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CENTRALIZING MAPPINGS OF SEMIPRIME RINGS 

BY 
H. E. BELL* AND W. S. MARTINDALE, III 

ABSTRACT. Let R be a ring with center Z, and S a nonempty subset of 
R. A mapping F from R to R is called centralizing on S if [x, F(x)] E Z 
for all JC E S. We show that a semiprime ring R must have a nontrivial 
central ideal if it admits an appropriate endomorphism or derivation which 
is centralizing on some nontrivial one-sided ideal. Under similar hypo­
theses, we prove commutativity in prime rings. 

1. Introduction. Let R denote a ring with center Z, and let S be a nonempty subset 
of R. A mapping F from R to R is called centralizing on S if [x, F(x)] E Z for all 
x E S; in the special case where [x, F(x)] = 0 for all x E S, the mapping F is described 
as commuting on S. Over the last fifteen years, several authors [5, 7, 8, 9, 10] have 
proved commutativity theorems for prime rings admitting automorphisms or deri­
vations which are centralizing on appropriate subsets of R. The culminating theorems 
in this series, due to Mayne [9], assert that if a prime ring R admits either a nonidentity 
automorphism or a nonzero derivation which is centralizing on some nonzero ideal U 
of/?, then R is commutative. 

Our purpose is to study comparable problems in the setting of semiprime rings, to 
study centralizing endomorphisms which are not necessarily automorphisms, and to 
explore the consequences of the assumption that our mappings are centralizing on a 
one-sided ideal. For the case of prime rings, we establish Mayne's result under the 
weaker hypothesis that our mapping is centralizing on a nonzero left ideal U. In the case 
of derivations, our result for prime rings is a direct corollary of a theorem on semiprime 
rings. In the case of endomorphisms, we do achieve a result for semiprime rings, 
but the prime case requires an additional argument involving Martindale's extended 
centroid. 

Our methods, which are somewhat different from those employed by other authors, 
make extensive use of the basic commutator identities 

(I) [x, yz] — y\x, z] + [x, y\z and [xz, y] = x[z, y] + [x, y]z 
and several well-known facts about prime and semiprime rings: 
(II) the center of a semiprime ring contains no nonzero nilpotent elements; 

(III) in a semiprime ring, the center of a nonzero one-sided ideal is contained in the 
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center of R ; in particular, any commutative one-sided ideal is contained in the center 
of/?; 
(IV) in a prime ring, the centralizer of any nonzero one-sided ideal is equal to the center 
of R; in particular, if R has a nonzero central ideal, R must be commutative. 

In addition, we require two deeper results, the first apparently due to Levitzki, and 
the second due to Martindale: 

(V) [2, Lemma 1.1] Let n be a fixed positive integer. If a ring R contains a nonzero 
left ideal / such that x" = 0 for all x E / , then R contains a nonzero nilpotent ideal. In 
particular, a semiprime ring has no nonzero nil left ideals of bounded index. 
(VI) [6] Let R be a prime ring. If a, b are elements of R with axb = bxa for all 
x E R, and if a =£ 0, then b = \a for some X in the extended centroid of R. 

Following established practice, we shall on occasion use the symbols xF and SF to 
denote the images of elements and subsets under the mapping F. 

2. Results on Centralizing Endomorphisms. We being with two lemmas, both 
extending results of Mayne [8, 9]. 

LEMMA 1. Let T be an endomorphism of the prime ring R, and let U be a nonzero 
left ideal of R. Then 

(i) if uT = ufor all u E U, T is the identity map on R; 
(ii) ifT is one-to-one on U, it is one-to-one on R. 

PROOF, (i) For arbitrary r E R and u E U, ru = (ru)T = rTuT = rTu\ hence 
(r — rT)U = 0 and therefore r = rT. 

(ii) Observe that (ker T)U Ç (ker T) n U = {0}; and since U ± {0}, ker T = {0}. 

LEMMA 2. Let U ¥= {0} be a left ideal of the semiprime ring R. If T is an endo­
morphism of R which is centralizing on U, then T is commuting on U. 

PROOF. Polarizing the condition that [x7 x
T] E Z for all x E U, we obtain 

(2) [x, yT] + [y, xT] E Z for all x,y E U. 

Replacing y by x2, we then get 2xT[xy xT] + 2x[x, xT] E Z for all x E U; and since 
the second summand commutes with x, we have 2[xr[x, xT], x] = 0, from which it 
follows that 2[x, xT]2 — 0 for all x E U. Since the center of a semiprime ring contains 
no nonzero nilpotent elements, we conclude that 

(3) 2[x,xT] = 0 for all x E U, 

and hence 

(4) 2([x, yT] + [;y, xT]) = 0 for all x,yEU. 

Making use of (2), we can show easily that for all JC, y E U, 

[xy + yx, xT] + [x2, yT] = 2x([x, yT] + [y, xT]) + 2[x, xT]y\ and applying (3) and 
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(4), we get the crucial identity 

(5) [xy + yx, xT] + [x2, yT] = 0 for all xyy E U. 

For x E U, take y = xTx2 in (5), thereby obtaining 

(6) (xx7 4- x7x)[x2, xT] + x 7 7 ^ 2 , xTxT] + [xxT + x 7x, xT]x2 

+ [x2, J C 7 7 ] * 7 / - 0. 

Noting that [x2, X 7 ] = x[x, xT] + [x, xT]x = 2x[x, xT] = 0, we now get 

(7) [xxT + x7x, xT]x2 + [x2, xTr}xTxT = 0 for all x E U. 

But [xxT + x 7x, JC7] = [[JC, JC7] + 2x7x, JC7] = 2[x7x, JC7] = 2x7[x, JC7] = 0, so from 

(7) it follows that 

(8) [JC2, J C 7 7 ] / / = 0 for all JC E U. 

On the other hand, taking y = / J C in (5) yields [xxTx + x7xx, / ] + [ / , x77^7] = 0, 

hence [([JC, JC7] + 2/JC)JC, JC7] + / 7 [ J C 2 , JC7] + [JC2, J C 7 7 ] / = 0, and finally 

(9) [JC, X 7 ] 2 + [JC2, J C 7 7 ] / = 0 for all JC E U. 

From (9) it follows that w = [JC2, X 7 7 ] / is central, and from (8) that w2 = 0. It is now 

apparent from (9) that [JC, XT]4 — 0, and the absence of nonzero central nilpotent 

elements implies that [x, / ] = 0 for all x E U. 

THEOREM 1. Let R be a semiprime ring and U a nonzero left ideal ofR. Suppose that 

R admits an endomorphism T which is one-to-one on U and centralizing on U; suppose 

also that the left ideal Q = U H T~\U) H T~2(U) H T'\U) is nonzero and that T 

is not the identity map on Q. Then R contains a non-zero central ideal. 

PROOF. In view of Lemma 2, we have [x, x7] = 0 for all x E U — a condition which 

polarizes to 

(10) [x, / ] = [x7, y] for all x,yEU. 

Substituting xy for y and applying (10), we then get 

(11) (x - x7)[x7 , y] = 0 for all x j G U\ 

and replacing y by wy for w E U yields (x — xT)U[xT, y] = 0 for all x, _y E U, so that 

(12) (x - xT)RU[x\ y] = 0 for all x,yEU. 

Now choose a family ÇP — {Pa\a E A} of prime ideals of R for which HPa = {0}; 

and let P denote a fixed one of the Pa. From (12) it follows that for each x E U, either 

(i) x - x7 E P, or 

(ii) U[x\ y] ÇP for all y E U. 

Define U{i) to be the set of all x E U for which (i) holds and U{n) the set of x E U for 

which (ii) holds; note that both are additive subgroups of U and their union is equal to 
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U. Thus, either U{1) = U or U(u) = U; hence P satisfies one of the following: 

(i)' x - xT E P for all x E U\ 

(ii)' £/[JC7, j j G P for all JC, y E [/. 

Call a prime ideal in 2P a type-one prime if it satisfies (i)'; call all other members of 

2P type-two primes. Define P\ and P2 respectively as the intersection of all type-one 

primes and the intersection of all type-two primes; and note that 

(13) PXP2 - P2P, = P, H P2 = {0}. 

Define W to be U PI P"1 ( [ / ) , so that for x G W , both JC7 and x - xT are in U. Thus, 

from (i)' and (ii)' we can conclude that WT[xT - x11\ yT] ÇP] H P2 = {0} for all JC, 

y E Wm, and since T was one-to-one on U, we have 

(14) W[x - x\ y] = 0 for all x, y E W. 

Recalling (ii)', we now have 

(15) W[x, y] C Pa for all x, y E W and all type-two primes Pa. 

Now returning to (10) and replacing x by xy, we get [xT, y](y - yT) = 0 for all JC, 

y E [/, so that [jcr, yT](yT - y77) = 0 for all x E £/ and y E W. Invoking the 

one-to-one-ness of T on U shows that [JC, y](_y — yT) = 0 for all JC E £/ and y E W; 

and replacing JC by JCW for w E £/, we see that [JC, )>]£/()> - j r ) = [JC, y]RU(y - yT) = 

0. Again considering a fixed Pa in 2P, we see that for fixed y £ W , either U(y — yT) 

Ç P a or [JC, y] E P a for all x E U. Since the sets of y E W for which these two 

alternatives hold form two additive subgroups of W with union equal to W, we conclude 

that either [JC, y] E Pa for all JC E U and y E W, or f/(j - / ) Ç Ptt for all y E W. 

Thus, 

[JC, y]£/(z - zT) Ç 0 Pa = {0} for all x E £/ and y , z G W; 
a e A 

in particular, 

(16) [JC, V](ZI — z\)(z2 — z2) = 0 for all JC, y, z1? z2 E W. 

We can now identify a central ideal of P . Specifically, define V to be the left ideal 

generated by all elements of form u(v — vT) for w, v E W. In fact, V is the set of all 

finite sums and differences of the generating elements; and to show that V is a commu­

tative, hence central, ideal of P , it will suffice to show that 

(17) [wj(vi - v [ ) , u2(v2 - v2)] = 0 for all ux, « 2 , v , , v2 E W. 

Accordingly , we note that 

[ M , ( V , - v [ ) , w2(v2 - v2)] - w,[v, - v[ , w2(v2 - v2)] 

+ [w l5 w2(v2 - v 2 ) ] (v , - v[ ) 

= Ux[vx — V,, W2V2] — W,W2[V, — V,, V2] 
T T T T 

— u][v] — v , , w2]v2 -I- u2\u\, v2 — v 2 ] ( v , — v , ) 

+ [Wi, W2](V2 - V2)(V, - v [ ) . 
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It is immediate from (14) and (16) that in this last sum, every summand except possibly 

the second is 0; moreover, (i) ' , (ii)', and the definition of type-one and type-two primes 

show that the second summand belongs to Px Pi P2 = {0}. Thus, (17) holds and V is 

a central ideal. Our theorem will be established once we show that V 41 {0}. 

Suppose, then, that V = {0}. Then 

(18) W(y - yT) = 0 for all y G W. 

Define Wx = W H T\W) = U D T~\U) H T\U), and define F = 

{u E Wx\u
T = u}. From (10) and (18) it follows that 

(19) xy + yx E F for all JC, y G W,. 

Restricting x to F and applying (10) yields x(y - yT) = (y - yT)x for all JC G F and 

j G ( / ; hence (18) yields 

(20) (y - yT)x = 0 for all JC G F and y G W. 

In particular, (19) now gives 

(21) (y - yT)(xz + zx) = 0 for all JC, y, z G W,. 

But by (15) we have (y — yT)(xz — zx) = 0 for all JC, y, z G Wx\ therefore, 

2{y - yT)W] = 0 and hence 

(22) 2(y - yT)Wx = 0 for all y G Wx. 

Observe that (18) implies (y — yT)2 = 0 for all y G W}—a result which together with 

(22) yields (yT)2 = (y - (y - yT))2 = y2 - 2(y ~ yT)y + (y - yT)2 = y2; thus, 

y2 G F for all y G ^ , . I n view of (20), it follows by taking x2 for x and rx for z in (21) 

that 

(23) (y - yT)Rx* = 0 for all x, y G Wx. 

It is now clear that for each Pa G 9 \ either y — y1 E Pa for all y G W, or JC3 G F a 

for all JC G WV Call F a a prime of type three if the first of these alternatives holds, 

otherwise call Pa a prime of type 4; let P3 and P4 be the intersections of all type-three 

and type-four primes respectively; note that F 3 D F4 = {0}. Noting that the left ideal 

Q in the hypotheses of our theorem is W, Pi T~](WX), and recalling that T is not the 

identity on g , we see that there exists y G Q such that y — yT =h 0; hence Wx = 

P3 H W\ i= {0}. Since x3 G P4 for each x £ W , , w e see that Wi is a nonzero left ideal 

with JC3 = 0 for each JC G W\. But a semiprime ring cannot have such a left ideal, so 

we have contradicted our assumption that V = {0}, thereby completing the proof of 

Theorem 1. 

COROLLARY 1. Let R be semiprime and U a nonzero left ideal; and suppose that R 

admits an endomorphism T which is one-to-one on U, centralizing on U, and not the 

identity on U. If UT Q U, then R contains a nonzero central ideal. 

For prime rings, we shall require the following corollary, which depends on Lemma 

1 (i) as well as Theorem 1. 
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COROLLARY 2. Let R be a prime ring and U a nontrivial left ideal ofR. IfR admits 
a nonidentity endomorphism T which is one-to-one on U and centralizing on U, and if 
U contains a nonzero element which is fixed by T, then R is commutative. 

In the statement of Theorem 1, the hypothesis that T is not the identity on Q may 
appear somewhat technical or even artificial; however, some such hypothesis is re­
quired. Consider, for example, the semiprime ring R = S © S, where S is a simple 
noncommutative ring; and define the endomorphism T by T{(x, y)) = (v, x). Then if 
U is the ideal consisting of all elements of form (s, 0) with s G S, the endomorphism 
T is clearly one-to-one on U, commuting on U, and not the identity on U\ but R has 
no nontrivial central ideal. 

If we could replace our hypothesis involving Q by a condition which is satisfied for 
all prime rings, then our next theorem would follows as an immediate consequence. 
However, we have been unable to find an appropriate hypothesis of this kind; hence, 
some additional work is required in the prime case. 

THEOREM 2. Let R be a prime ring and U a nontrivial left ideal ofR. IfR admits a 
nonidentity endomorphism T which is one-to-one on U and centralizing on U, then R 
is commutative. 

PROOF. Since (12) holds for/? and since Lemma 1 guarantees that Tis not the identity 
on U, we conclude that 

(24) U[x\ y] = 0 for all x, y G U. 

Moreover, recalling from the proof of Theorem 1 that [xT, y](y — yT) = 0 for all x, 
y G U, we get [xT, y]RU(y — yT) = 0 for all x, y G U; hence either [xT, y] — 0 for 
all JC, y G U or U(y — yT) = 0 for all y G U. If the first of these alternatives holds, 
then UT is contained in the centralizer of U\ hence by (IV), UT is contained in the center 
ofR. Applying the first isomorphism theorem to the ring homomorphism from U to UT 

induced by T, we then get UT = U/(U H kerT) = U, so that U is commutative and 
hence R is commutative. Thus, we assume henceforth that 

(25) U(y - yT) = 0 for all y G U, 

which combines with (24) to give 

(26) U[x, y] = 0 for all x,y E U. 

Note that if U contains a non-zero element which is fixed by T, then by 
Corollary 2, R has a nonzero central ideal and so must be commutative. Therefore we 
assume that U contains no fixed points. 

Invoking (V), choose a G U such that a3 ± 0. Observe that by (25) we have 

(27) a2 = aaT = aTa. 

From (26), we have a[xa, ya] = 0 for all x, y G R—that is, axaya = ay axa. Fixing 
x and applying (VI), we get an element \{x) in the extended centroid C of R such that 
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axa = k(x)a. An immediate consequence is that [axa, a] — 0, or equivalently axa2 — 
a2xa, for all x E R; hence another application of (VI) yields a nonzero X E C for which 
a2 = \a. It follows that 

(28) a = \~]a2 = \~laaT = \~l aTa. 

Let us use the notation x _L y to mean that ry = yx = 0. Since a _L aT — a, we have 

(29) a r 1 a77 - aT and a77" 1 a777 - a77; 

the first of these conditions, together with (28), yields a _L a11 — aT and hence 

(30) aT 1 a™ - a17. 

Recalling (27) and (29), we now get 

(31) a2 1 a717 - a77 and a77 - a7 1 a777 - a77. 

Now, for arbitrary x E R we have 

[a2 + (a77 - tf7)x<2, (a7)2 + (a777 - a77)x7a7] = 0; 

and applying (29) and (31) gives 

(a77 - a7)xa(a7)2 - (a777 - aT7)x7a7a2 = 0. 

Left-multiplying by a77 - a7 and noting (31), we get (a77 - a7)2xa(a7)2 = 0, which 
by (27) is the same as (a77 — a7)2xa3 — 0. The primeness of R and the fact that 
a3 =£ 0 show that (a77 — a7)2 = 0; and since T is one-to-one on R by Lemma 1, we 
conclude that (a7 - a)2 = 0 = (a2)7 - 2aa7 + a2. It now follows from (27) that a2 

is a nonzero element of U fixed by 7. But this is a contradiction, so our proof is 
complete. 

3. Centralizing Derivations. For derivations, we need analogues of Lemmas 1 
and 2. 

LEMMA 3. [9] Let U be a nonzero left ideal of the prime ring R. If D is a nonzero 
derivation of R, then D is nonzero on U. 

PROOF. If D(x) = D(rx) = 0 for all x E U and r E R, it follows that D(r)x = 0; 
hence D(R)U = {0} and D(R) = {0}. 

LEMMA 4. Let R be a semiprime ring and U a nonzero left ideal. IfD is a derivation 
of R which is centralizing on U> then D is commuting on U. 

PROOF. For arbitrary x E U, we have [x2, D(x2)] E Z—that is, [JC2, xD(x) + D(x)x] 
= [x2, 2xD(x) - [x, D(x)]] = 2[x2, xD(x)] = 4x2[x, D(x)] E Z. Thus, 4[x2[x, D(JC)], 

D(x)] = 0, from which it follows that 8JC[JC, D(X)]2 = 0 and hence 8[JC, D(X)]3 = 0. 
Again invoking (II), we get 

(32) 2[x, D(x)] = 0 for all x E U; 

and it follows at once that 
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(33) [JC2, D(x)] = 0 for all x E U. 

By polarizing both (32) and the original hypothesis that [JC, D(x)] E Z for all x E 

U, we see that [JC, D(y)] + [y, D(x)] E Z and 2([JC, D ( j ) ] + [y, D(x)]) = 0 for all 

x, y E U; and by combining these results with (32), we can show that 

(34) [xy + yx, D(x)] + [JC2, D( j ) ] - 0 for all x,yEU. 

Replacing y by yx yields 

(xy + )*)[*, £>(JC)] + ([xy + ?*, D(x)] + [x\ D(y)\)x + y[*2 , D U ) ] 

+ [JC2, y]D(x) = 0 for all x,y EU. 

Rewriting the first summand as ([JC, y] + 2yx)[x, D(x)] and using (32), (33), and (34), 

we get 

[JC, y][x, D(x)] + [JC2, y]D(x) = 0 for all JC, y E U; 

taking y = D(x)x and using (33), we thus conclude that [JC, Z)(JC)]JC[JC, D(X)] = 0 = 

[JC, D(JC) ] 3 and hence [JC, D(X)] = 0 for all x E U. 

THEOREM 3. Let R be a semiprime ring and U a nonzero left ideal. If R admits a 

derivation D which is nonzero on U and centralizing on U, then R contains a nonzero 

central ideal. 

PROOF. Since D is commuting on U by Lemma 4, we have 

(35) [w, D(y)] + [v, D(u)] = 0 for all u, v E U. 

In particular, for JC, y E U, we have [x, D(yx)] + [yx, D(x)] = 0, which reduces to 

([JC, D(y)] + [y, D(x)])x + [JC, y]D(x) = 0; and (35) now gives [JC, y]D(x) = 0 for 

all JC, y E U. By replacing y by wy for arbitrary w E U, we get 

(36) [JC, W]RUD(X) = 0 for all x,wEU. 

Now, as in the proof of Theorem 1, we let Ŝ  = {P a | a E A} be a family of prime 

ideals with C\Pa = {0}. From (36) it follows that for each Pa, either 

(a) [JC, W] E Pa for all JC, W E U 

or 

(b) UD(U)CPa. 

Call Pa a type-one prime if it satisfies (a), a type-two prime otherwise; let Pi and 

P2 be respectively the intersections of all type-one and type-two primes; note that 

Pinp2 = {o}. 

We now investigate a typical type-two prime P = Pa. From (b) and the fact that 

[M, D(U)] = 0 for all « £ ( / , w e have uD(u) E P and D(u)u E P for all uEU. Thus 

(JC + y)(D(x) + D(y)) E P and (D(x) + D(y))(x + y) E P for all x, y E U\ 

consequently, xD(y) + yD(x) E P and D(x)y + £>(;y);c E P. Direct calculation 

now yields 
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(37) D(xy + yx) E P for ail x,y EU. 

It follows that D(z(xy + yx) + (xy + yx)z) E P for ail i j , z £ £/. Writing this as 
D(z)(xy H- yx) + zD(.ry + yx) + D(xy + yx)z + (xy + JJC)D(Z) E P, and noting that 
the last three summands are in P by (b) and (37), we get 

D(z)(xy + yx) E P for all x, y, z E £/. 

Replacing x by zx and noting that D(z)z E P, we see that D(z) yzx E P for all 
x, y, z E £/; hence 

D(z)Ryzx Ç P for all JC, y, z E £/. 

The fact that P is a prime ideal now shows that either D(U) Ç P or U3 Ç P. But if the 
latter holds, we get U C P and hence (a) holds for P , contradicting our definition of 
type-two prime; therefore, D(U) Ç P. It now follows that for r E R and u E U, 
D(r)u = D(rw) - rD(w) E P, so that RD(R)U E P; and since £/ <£ P, we conclude 
that RD(R) E P. This being true for every type-two prime, we have 

(38) RD(R) E P2. 

Consider now the left ideal V generated by the set D(R)U; we shall show that V is 
commutative, hence a two-sided central ideal. A typical element of V is a sum of 
elements of form D(r)u and sD(r)u, where r, s E P and u Ei U. Thus we need only 
show that commutators of the forms [D(r\)u\, D(r2)u2], [s\D(r\)u\, D(r2)u2] and 
[s^^^Ui, s2D(r2)u2] are all trivial. Clearly all three types are in P, by (a), and they 
are all in P2 by (38); hence all belong to Px n P2 = {0}. 

If V =/= {0}, we are finished. Assume, therefore, that V = {0}, in which case 
D(R)U = {0}. The left ideal UD(R) is therefore nilpotent, so UD(R) = 0. Thus, 
uD(rs) = 0 for all u E £/ and all r, s EL R, so that uD(r)s + urD(s) = 0 and therefore 

(39) <7PD(P) = 0. 

In particular, for each u E U and x E R, uxD(u) = 0 and hence D(uxD(u)) = 
uD(xD(u)) + D(u)xD(u) = 0. Expanding the first term yields uxD2(u) + uD(x)D(u) 
+ D(u)xD(u) — 0; and since the first two summands are trivial by (39), D(u)RD(u) 
= 0 for all w E £/ and hence D(U) = 0. This contradicts our initial hypothesis, so the 
central ideal V must in fact be nonzero. 

In view of (IV) and Lemma 3, our final theorem is immediate from Theorem 3. 

THEOREM 4. Let R be a prime ring and U a nonzero left ideal. IfR admits a nonzero 
derivation which is centralizing on U, then R is commutative. 

REFERENCES 

1. L.O. Chung and J. Luh, On semicommuting automorphisms of rings, Canad. Math. Bull. 21 (1978), 
pp. 13-16. 

2. I. N. Herstein, Topics in ring theory, Univ. of Chicago Math. Lecture Notes, 1965. 
3. Y. Hirano, A. Kaya, and H. Tominaga, On a theorem ofMayne, Math. J. Okayama Univ. 25 (1983), 

pp. 125-132. 

https://doi.org/10.4153/CMB-1987-014-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-014-x


1987] SEMIPRIME RINGS 101 

4. A. Kay a and C. Koc, Semicentralizing automorphisms of prime rings, Acta Math. Acad. Sci. Hungar. 
38 (1981), pp. 53-55. 

5. J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970), pp. 61—62. 
6. W.S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 

pp. 576-584. 
7. J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), pp. 113—115. 
8. J. Mayne, Ideals and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 86 (1982), 

pp. 211-212. Erratum 89 (1983), p. 187. 
9. J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), pp. 122—126. 

10. M.F. Smiley, Remarks on the commutativity of rings, Proc. Amer. Math. Soc. 10 (1959), 
pp. 466-470. 

DEPARTMENT OF MATHEMATICS 

BROCK UNIVERSITY 

ST. CATHARINES, ONTARIO 

CANADA L2S 3A1 

DEPARTMENT OF MATHEMATICS AND STATISTICS 

UNIVERSITY OF MASSACHUSETTS 

AMHERST, MASSACHUSETTS 01003 

https://doi.org/10.4153/CMB-1987-014-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-014-x

