their solutions when k — — 1. When k is put
equal to 0 in these same expressions, the functions obtained are formal
solutions for the stream functions for the corresponding two-dimensional
flow problems.

For both axially symmetric and two-dimensional flow, the stream
functions obtained in this way certainly satisfy the appropriate differential
equations and the right boundary conditions on r = a. They also have the
same singularities in the region of flow as the original stream function. The
conditions at infinity however remain to be examined in particular cases
and both Butler and Collins have made reference to this aspect of the
problem. In the case of the Stokes solution obtained from (12) for the flow
past a sphere set in a uniform stream, the stream function does have the
right behaviour at infinity. However, in other cases it is more difficult to
decide on the validity of the solutions obtained and further study of these
questions is required.
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