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The stratified inclined duct (SID) experiment consists of a zero-net-volume exchange flow
in a long tilted rectangular duct, which allows the study of realistic stratified shear flows
with sustained internal forcing. We present the first three-dimensional direct numerical
simulations (DNS) of SID to explore the transitions between increasingly turbulent flow
regimes first described by Meyer & Linden (J. Fluid Mech., vol. 753, 2014, pp. 242–253).
We develop a numerical set-up that faithfully reproduces the experiments and sustains
the flow for arbitrarily long times at minimal computational cost. We recover the four
qualitative flow regimes found experimentally in the same regions of parameter space:
laminar flow, waves, intermittent turbulence and fully developed turbulence. We find
good qualitative and quantitative agreement between DNS and experiments and highlight
the added value of DNS to complement experimental diagnostics and increase our
understanding of the transition to turbulence, both temporally (laminar/turbulent cycles)
and parametrically (as the tilt angle of the duct and the Reynolds number are increased).
These results demonstrate that numerical studies of SID – and deeper integration between
simulations and experiments – have the potential to lead to a better understanding of
stratified turbulence.

Key words: stratified flows, stratified turbulence, shear layer turbulence

1. Introduction

Large-scale fluid motions in the ocean are almost always stably stratified in density due to
differences in temperature and/or salinity at different depths. The transport of momentum
and buoyancy by turbulence plays an important role in setting the large-scale structure
and circulation of the ocean, with implications for the global climate. Consequently, the
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influence of stable stratification on turbulence and the resulting mixing has attracted much
attention (Linden 1979; Riley & Lelong 2000; Gregg et al. 2018; Caulfield 2020, 2021;
Dauxois et al. 2021).

Sustained stratified shear-driven flows are a particularly interesting and relevant class
of flows to study this problem, since turbulence is produced internally within the flow
by drawing energy from the background shear, and because turbulence persists over
sufficiently long periods of time to allow for a statistically steady dissipative equilibrium.
The stratified inclined duct (SID) experiment was developed to study these flows in a
controlled laboratory environment (Meyer & Linden 2014). It establishes a two-layer
exchange flow through a long, rectangular and slightly inclined duct connecting two
large reservoirs containing fluids of different densities. The SID experiment revealed
that the flow regime within the duct could be tuned by adjusting the tilt angle θ of the
duct with respect to the horizontal, and/or the Reynolds number Re based on the initial
density difference and the height of the duct. The flow regimes are (ordered by increasing
θ Re): laminar two-layer flow, interfacial waves, intermittent turbulence with increased
interfacial mixing and eventually full turbulence with significant mixing. Much insight has
already been gained through experimental studies of these regimes and of their transitions
(Meyer & Linden 2014; Lefauve & Linden 2020a, 2022a), of their energetics and mixing
properties (Lefauve, Partridge & Linden 2019; Lefauve & Linden 2022b) and of their
respective coherent structures (Lefauve et al. 2018; Jiang et al. 2022).

Despite vast technological improvements yielding unprecedented time-resolved,
volumetric velocity and density data (Partridge, Lefauve & Dalziel 2019), experimental
limitations remain. The SID experimental data do not yet cover the full length of the duct,
do not yet achieve the spatial resolution required to fully quantify energy dissipation and
mixing, and are not yet as instantaneous and accurate as we would ideally like (due to their
reconstruction of volume by successive scanning of planes). In this paper, we present the
first direct numerical simulations (DNS) of SID to help overcome these limitations and
integrate experiments and simulations more deeply.

Previous DNS of stratified shear flows have considered more idealised problems,
typically without any forcing to sustain the flow (e.g. Salehipour, Peltier & Caulfield 2018;
Watanabe et al. 2019). The boundary conditions are usually idealised too, being typically
periodic for velocity and density in the streamwise and spanwise directions. By contrast,
experiments have revealed that the specific ‘natural’ forcing mechanisms in SID flows (a
streamwise hydrostatic pressure gradient and the tilt angle θ ) and the lack of periodicity
in the streamwise direction (i.e. the presence of reservoirs) are essential features that need
to be modelled accurately in order to understand this canonical flow. For example, these
features are thought to be closely linked to the notion of ‘hydraulic control’ of the exchange
flow at high enough values of θ Re, and to the ensuing transition to turbulence (Meyer
& Linden 2014; Lefauve et al. 2019; Lefauve & Linden 2020a). The no-slip boundary
conditions at the duct walls have also been shown to be important to the structures of
instabilities (Lefauve et al. 2018; Ducimetière et al. 2021).

In § 2 we explain how we overcome the challenges of developing faithful DNS of SID.
In particular, we discuss how we modelled the reservoirs with minimal computational
cost, and how we handled technically challenging boundary conditions. In § 3 we validate
this new DNS methodology by comparing different reservoir geometries and forcing with
fully resolved computations that capture the reservoirs explicitly. In § 4 we describe the
flow regimes and compare the DNS with experimental data, first from regime diagrams
(i.e. the map of the observed qualitative flow regimes in the two-dimensional parameter
space θ–Re) and then from shadowgraph visualisations of the density interfaces. Then
in § 5 we describe further quantitative diagnostics from our DNS, generally inaccessible
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Figure 1. Schematics of SID geometry in non-dimensional units. (a) Overview of the rectangular simulation
domain of dimensions Lx, Ly, Lz within which immersed boundaries create a square duct of dimensions 2A ×
2 × 2. (b) Detail of the duct geometry and coordinate system. (c) Shape of the different reservoirs considered in
this paper (benchmark, AR, BR and SR), with a total domain length Lx = 2(A + Lr

x). All numerical parameters
are summarised in table 1.

to experiments, and highlight their added value. These include the gradient Richardson
number, the turbulent kinetic energy (TKE) and pressure fields along the entire length of
the duct and the turbulent energy fluxes. Finally, in § 6 we conclude by summarising our
results and outlook.

2. Methodology

2.1. Governing equations
Our simulation geometry in non-dimensional units is shown in figure 1(a,b). It replicates
the experimental geometry (see e.g. figure 1 of Lefauve et al. (2019) in dimensional
units), which consists of a duct of square cross-section with internal height H, width
W and length L connecting two large reservoirs with fluids at densities ρ0 ± �ρ/2
(white and blue shaded areas in figure 1a). To match previous experimental studies of
SID, we non-dimensionalise all lengths by the duct half-height H/2, making the duct
non-dimensional length, height and width 2A × 2B × 2, respectively, where A ≡ L/H
and B = W/H are the streamwise and spanwise aspect ratios, respectively. We also
non-dimensionalise (i) the velocities by the fixed buoyancy velocity scale �U/2 ≡ √

g′H
(where g′ = g�ρ/ρ0 is the reduced gravity and ρ0 is the reference density); (ii) the time
by the advective time unit (ATU) H/�U; (iii) the density variations around the reference
ρ0 by �ρ/2; and (iv) the pressure by ρ0(�U/2)2. Note that the x axis (the streamwise
direction) is aligned along the duct, whereas gravity points downwards at an angle θ from
the −z axis (the vertical direction in the frame of the duct); hence in these duct coordinates
g = gĝ = g(sin θ, 0, − cos θ).

969 A20-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.502


L. Zhu and others

The resulting non-dimensional governing equations for our DNS are the Navier–Stokes
equations under the Boussinesq approximation:

∇ · u = 0, (2.1)

Du
Dt

= −∇p + 1
Re

∇2u + Ri ρ ĝ − F u, (2.2)

Dρ

Dt
= 1

Re Pr
∇2ρ − Fρ, (2.3)

where the material derivative is D/Dt ≡ ∂t + u · ∇, the velocity is u = (u, v, w)

in the non-dimensional coordinate system x = (x, y, z) aligned with the duct, the
non-dimensional pressure is p and the non-dimensional density variation around the mean
is ρ (bounded between −1 and 1). The forcing terms F u and Fρ used to maintain the
quasi-steady exchange flows are described in § 2.2.

The non-dimensional Reynolds, Richardson and Prandtl numbers are related to the
dimensional experimental parameters as follows:

Re ≡
�U

2
H
2

ν
≡

√

g′HH
2ν

, Ri ≡
g
ρ0

�ρ

2
H
2

(

�U
2

)2 ≡ 1
4
, Pr ≡ ν

κ
≡ 7, (2.4a-c)

where ν is the kinematic viscosity and κ is the mass diffusivity. Previous studies of
SID showed that the streamwise velocity scales with �U/2, motivating this definition of
Reynolds number. The Richardson number is always equal to 1/4 due to the definition
of �U. The Prandtl number in all simulations was set to Pr = 7, approximately
representative of temperature stratification in water at room temperature. For a given duct
and reservoir geometry, there are two remaining free non-dimensional parameters: the tilt
angle θ and the Reynolds number Re (based on the driving density difference �ρ).

2.2. Artificial restoring of the exchange flow
The exchange flow in the duct is driven by the hydrostatic longitudinal pressure gradient
and by the longitudinal gravitational acceleration g sin θ . In the context of a two-layer flow,
the along-duct component of gravity accelerates the heavier layer rightwards (downhill)
and the lighter layer leftwards (uphill). The role of the hydrostatic pressure gradient turns
out to be more intricate and is examined in § 5.3. In the experiments, the flow inside
the duct is sustained over long time periods (typically several hundred ATUs) until the
discharged fluids accumulated in the large reservoirs have reached the level of the duct.
Simulating such large reservoirs would be prohibitively expensive. In the simulations,
we use smaller reservoirs and add ad hoc forcing terms F u, Fρ in the momentum and
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buoyancy equations (2.2) and (2.3), respectively:

F u ≡ Fuu ≡

⎡

⎢

⎢

⎣

1 − tanh
(

2
Δ

(

x + Lx − lf
2

))

ηu
+

1 + tanh
(

2
Δ

(

x − Lx − lf
2

))

ηu

⎤

⎥

⎥

⎦

u,

(2.5)

Fρ ≡
1 − tanh

(

2
Δ

(

x + Lx − lf
2

))

ηρ

(ρ − 1) +
1 + tanh

(

2
Δ

(

x − Lx − lf
2

))

ηρ

(ρ + 1),

(2.6)

where lf is the streamwise length of influence of the forcing and Δ = 2lf /Lf (with a fixed
Lf ≡ 8) defines the steepness of the transition from the forced to the unforced regions.
The density forcing term restores the density of the fluid in the reservoir to the prescribed
value (i.e. ±1), and the momentum forcing term acts to dampen motion in the reservoir.
The time scales ηu and ηρ control the momentum and density forcing terms, respectively.
Compromise values of these time scales must be found, as large values are too slow to
sufficiently damp reservoir motion and restore density, while small values are too fast
and overreact, threatening numerical stability. These parameters were optimised with the
size of the reservoirs in order to minimise their influence on the large-scale flow in the
duct compared with the benchmark cases with large reservoirs and without forcing (see
§ 2.6). Tests revealed little variation in the range lf ∈ [0.3Lr

x, 0.7Lr
x]; therefore we set

lf = 0.5Lr
x, confining the forcing region to half the reservoir (greyed out in figure 1a).

The time scales ηu and ηρ should then be smaller than the times for a discharging flow
(with non-dimensional speed 1) to pass through the forcing region, i.e. ≈ lf . Practically,
we set 2.5 � ηu � 5 and 0.1 � ηρ � 0.5, depending on lf .

Physically, F u decelerates the fluid entering the reservoir until it comes to rest, and Fρ

ensures that the density of this fluid matches that of the reservoir before it re-enters the
duct. This forcing thus effectively mimics the action of infinitely large reservoirs with a
finite-sized, computationally feasible domain.

2.3. Solver
The DNS were performed with the open-source solver Xcompact3D (Bartholomew et al.
2020), which uses fourth-order and sixth-order compact finite-difference schemes for
the first and second spatial derivatives, respectively, and a third-order Adams–Bashforth
scheme (Peyret 2002; Zhu & Xi 2020) for the time integration with a time step δt = 0.001.
The pressure field is obtained from a conventional Poisson equation (based on applying
a divergence operator on (2.2) and employing continuity (2.1)), which is then solved
numerically using the fast Fourier transform with modified wavenumbers. For more details
about the core of the code (Incompact3D), see Laizet & Lamballais (2009) and Laizet &
Li (2011), and for the application of Xcompact3D to stratified turbulent flows, see Frantz
et al. (2021). We modified Xcompact3D to include the forcing terms F u, Fρ discussed
above.
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Figure 2. Schematic of the IBM to implement the no-flux boundary condition on density ρ at fluid–solid
boundaries in the x or z direction. The curved red line represents the fictitious density profile across the solid
region.

2.4. Domain and boundary conditions
The computational domain had dimensions Lx, Ly = 2 and Lz along x, y and z, respectively
(see figure 1a,b). On the boundaries of this domain, we applied a no-slip condition for u
and a no-flux condition for ρ as in Laizet & Lamballais (2009). To represent the duct and
reservoir geometry within this computational domain, we applied the immersed boundary
method (IBM) in Xcompact3D to the yellow-shaded region in figure 1(a).

The IBM treatment of u (no slip) uses a direct forcing method described in Mohd-Yusof
(1997) and specifically for Xcompact3D in Laizet & Lamballais (2009) and Gautier,
Laizet & Lamballais (2014), which imposes u = 0 in the solid regions. The pressure p
in the solid region is treated by reducing the Poisson equation to a Laplace equation
(Laizet & Lamballais 2009). The IBM allows relatively simple implementation of
complex geometries in scalable codes such as Xcompact3D that are built upon Cartesian
coordinates and rectangular computational domains.

The IBM treatment of ρ (no flux) required a slightly different approach to minimise
the modifications of Xcompact3D and maintain the consistency between u and ρ. A tanh
function was used to reconstruct points inside the solid region:

ρi = 1
2
(ρl + ρr) + 1

2
(ρr + ρl) tanh

[

Lw

ξr − ξl

(

ξi − 1
2
(ξr + ξl)

)]

, (2.7)

as shown in figure 2. Here ξ is the wall-normal coordinate (horizontal or vertical), the
subscript i is the index of grid points and r and l are the right and left grid points (in the
fluid region), respectively, adjacent to the solid walls. The tanh function ensures a zero-flux
boundary condition at the wall while maintaining a smooth change of the density through
the solid region. A similar approach using a polynomial reconstruction has been used to
treat the Dirichlet and Neumann boundary conditions in Gautier et al. (2014) and Frantz
et al. (2021). The length scale Lw = 10 was chosen to ensure a smooth change of density
inside the solid region while maintaining exponentially small density flux at SID walls.

2.5. Initial conditions
All simulations were initialised at t = 0 with a density ρ = tanh(x/LI) (where LI = 0.1) at
the centre of the duct, simulating ‘lock exchange’ conditions with a sharp but continuous
change from densest fluid on the left-hand side to lightest fluid on the right-hand side. A
zero-mean uniformly distributed random noise with non-dimensional amplitude ς = 0.5
was applied to the initial velocity un to break symmetry and initiate instabilities inside the
duct. Note that smaller perturbation amplitudes (e.g. ς = 0.005) can be applied, but we
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Case Re θ (deg.) A B Lr
x × Ly × Lz Nx × Ny × Nz lf ηu ηρ

Benchmark 400 2 30 1 30 × 2 × 8 1621 × 49 × 385 — — —
650 6 1921 × 61 × 481

AR 400 2, 5 30 1 10 × 2 × 8 1081 × 49 × 385 5 5 0.1
650 4, 6, 8 1441 × 65 × 481
800 3, 4, 10 1537 × 65 × 577
1000 2, 4 1729 × 65 × 577
1250 1, 3 1801 × 81 × 641

BR 400 2, 5, 7, 10 30 1 5 × 2 × 4 961 × 61 × 193 2.5 2.5 0.1
650 2(B2), 4, 5(B5), 1081 × 65 × 241

6(B6), 8(B8)

800 7 1351 × 65 × 289
1000 3, 4, 5, 10 1501 × 65 × 281
1000 10(B10) 3001 × 121 × 241
1250 5 1501 × 65 × 289

SR 400 2, 5 30 1 10 × 2 × 2 1081 × 65 × 121 8 5 0.5
650 6(S6), 8(S8) 1201 × 65 × 121

BRw 650 3(W3), 5(W5) 44 2 10 × 4 × 4 1601 × 121 × 241 8 5 0.5

Table 1. Summary of the DNS. From left to right: reservoir geometry (case) as shown in figure 1(c); Reynolds
number; tilt angle; duct streamwise aspect ratio; duct spanwise aspect ratio; reservoir size; grid size of the entire
computational domain; and forcing parameters: streamwise length of forcing (lf ) and time scales controlling
momentum (ηu) and density forcing (ηρ ) in (2.5)–(2.6). Bold font and superscripts denote the most used DNS.

verified that doing so did not influence the main features of the flow (see supplementary
material S1 available at https://doi.org/10.1017/jfm.2023.502).

Shortly after t = 0, a gravity current formed at the centre of the duct (x = 0) and
propagated in both directions towards the ends of the duct. After a typical duct transit
time of order t ≈ A (transiting at non-dimensional velocity ≈1 over a non-dimensional
length A), the exchange flow was established.

2.6. Parameters, duct and reservoir geometries
In order to investigate the various flow regimes we varied the Reynolds number Re in the
range 400–1250 and the duct tilt angle θ in the range 1◦–10◦. As mentioned above, the
Prandtl number Pr = 7 and Richardson number Ri = 1/4 were fixed. The suite of DNS is
summarised in table 1.

Most DNS were run with a long duct of streamwise and spanwise aspect ratios A = 30
and B = 1, respectively, for direct comparison with the experiments in Lefauve & Linden
(2020a) (the ‘mini SID Temperature’ dataset abbreviated ‘mSIDT’). However, two DNS
(cases ‘BRw’ in table 1) were run in a longer and wider duct at A = 44, B = 2 to compare
with a new experimental set-up.

To validate the performance of our forcing to sustain a realistic exchange flow, we ran a
benchmark DNS without forcing (Fu = Fρ = 0) but with large reservoirs (Lr

x × Lz = 30 ×
8). This benchmark had a combined reservoir volume of four times that of the duct (60 ×
8/(60 × 2) = 4), which is sufficient for our validation but still much smaller than that of
the experiments (volume ratio ≈30). We show in § 3 that the different reservoirs do not
seem to influence the flow statistics within SID. This is expected from the knowledge that
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the flow in SID is hydraulically controlled (Meyer & Linden 2014), i.e. that information
from the reservoirs cannot travel into the duct because of ‘control’ regions at the inlet
and outlet, where the convective flow speed is faster than interfacial waves (Lawrence
1990). This conveniently ensures that different reservoir geometries and conditions do not
influence the flow within the duct, as long as unmixed and quiescent fluids are available at
either end of the duct.

All the other DNS had non-zero forcing and smaller, more computationally affordable
reservoirs. To test the impact of reservoir size, we used the three following reservoirs
sketched in figure 1(c): the A-reservoir (‘AR’) of dimensions Lr

x × Lz = 10 × 8, which is
a third of the length of benchmark but equally tall; the B-reservoir (‘BR’) of Lr

x × Lz =
5 × 4, which is half the length and half the height of the A-reservoir; and finally, the
smallest S-reservoir (‘SR’) of Lr

x × Lz = 10 × 2. Note that (unlike the experiments) all
reservoirs have the same spanwise width as the duct Ly. The set of forcing parameters
(lf , νu, νρ) for F u, Fρ that we found to have minimal impacts on the duct for each case are
also listed in table 1.

The bold font for the nine cases at Re = 650 and 1000 highlight the DNS that we analyse
in more detail in this paper, with the superscripts giving their shorthand names (B2, B5,
B6, B8, B10, S6, S8, W3 and W5). The full flow data of the five cases B2-B10 can be
downloaded from the repository (Zhu et al. 2023). The other DNS were used for validation
and for plotting the regime diagrams in the (θ, Re) plane.

Finally, we adopt a uniform grid size Nx × Ny × Nz for the entire domain Lx × Ly × Lz,
which has the advantage of helping maintain numerical stability near the immersed
boundaries. The grid size was small enough to capture the Kolmogorov turbulent length
scale, and 2–3 times the Batchelor length scale in our most turbulent dataset B10
(discussed in more detail in § 5.4), ensuring adequate resolution of the kinetic and scalar
energy spectra.

3. Validation

In figure 3 we assess the ability of the forcing introduced in (2.5)–(2.6) to sustain the
exchange flow by comparing, for the B-reservoir, a standard DNS with forcing (‘forced’)
and a DNS without forcing (‘unforced’), i.e. Fu = Fρ = 0.

Figure 3(a) shows the time series of the volume flux Q and the mass flux Qm defined as

Q(t) ≡ 〈|u|〉V , (3.1)

Qm(t) ≡ 〈ρu〉V , (3.2)

where 〈·〉V ≡ (1/8A)
∫ 1
−1

∫ 1
−1

∫ A
−A dx dy dz denotes an average over the entire volume of

the duct. Note that since |ρ| � 1, by definition Qm � Q. A more diffuse interface and
turbulent mixing can cause Qm to be significantly lower than Q. The values of Q(t) (solid
lines) and Qm(t) (dashed lines) in the forced (red) and unforced (green) DNS are identical
in the initial stage of accelerating gravity current (0 < t � 60). They remain equal until
the exchange flow approaches a steady state at Q ≈ 0.5 and Qm ≈ 0.45 (60 � t � 100).
However, from t ≈ 100, the unforced time series drops sharply, signalling that the flow
slows down (see Q(t)) and becomes overall more mixed inside the duct (as Qm(t) decays
faster than Q(t)). By contrast, the forced time series remains steady until the end (t ≈ 160)
of the simulation.

Figures 3(b) and 3(c) show x–z slices of the density field on the rightmost quarter of the
computational domain at t = 100 for the forced DNS and unforced DNS, respectively. In
the unforced DNS, the dense, right-flowing bottom layer (in blue) has filled over half of
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Figure 3. Demonstration of the effects of the forcing terms Fu, Fρ in finite-sized reservoirs (here in a
B-reservoir, ‘BR’) at (Re, θ) = (650, 4◦). (a) Time series of the volume and mass flux. Instantaneous mid-duct
slices of ρ(x, y = 0, z, t = 100) for (b) forced and (c) unforced DNS, showing only the rightmost quarter of the
duct and the right-hand reservoir.

1.0

0.5

0z z 〈k– 〉 V
–0.5

–1.0

1.0

0.5

0

–0.5

–1.0

–1 0 1 –1

Wave, SR
Wave, BR
Wave, benchmark
Laminar, SR
Laminar, BR
Laminar, benchmark

0 1 50

t

0

0.1

0.2

0.3

100 150 200

〈u〉 〈ρ〉

(b)(a) (c)

Figure 4. Comparison of the effects of reservoir sizes on the (a) streamwise velocity and (b) density profiles,
and (c) kinetic energy time series in both the laminar and wave regimes.

the B-reservoir. The large kinetic energy of this layer has led to mixing inside the reservoir.
This dense fluid contaminates the exchange flow as it is entrained back into the duct by the
left-flowing buoyant layer (in red). In the forced DNS, this does not happen; the outflowing
layer is slowed down and its density is gradually converted to that of the inflowing fluid.
This allows an infinitely-long quasi-steady exchange flow to be maintained inside the duct.

In figure 4 we compare the statistics of the established exchange flow in the
benchmark case (very large reservoirs, unforced), and in progressively smaller, but forced,
reservoirs: BR and SR. We compare two different flows: a laminar regime at (Re, θ) =
(400, 5) (red, blue and green curves) and a wave regime at (Re, θ) = (650, 6) (purple,
pink and cyan curves). Figure 4(a) shows 〈u〉(z) (where 〈·〉 ≡ 〈·〉x,y,t is the average over
the entire duct length, width and time series), figure 4(b) shows 〈ρ〉(z) and figure 4(c)
shows the time series of the total kinetic energy 〈k̄〉V(t) (where k̄ ≡ |u|2/2).

Comparing the benchmark, BR and SR cases, we find excellent agreement between the
vertical profiles and the time series of kinetic energy. Minor temporal discrepancies in the
wave regime after t � 150 may be caused by variations in the initial random noise, but
have negligible influence on the flow statistics and dynamics. Overall, our forcing method
faithfully models the effects of reservoirs as far as the flow inside the duct is concerned,
even with very small reservoirs. We provide additional evidence in supplementary material
S1 that the key flow dynamics in all flow regimes in SID are largely independent of the
reservoirs. We compare spatio-temporal diagrams of the TKE for (Re, θ) = (650, 6◦) for
the benchmark, AR, BR, as well as BR with a reservoir wider than the duct and show that
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details of wave motion and occasional turbulence over 200 ATUs do not vary more than
they would under different initial noise conditions. The spatio-temporal diagrams of TKE
for (Re, θ) = (650, 8◦) for the benchmark and BR also agree well in terms of turbulent
intermittency and wave propagation.

Our typical computation at Re = 650 required 45 × 106 points in the AR, but only 17 ×
106 in the BR (a reduction of 60 %). This explains why, in the following, we use the BR
for more detailed analyses requiring longer time series of order ≈200 ATU. We use the
even more affordable SR more sparingly in this paper, since our main goal is to compare
the SR results with the BR to investigate the ability of the SR to reproduce the key flow
physics.

4. Comparison between DNS and experiments

4.1. Regimes: observations
Figure 5 shows snapshots of the DNS density field illustrating the different flow regimes.
All cases use the B-reservoir, with a duct aspect ratio of A = 30, as highlighted in table 1
and named B2, B5, B6, B8 and B10. The first four cases B2–B8 were at Re = 650, the last
one B10 was at Re = 1000, and the numbers 2, 5, 6, 8, 10 indicate the respective value
of θ in degrees. Slices through the density field at the middle y = 0 plane (figure 5a–e),
and through a cross-sectional y–z plane at x = 0 in the duct are shown. The full temporal
evolution of these five cases can be seen in our supplementary movies.

We recover, in our DNS, the same four key flow regimes (laminar, wave, intermittently
turbulent and fully turbulent) identified in experimental studies of SID, in particular Meyer
& Linden (2014), Lefauve (2018), Lefauve et al. (2019) and Lefauve & Linden (2020a),
which is the first key result of this paper. Moreover, the DNS allow us, for the first time, to
observe three-dimensional instantaneous snapshots along the entire domain, including the
duct and the in- and out-flow in the reservoirs, which were not accessible to experiments.
We describe each regime in turn.

4.1.1. Laminar regime
First, in B2 (figure 5a, f ) we observe a simple laminar (L) flow, which is largely parallel
and steady without any observable waves or turbulent fluctuations. Molecular diffusion
creates a relatively thin interface of intermediate density (in white). This density interface
slopes at an angle since the two counter-flowing layers (in blue or red) get thinner as they
accelerate along the duct. This convective acceleration u∂xu in each layer is caused by the
pressure gradient −∂xp, gravity Ri sin θρ and opposed by the viscous term Re−1∇2u.

4.1.2. Wave regime(s)
Second, in B5 and B6 (figure 5b,c,g,h) we observe a wave (W) flow, including large-scale
waves with streamwise wavelength of order O(1)–O(A) (i.e. O(1)–O(30)). These waves
are triggered by disturbances within the duct; information (waves) does not travel from the
reservoirs into the duct. In this regime, small-scale, weakly turbulent structures of limited
spatial extent may occasionally be generated by the breakdown of large-scale waves but
they always dissipate rapidly. We note that most of the previous SID experiments were
done with salt stratification (Pr ≈ 700), in which case the much thinner density interface
supports Holmboe waves; hence these studies called this wave regime the ‘Holmboe’
regime. However, with temperature stratification (Pr ≈ 7, as simulated here) Lefauve
(2018, § 3.4.2) and Lefauve & Linden (2020a) highlighted that Holmboe waves were never
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Figure 5. Snapshots of the density field in the mid-plane y = 0 (a–e) and in the duct cross-section ( f –j) in five
representative flows: (a, f ) laminar (B2), (b,g) stationary wave (B5), (c,h) travelling wave (B6), (d,i) intermittent
turbulence (B8, active phase) and (e,j) fully developed turbulence (B10). These cases are highlighted in bold
font in table 1.

found on the thicker interface. At Pr ≈ 7 they found the same wave regime as that observed
here, with interfacial gravity waves on the edges of a thicker density interface.

We find that W flows can feature waves that are either stationary (B5; figure 5b,g)
or travelling (B6; figure 5c,h) in the streamwise direction x. Increasing θ tends to first
decrease the slope of the interface (relative to the duct) and accelerate the flow until the
interface is parallel to the axis of the duct (reducing u∂xu and −∂xp), at which point
the gravitational term Ri sin θρ can no longer be balanced by laminar diffusion alone.
This appears to coincide with the creation of a third, partially mixed layer (in light red,
white and light blue) that is neutrally buoyant and thus reduces the gravitational forcing
Ri sin θρ. This third layer, often located near the centre of the duct (i.e. around |x| ≈ 0)
rather than near the ends (|x| ≈ A) supports both stationary and travelling interfacial
waves. We note that, in contrast to L flow, in these W flows the in-flowing layers (before
reaching the ‘wavy’ area in the centre of the duct) are thinner than the out-flowing
layers (after going through the ‘wavy’ area), which is reminiscent of an internal hydraulic
jump.

Travelling waves (figure 5c) tend to travel along the two density interfaces (between
the top and middle layers, and between the middle and bottom layers) in a specific fashion.
Left-going waves are most often found on the right quarter of the duct (x � A/2), travelling
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towards the centre. Vice versa, right-going waves are most often found on the left quarter
of the duct (x � −A/2), travelling towards the centre. Once they reach the central region
(|x| � A/2), both types of waves usually end up decaying. This observation suggests
that the flow may be ‘supercritical’ outside of the central region, i.e. that information
transported by interfacial waves can only propagate in one direction (towards the centre
but not towards the ends of the duct).

4.1.3. Intermittently turbulent regime
Third, in B8 (shown in figure 5d,i) we observe an intermittently turbulent (I) flow,
which becomes more chaotic and in which patterns of individual waves become
indistinguishable. Small-scale turbulent structures (of typical non-dimensional scale 
 1)
are generated, often by a breakdown of waves akin to the ‘bursting’ events of turbulent
boundary layers (Robinson 1991; Jiménez & Simens 2001; Zhu & Xi 2020). This
interfacial turbulence, which persists for much longer times than in the W regime,
enhances interfacial mixing and creates a third partially mixed layer (shown in white) over
an increasingly long streamwise extent (as compared with the W regime). The interfacial
turbulence sometimes extends along the full length of the duct. The combination of
the decreasing magnitude of the gravitational forcing Ri sin θ |ρ| by the increasingly
mixed layer and the increasing smaller-scale viscous dissipation are presumably the key
ingredients that keep the flow steady as θ is increased from 2◦, 5◦, 6◦ to 8◦ in B2, B5, B6,
B8 (at constant Re = 650).

The defining characteristic of the I regime is that the turbulence identified by
small-scale structures is temporally intermittent; turbulence occasionally decays and the
flow ‘relaminarises’ before transitioning to turbulence again. These cycles are described
in § 5.2. The time scales associated with the transition to turbulence and its decay, and the
advection of perturbations along the length of the duct, occasionally make this turbulence
also spatially intermittent in x.

4.1.4. Fully turbulent regime
Fourth, in B10 (shown in figure 5e,j) we observe a fully turbulent (T) regime in which
turbulence is sustained in time and is more vigorous than in the I regime. Although
the intensity of the turbulence can fluctuate in time, the flow in this regime never fully
relaminarises. The central partially mixed layer typically covers the entire length of the
duct and at least a third of its height.

4.2. Regime diagrams
In figure 6 we map the flow regimes described above in 12 DNS with the AR (figure 6a)
and in 15 DNS with the BR (figure 6b) for a range of θ and Re.

These 27 DNS data points, shown as large symbols, are compared with the 148
experimental data points of Lefauve & Linden (2020a) taken from their figure 4(e) and
displayed here as smaller, fainter symbols using the same colour coding for the different
flow regimes. The experimental data points were obtained using the same aspect ratios
(A = 30, B = 1) and with temperature stratification (Pr ≈ 7). The regimes were identified
by shadowgraph visualisation, often over a small streamwise extent of the duct (their
movies can be downloaded from Lefauve & Linden (2020b)). Figure 6 therefore represents
the first direct comparison of DNS results with experimental results in SID, with all
non-dimensional control parameters matched.
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Figure 6. Regime transitions in θ–Re parameter space. The large symbols are our DNS data in the
(a) A-reservoir and (b) B-reservoir, and the small markers are the temperature-stratified experimental data
of Lefauve & Linden (2020a) (see their figure 4e) with matched non-dimensional parameters.

First, we find a general agreement between DNS and experiments in the location of flow
regimes in the (θ, Re) plane, as evidenced by the fact that most large symbols (DNS) are
of the same type as the smaller symbols (experiments). This is the second key result of this
paper, because it confirms that our DNS, with small computationally efficient reservoirs,
can reproduce the key physics of SID, encapsulated in the flow regimes.

The minor exception to this agreement is found near the L/W transition, where some
of our DNS found the W regime whereas the experiments found the L regime. This may
be a genuine difference, but we suspect that this may be due to the fact that the weak
stationary waves found near the L transition may have been missed in the experiments.
This is because the experimental shadowgraphs were visualised over a limited extent of
the duct and because low-amplitude waves in low-Re temperature-stratified flows produce
very small changes in refractive index and thus weak shadowgraph signals.

Second, the AR and BR yield consistent results (figure 6a,b), confirming that the
smallest ‘true’ reservoir (excluding the SR for now) is indeed sufficient to reproduce the
experiments. These results offer strong further support to the preliminary validation of our
suite of DNS in § 3.

4.3. Shadowgraphs
We now turn to a side-by-side comparison of shadowgraph visualisations of the flow in
DNS and experiments within a particular flow regime.

Experimental shadowgraph movies are obtained by the projection onto a semi-transparent
screen of initially parallel light rays that have travelled through the duct along the spanwise
y direction. Any variations in the curvature (normal to the rays) of the density field ρ (and
hence refractive index field n) cause the rays to focus or defocus, varying the intensity that
reaches the screen (Weyl 1954). In the limit of weak variations, the intensity of the image
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Figure 7. Snapshots of shadowgraph comparing the normalised intensity I(x, z) in DNS (a–c) to the matching
experiments (d–f ) in two cases W3 (a,d) and W5 (b,e,c, f ). Magnitudes (colour bar limits) are naturally different
due to the unknown experimental β factor in (4.1). The times at which these snapshots were taken are shown
by the vertical lines in the spatio-temporal diagrams of figure 8.

formed is (see e.g. Lefauve 2018, § 2.1)

I(x, z, t) = βI0(x, z)
∫ B

−B
(∂xx + ∂zz)ρ(x, y, z, t) dy. (4.1)

Here β depends on (ρ0/n0)∂n/∂ρ and the experimental geometry, while I0 is the
(approximately) uniform background intensity of the illumination. This field is thus
particularly suited to detect density interfaces, and is a simple and efficient proxy to
compare the structure of interfacial density waves and small-scale turbulence in DNS and
experiments.

Figure 7 compares false colour instantaneous snapshots of I(x, z) in the I regime over
a central portion of the duct |x| < 9. The DNS shadowgraphs reconstructed from the
calculated density fields (assuming βI0 = 1) are shown in figure 7(a–c) (W3 and W5;
see table 1), and the matching experimental shadowgraph images of I/I0 are shown in
figure 7(d–f ), all at Re = 650 and Pr = 7. We show a single snapshot at θ = 3◦, at the
boundary between the W and I regimes (figure 7a) and two snapshots at θ = 5◦, well
into the I regime, where the flow is in a quiet laminar phase (figure 7b) and in an active
turbulent phase (figure 7c). The full temporal evolution of these four shadowgraphs can be
found in our supplementary movies.

Note that these shadowgraphs were obtained in a new experimental apparatus having
a wide duct B = 2, with a regular straight rectangular section of length A = 40. In these
experiments, the reservoirs were tilted in line with the duct (the whole apparatus pivots
about one end), which exactly matches the DNS. The apparatus had trumpet-shaped
expansions at either end (over an additional 10 % of its length) for a smoother connection
to the reservoirs. While we did not model the trumpet ends in our DNS, we used B = 2 and
the total length A = 44 to reproduce the geometry as faithfully as possible. Trumpet ends
were first used in Meyer & Linden (2014) who reported no visible impact in shadowgraphs
when compared to straight ends. With the parameters A and B increased with respect to
cases B2–B10, the I regime is found at smaller θ values than would be expected from
figure 6 (see Lefauve & Linden 2020a).

We find good agreement in the structure of interfacial waves, somewhat reminiscent
of Kelvin–Helmholtz billows, in DNS and experiments (compare figure 7a,b with
figure 7d,e). These waves have higher amplitude than the stationary waves previously
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Figure 8. Spatio-temporal diagrams of shadowgraph in W3 (a,c) and W5 (b,d) comparing DNS (a,b) with
experiments (c,d). The vertical black solid lines indicate the time of the snapshots in figure 7.

found in B5 (see figure 5b) because the flow is more energetic and prone to the growth
of stratified shear instabilities at B = 2 than at B = 1, due to a weaker influence of the
no-slip sidewalls (see Ducimetière et al. 2021, § IIIc). These waves tend to break into
weak and short-lived turbulence at θ = 3◦ (placing it borderline in the I regime), and
into stronger and longer-lived turbulence at θ = 5◦ (placing it well into the I regime).
We also find good agreement in the overall appearance of small-scale turbulence in the
‘active’ phase (compare figures 7c and 7f ). Active turbulence in the experiment extends
slightly closer to the top and bottom boundaries than in the DNS. This may be a result
of various factors including the non-zero thermal conductivity of the experimental duct
walls, spurious reflections of light and excessive cropping of near-wall regions caused by
the difficulty in locating the exact location of the walls in the shadowgraph images.

Figure 8 illustrates these temporal dynamics with the corresponding z–t spatio-temporal
diagrams in DNS (figure 8a,b) and in experiments (figure 8c,d). We find again good
agreement, both in the vertical growth and decay of the waves and in the alternation and
approximate period of the quiet and active phases.

These shadowgraphs show that our DNS faithfully reproduce not only the qualitative
flow regimes and their distribution in θ–Re space, but also details of their spatial structures
and temporal dynamics, which is a third key result of this paper.

5. Added value of DNS

In this section we examine quantitative DNS diagnostics which, because they are difficult
or impossible to obtain in experiments, add value to the experimental study of SID.

5.1. Vertical profiles and gradient Richardson number
Figure 9 shows, for the five flow regimes previously shown in figure 5, the x, y, t-averaged
velocity 〈u〉(z), density 〈ρ〉(z) and gradient Richardson number Rig based on the gradients
of these mean flows:

Rig(z) ≡ −Ri
∂z〈ρ〉

(∂z〈u〉)2 . (5.1)

Such simultaneous velocity and density diagnostics are available in salt-stratified
experiments (at Pr ≈ 700), and we superimpose on figure 9 the mean profiles in the I and T
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Figure 9. Vertical profiles of the mean (a) streamwise velocity 〈u〉, (b) density 〈ρ〉 and (c) gradient Richardson
number Rig in the five flows of figure 5. We also include the I and T experimental profiles of Lefauve et al.
(2019) at Pr ≈ 700. The vertical dashed lines in (c) denote Rig = 0.1 and 0.25.

regimes from Lefauve et al. (2019) (their figure 4f,l). However, these diagnostics cannot be
accurately obtained in temperature-stratified experiments (at Pr ≈ 7) to match our DNS for
two main reasons. First, the velocity field measurements rely on particle image velocimetry
in a refractive index matched fluid, which is impossible without the introduction of
another stratifying agent (necessarily having a much smaller diffusivity than temperature).
Second, the density field measurements rely on laser-induced fluorescence with a dye
having a much smaller diffusivity than temperature, and therefore ‘tagging’ it poorly
(temperature-sensitive fluorescent dyes exist but such measurements are more difficult and
less accurate).

In figure 9(a), the velocity in the L regime (B2) adopts an approximately sinusoidal
profile with a low amplitude (max |u| ≈ 0.3), whereas in the SW, TW, I and T regimes
(B5, B6, B8 and B10, respectively), the mean velocity varies nearly linearly with height for
|z| � 0.5, and max |u| ≈ 1. The vertical locations of the peaks in velocity, initially around
z ≈ ±0.5 in the L regime, shift slightly towards the top and bottom walls z ≈ ±0.7 in the
I and T regimes. These observations agree qualitatively with the experimental profiles of
Lefauve et al. (2019) in the four regimes (see their figures 3f,l and 4f,l). However, exact
agreement should not be expected as their θ , Re and Pr values differ from ours.

In figure 9(b), the density profile resembles an error function in the L regime (B2)
whereas it has a partially mixed layer in the W and I regimes (B5, B6, B8 and I,
Exp) identified by a central region of reduced gradient (a layer) flanked by two regions
of enhanced gradient (two interfaces). These three profiles are almost identical, with
the nuance that the intermediate layer becomes slightly thicker from B5 to B6 to B8,
as expected. Finally, in the T regime (B10 and T, Exp.), the middle layer becomes
noticeably thicker, and the two interfaces flanking it become less sharp, leading to a profile
approaching a uniform stratification.

In figure 9(c), the L flow has Rig ≈ 0.5 throughout the central quarter of the height of
the duct, flanked by steeply increasing values. The W and I flows have Rig ≈ 0.1 near
z = 0. The T flow has a broader minimum with Rig ≈ 0.1–0.15. The Rig profiles in the
I and T flows are qualitatively consistent between DNS and experiments, showing that,
despite the difference in parameters, some key dynamical features of turbulence are not
sensitive to the fluid properties.

Note that Rig < 0.25 at z = 0 in the W, I and T flows, but not in the L flow. Therefore,
the mean profiles in the non-laminar flows reassuringly satisfy the Miles–Howard
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criterion necessary for the development of instabilities in a steady, inviscid, Boussinesq,
parallel stably stratified shear flow. Moreover, in the T regime Rig(z) ≈ Rie ≈ 0.1–0.15
(i.e. robustly below the Miles–Howard criterion of 0.25). This agrees with the
experimental conclusions of Lefauve & Linden (2022a) (see their figure 5), drawn
from a wider dataset of 16 flows with increasing levels of turbulence. The reasons for
this particular equilibrium, originally suggested by Turner (1973) and much observed
since in numerical, experimental and observational data, are still debated. Other authors
(Thorpe 2010; Smyth & Moum 2013; Salehipour et al. 2018) have called it ‘self-organised
criticality’ or ‘marginal stability’, and found values ranging from Rie ≈ 0.07 to 0.25 in
various stratified shear flows that differ (sometimes significantly) from SID (Lefauve &
Linden 2022a).

5.2. Kinetic energy
We now study the spatio-temporal dynamics of kinetic energy along the entire length
of the duct in our DNS. Similar experimental diagnostics are not yet available since the
resolution of video cameras and geometry of the laser sheet limit us to shorter windows
spanning only a limited part of the duct length.

We start by decomposing the velocity into mean and turbulent (fluctuating) components.
Lefauve & Linden (2022b) defined the mean as the x, t average. However, as our DNS
data are available along the entire length of the duct, the flow (especially u) becomes
noticeably inhomogeneous in x (see figure 5a–c). A simple x average would therefore make
the ‘turbulent’ component artificially large by incorporating a significant non-parallel – but
laminar – component. To resolve this, we define the mean and fluctuations using a moving
average:

ūm (x, y, z, t) ≡ 1
�L

∫ �L/2

−�L/2
u (x − s, y, z, t) ds, (5.2)

u′
m(x, y, z, t) ≡ u − ūm, (5.3)

and the respective ‘moving’ mean kinetic energy (MKE) and TKE are

k̄m ≡ 1
2 ūm · ūm, (5.4)

k′
m ≡ 1

2 u′
m · u′

m. (5.5)

The length of the averaging stencil �L = 10 was chosen to maximise the time- and
duct-volume-averaged MKE 〈k̄m〉V,t, as shown in figure 10(d).

In figure 10(a–c) we demonstrate the use of this moving average with a snapshot in
the travelling wave regime (B6, as in figure 5c). The underlying turbulence ‘hotspots’
visualised by the density field (figure 10a) are faithfully captured by our moving-averaged
TKE k′

m (figure 10b), whereas they are greatly overestimated by the ‘naive’ TKE based on
the x, t-averaged velocity (figure 10c), which is equivalent to setting �L = 2A = 60 and
x = 0 in (5.2).

Figure 11 shows time series of the duct-volume-averaged MKE 〈k̄m〉V (figure 11a) and
TKE 〈k′

m〉V (figure 11b) for the five regimes shown in figure 5. The laminar (B2) and
the stationary wave (B5) cases quickly reach a steady state with constant or near-constant
MKE (figure 11a) and zero or near-zero TKE (figure 11b). We note that the flow in B5
is faster than in B2 as their MKE plateau at ≈0.2 and ≈0.06, respectively. The travelling
wave (B6) case shows more fluctuations in the MKE (but also ≈0.2), and a larger TKE
fluctuating between ≈0.001 and 0.005. The intermittent and turbulent cases (B8 and B10)
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Figure 10. Snapshots of DNS B6 at t = 160 showing the (a) density, (b) moving-averaged TKE k′
m defined in

(5.5) and (c) ‘naive’ TKE based on u′ = u − 〈u〉x,t. (d) Bulk MKE 〈k̄m〉V,t as a function of the stencil length
�L. The dashed line corresponds to our choice in the remainder of the paper �L = 10.
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Figure 11. Time series of volume-averaged (a) MKE and (b) TKE for the five cases B2–B10 of figure 5.
A snapshot of density and TKE in B6 at t = 160 is shown in figure 10(a,b).

show much larger fluctuations in MKE and TKE, and a significantly larger TKE than in the
travelling wave case. In these two cases, the MKE and TKE fluctuations are of comparable
magnitude to their temporal mean. The TKE fluctuations are particularly striking, showing
that the flow, even when averaged over the entire duct volume, is alternating between
phases of intense and weak turbulence. These fluctuations appear to be quasi-periodic with
a period of ≈100 ATU, corresponding to approximately one-and-a-half full-duct transit
times at advective speed 1. Although long known from experiments, the mechanisms
responsible for these fluctuations remain poorly understood and beyond the scope of this
paper. The intermittent regime (B8) differs from the turbulent regime (B10) in that its TKE
occasionally drops to zero for extended periods of time (here 150 � t � 210); i.e. the flow
relaminarises in the duct. This never happens in the turbulent regime, although it does
feature cycles of weaker and stronger turbulence.

Our MKE and TKE time series are approximately similar to their salt-stratified
experimental counterparts in Lefauve & Linden (2022b) (see their figures 1(a,b)
and 3( f,i,o,r), noting that they correspond to Pr ≈ 700). This agreement between the DNS
and experiments extends from the values of MKE ≈0.2 in the W/I/T regimes to the mean
TKE ≈ 0.01–0.02 in the I/T regimes, corresponding to a typical turbulent/mean velocity

ratio of
√

k′
m/k̄m ≈ 20 %–30 % (although the ratio appears to be slightly higher in the DNS

B10 than in the experiments T2 and T3). The large temporal fluctuations in B10 (which
is at the limit of our computational resources) are typical of a flow near the I/T regime
transition rather than well into the T regime, as was already clear from its location on the
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Figure 12. Spatio-temporal diagram of TKE 〈k′
m〉y,z(x, t) for t ∈ [80, 260] (after the initial transients) in DNS

(a) B2, (b) B5, (c) B6, (d) B8 and (e) B10. Note the colourbar is in log scale.

regime diagram (figure 6b). The experimental time series of TKE (see Lefauve & Linden
(2022b), figure 3(o,r) in their datasets T1 and T3) suggest that these temporal fluctuations
would significantly decrease in a more highly turbulent flow at higher Re and θ (i.e. that
the TKE would become increasingly steadily sustained at a higher level). Our B8 has a
time series similar to their dataset T1 (both being near the I/T transition), whereas their
more turbulent dataset T3 is further away from the I/T transition.

Our MKE and TKE time series are generally out of phase in the I and T regimes
(figure 11), although the negative correlation is less clear in the T regime. In other words,
in B8, the MKE tends to decrease as the TKE increases (i.e. turbulence slows down the
mean flow), and vice versa (the MKE tends to increase when the TKE decreases or is
zero). This behaviour, wherein the mean flow and the turbulence appear to regulate one
another, supports the ideas of ‘self-organised criticality’ and ‘marginal stability’ discussed
previously. In B10, this negative correlation holds until t ≈ 200, at which point the TKE
increases rapidly while the MKE continues increasing, leading both TKE and MKE to
peak approximately at the same time. In the T regime the mean flow thus appears closer to
a turbulent threshold, such that perturbations grow more readily without ‘waiting’ for the
mean flow to fully accelerate. Equivalently, in the T regime (which has the highest θ Re),
the mean flow is able to keep accelerating despite the growing turbulence, presumably due
to a higher forcing (because it is proportional to θ ) and a lower TKE dissipation than in
the I regime (because it is inversely proportional to Re) .

Finally, figure 12 shows x–t diagrams of TKE (averaged along y and z) for B2 to B10
(left to right) after the initial transients have decayed (t > 80). In the L regime (B2,
figure 12a), the TKE is negligible except very near the ends of the duct |x| ≈ 30, where
tiny fluctuations are found where the exchange flow discharges into the reservoirs. In the
stationary W regime (B5, figure 12b), the TKE at both ends is higher, extends a little
further into the duct and is also occasionally visible near the centre of the duct |x| ≈ 0
where it appears to remain stationary. Similarly, the ‘end waves’ do not propagate into the
duct and may be swept into the reservoirs, implying that their phase speed is smaller than
the convective speed of the flow (i.e. that the flow may be critical or supercritical in these
regions).

In the travelling W regime (B6; figure 12c), larger TKE develops and it sometimes
appears to propagate along the duct. These waves appear to be generated within the
duct rather than travelling from the ends. In the I regime (B8, figure 12d), a laminar
phase develops between 120 � t � 220, lasting over a full duct transit time (taking
≈2A = 60 ATU at the maximum flow speed ≈1). The boundary between laminar and
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Figure 13. Spanwise-averaged pressure field snapshots (colours) superimposed with five isopycnals (lines)
ρ = 0, ±0.4, ±0.8 in DNS (a) B2, t = 100, (b) S6, t = 108, (c) B6, t = 108, (d) S8, t = 235 and (e) B8,
t = 250.

turbulent phases appears to propagate from one end of the duct to the other. In the T
regime, a quiescent patch develops near the centre of the duct just after t = 200. The
quiescent phase ends when energetic turbulent regions move in from both ends of the
duct.

5.3. Pressure
We now analyse the pressure field throughout the interior of the duct, which is inaccessible
to experiments.

Figure 13 shows representative snapshots of the spanwise-averaged pressure 〈p〉y and
five equally spaced isopycnals for B2, S6, B6, S8 and B8. Note that our definition of
the non-dimensional density ρ as the perturbation around the reference ρ0 (see § 2.1)
implicitly subtracts the hydrostatic pressure due to ρ0 in the reservoirs. The pressure
distribution is qualitatively similar in the W and I regimes (S6, B6, S8, B8; figure 13b–e),
but different in the L regime (B2; figure 13a).

In the L flow inclined at θ = 2◦ (figure 13a), the pressure conforms to what we expect
from an exchange flow in a horizontal duct where θ does not play a major role (see the
sketch in Lefauve (2018), figure 1.4). Essentially, each layer experiences a favourable
streamwise pressure gradient: −∂xp > 0 in the right-flowing lower layer where u > 0,
causing a convective acceleration along the duct, u∂xu > 0; and vice versa, −∂xp < 0
in the left-flowing upper layer where u < 0, causing the expected u∂xu < 0 (∂xu > 0 in
both layers). This is achieved by a high-pressure zone in the bottom left and top right
reservoirs (in red), and a low-pressure zone in the top left and bottom right reservoirs
(in blue), as would be naturally obtained by the hydrostatic equilibrium of two solutions
having different densities and required to match hydrostatic pressures at mid-height.
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However, in flows inclined at θ = 6◦ and 8◦ (figure 13b–e), the pressure has a large-scale
global minimum in the centre of the duct (in blue). This low-pressure zone causes both
layers to experience a favourable pressure gradient over approximately the first half of
their course, causing the fluid to accelerate as it flows towards the centre of the duct,
but an adverse pressure gradient over the second half of their course, causing the fluid to
decelerate from the centre of the duct as it flows away from the centre of the duct. This
adverse pressure gradient confirms the predictions of Lefauve & Linden (2022a) (see their
§ 4.3) who, without having direct access to the pressure field, found that in most datasets
the Reynolds-averaged budget implied the existence of an adverse pressure gradient.

Furthermore, these features of the pressure distribution are found in both the BR and
SR geometries (compare figures 13(b,c) and 13(d,e), despite the difference in the location
of the low-pressure region in the I cases) as the outflowing layers must decelerate in both
geometries. In the BR (and by extension in AR and benchmark), this occurs since the
streams encounter fluid at rest in a large reservoir; in the SR, this occurs since the streams
encounter the artificial forcing region where the flow is brought to rest. This suggests that
the SR cases appear to qualitatively mimic the benchmark case despite the absence of
reservoirs, which may help reduce computational costs further in future studies.

Finally, we address the impact of the adverse pressure gradient on the density field
and its interface(s). The isopycnals in figure 13(a–d) (the yellow lines denoting the lower,
densest layer, and the dark blue lines denoting the upper, lightest layer) show that the
central low-pressure zone coincides with an increasing depth of each layer in the direction
of flow. This is expected from mass conservation along a straight duct: an accelerating
layer (because of a favourable pressure gradient or gravitational forcing) must become
thinner along its course, and vice versa, a decelerating layer (caused by an adverse pressure
gradient) must become thicker. We also see from the isopycnals that this thickening
coincides with the emergence of displaced isopycnals (in B6, S6) and turbulence (in B8,
S8). Note that this interface thickening implies the occurrence of internal hydraulic ‘jump’
and the set-up of hydraulic control (Meyer & Linden 2014; Lefauve & Linden 2020a) in
the middle of the duct. This effect of internal hydraulics is beyond the scope of this paper
and will be revisited in more detail in our future work.

5.4. Turbulent energy fluxes
We conclude this section with an analysis of the turbulent energy fluxes in datasets B5,
B6, B8 and B10 and use it to demonstrate how DNS data allow us to overcome the current
experimental limitations identified in Lefauve & Linden (2022b) (their Appendix B) and
improve our physical understanding of stratified turbulent mixing.

To do so, we adopt the ‘shear-layer’ non-dimensional framework of Lefauve & Linden
(2022a) (§ 3.3) by rescaling all velocities such that the (x, t)-averaged 〈u〉t( y = 0, z) has
extrema ±1, and rescaling all spatial variables such that the z locations of these extrema
are located at ±1 (whereas previously the top and bottom walls were located at ±1); we
call this central region of non-dimensional height = 2 the shear layer. This rescales the
effective Reynolds number and bulk Richardson number of the flow, which we now denote
Res and Risb, respectively, and allows for more meaningful comparison of datasets with
one another as well as with the literature. Following Lefauve & Linden (2022a) we further
remove from our analysis all data outside the shear layer, i.e. exclude the top and bottom
near-wall boundary layers in z, as well the boundary layers in y (where the peak |u| is less
than 0.7), in order to focus on the ‘core’ region with turbulent activity.

We then define the non-dimensional time- and volume-averaged MKE K̄ = 〈k̄m〉S and
TKE K′ = 〈k′

m〉S , as well as the mean scalar variance K̄ρ ≡ Ribs 〈ρ̄2
m/2〉S and turbulent
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scalar variance K′
ρ ≡ Ribs 〈ρ′

m
2/2〉S . Note that the subscript m denotes the moving average

introduced in § 5.2, and that the multiplying factor Risb allows us to interpret Kρ, K′
ρ as

proxies for potential energy under linear stratification. The simple bracket averaging 〈·〉S
denotes a combined three-dimensional volume averaging over the shear-layer region and
along the central two-thirds of the duct (by excluding one averaging window �L on either
end) and time averaging over t ∈ [80, 280] (focusing on the established dynamics as in
figure 12).

Considering the evolution equations of these four energy reservoirs under a set of ‘safe’
approximations in SID, Lefauve & Linden (2022b) derived the following approximate
balances between energy fluxes in a statistically steady state:

P ≈ F − ε̄ ( production of K′ = forcing − laminar dissipation), (5.6a)

E ≈ P − B (dissipation of K′ = production − buoyancy flux), (5.6b)

Pρ ≈ ΦK̄ρ ( production of K′
ρ = boundary net flux of unmixed fluid), (5.6c)

χ ≈ Pρ (dissipation of K′
ρ i.e. mixing = production), (5.6d)

where the eight fluxes are

P ≡ −〈u′v′∂yū + u′w′∂zū〉S , F ≡ Risb sin θ〈ūρ̄〉S ,

ε̄ ≡ 2
Res 〈||s̄||2〉S , E ≡ 2

Res 〈||s′||2〉S ,

⎫

⎬

⎭

(5.7)

ΦK̄ρ ≡ −Risb

〈

(

u
ρ2

2

)∣

∣

∣

∣

x+

x−

x+−x−

〉

S
, B ≡ Risb〈w′ρ′〉S ,

Pρ ≡ −Risb〈w′ρ′∂zρ̄〉S , χ ≡ Risb
Res Pr

〈|∇ρ′|2〉S ,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(5.8)

where s̄, s′ are the strain rate tensors of the mean and turbulent velocity fields, respectively.
From (5.7) and henceforth we omit the subscripts m, using the moving average in all bar
and prime quantities. Equations (5.6b) and (5.6d) are the classical balances of Osborn
(1980) and Osborn & Cox (1972), respectively, while (5.6a) and (5.6c) are specific to SID:
the mean kinetic energy is sustained through F by the gravitational acceleration and the
mean scalar variance is sustained through ΦK̄ρ by the inflow of unmixed fluids from the
reservoirs into the volume of interest.

Figure 14(a–d) demonstrates how closely the four balances (5.6a–d) hold in DNS, where
the thick diagonal solid line denotes equality between the left-hand side (vertical axis) and
right-hand side (horizontal axis) of each equation. The open symbols in figure 14(a,b,d)
denote the value of the left- and right-hand side exactly as in (5.6a,b,d), and are generally
in balance, except in a few cases. In these few cases, the balance is improved by the filled
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symbols obtained after adding the following boundary fluxes:

ΦK̄ ≡ −
〈

(

u
(

u2

2
+ p

))∣

∣

∣

∣

x+

x−

x+−x−

〉

S
to the right-hand side of (5.6a), (5.9a)

ΦK′ ≡ −Risb

〈

(

u′
(

u′2

2
+ p′

))

∣

∣

∣

∣

∣

x+

x−

x+−x− +

(

v′
(

u′2

2
+ p′

))

∣

∣

∣

∣

∣

y+

y−

y+−y−

+

(

w′
(

u′2

2
+ p′

))

∣

∣

∣

∣

∣

z+

z−

z+−z−

〉

S
to the right-hand side of (5.6b), (5.9b)

ΦK′
ρ ≡ −Risb

〈

(

u′ ρ
′2

2

)∣

∣

∣

∣

x+

x−

x+−x− +

(

v′ ρ
′2

2

)∣

∣

∣

∣

y+

y−

y+−y−

+

(

w′ ρ
′2

2

)∣

∣

∣

∣

z+

z−

z+−z−

〉

S
to the right-hand side of (5.6d), (5.9c)

where x±, y±, z± are the edges of our shear-layer averaging domain, and we neglected
in (5.9a) the spanwise and vertical mean transport, in (5.9a)–(5.9b) the work of viscous
forces and in (5.9c) the transport by molecular diffusion, in order to focus on the dominant
contributions. The fact that these fluxes improve the balance only slightly demonstrates
that they can, to a reasonable approximation, be neglected in SID energetics. This result
was hypothesised in Lefauve et al. (2019) and Lefauve & Linden (2022b) but their
experiments could not clearly confirm it due to excessive noise in the computation of (5.9)
and the lack of the pressure. After correction, the only remaining discrepancy is found in
χ in the most turbulent flow B10 (figure 14d), where it is 33 % below the expected value
to balance Pρ .

Part of this discrepancy (13 % out of 33 %) is explained by our neglect of molecular
diffusion Risb/(ResPr)|∇ρ̄|2 in (5.6d), which at these values of Res and Pr is ‘only’
a factor of five smaller than χ . The remaining 20 % of this discrepancy is most
likely be due to under-resolution, as we explain next. Our spatial grid in B10
approaches the time- and volume-averaged Batchelor length scale computed in the
shear layer [�x, �y, �z] = [3.3, 2.3, 2.3] �B, where �B ≡ E−1/4(Res)−3/4Pr−1/2 = 0.01
in non-dimensional shear-layer units. We verified that χ was nearly identical on the
coarser grid (by a factor of ≈2 in x and y; see table 1). However, the time series of the
volume-averaged E undergoes cycles (much like the TKE in figure 11b) with peaks being
three times larger than the time average used for �B. Using this peak value, our grid only
resolves ≈ [4, 3, 3] �B, which may be too coarse to capture the entire spectrum of ∇ρ′
during the most turbulent events. This should be kept in mind for future DNS which aim
to fully resolve mixing.
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Figure 14. Correlation between some of the time- and volume-averaged energy fluxes (5.7)–(5.8) in B5, B6,
B8 and B10. (a–d) Verification of the energy balances in (5.6) (left-hand side versus right-hand side), filled
symbols denoting the minor correction of boundary fluxes (5.9). (e, f ) Verification of the empirical relations
(5.10). (g) Determination of the empirical flux coefficient (5.11) suggesting Γ = 0.1.

Having largely verified (5.6), we now examine in figure 14(e, f ) two robust empirical
relations from the SID experimental literature in very turbulent flows (E � ε̄):

Pρ ≈ B because ∂z〈ρ〉x,t ≈ −1 in the the shear layer, (5.10a)

E + ε̄ ≈ E ≈ 0.035θ because of hydraulic control and Ribs ≈ 0.10–0.15, (5.10b)

where θ is in radians (Lefauve & Linden 2022b). Our DNS data generally confirm (5.10a)
(figure 14e) and (5.10b) (figure 14f ) but with two reservations. First, in B10, Pρ is 25 %
below the expected value B as a result of the mean vertical density gradient being slightly
weaker in our DNS (at Pr = 7) than in the experiments (at Pr = 700). Second, although
the total dissipation E + ε̄ corrected with the appropriate boundary fluxes (filled symbols)
follows (5.10b) (in particular since our Risb indeed converges to 0.12–0.14 in all datasets
B5–B10), the agreement is less good for the turbulent dissipation alone E (smaller open
symbols). In other words, our ability to fully capture E and all boundary fluxes in DNS
allows us to quantify the relative importance of the (subdominant) terms ΦK̄, ΦK′

and ε̄

in SID energetics. We hypothesise that stronger turbulence at higher values of θ Res would
see these subdominant terms plateau, and that E would follow 0.035θ increasingly closely.

We now move to the ultimate goal of this energetics analysis, and more broadly of
research into turbulent mixing, which is to eventually connect all turbulent fluxes to known
non-dimensional parameters of the flow in a closed system of equations. In the asymptotic
‘strong SID turbulence’ scenario under which ε̄ becomes subdominant, we have seven
key turbulent fluxes in (5.7), (5.8) and six independent equations: the four equations (5.6)
expressing conservation of energy, and the two robust empirical equations (5.10), one of
which crucially involves the single input parameter θ . To close the system, we require a
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seventh independent equation, which we choose to be the classical flux parameter in the
ocean mixing literature:

Γ ≡ B
E . (5.11)

Combining these seven equations in matrix form, and inverting this linear system, we
deduce all fluxes in closed form as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0 0
0 −1 1 1 0 0 0
0 0 0 0 1 −1 0
0 0 0 0 1 0 −1
0 0 0 1 −1 0 0
0 0 1 0 0 0 0
0 0 Γ −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F
P
E
B
Pρ

ΦK̄ρ

χ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0

0.0035θ

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F
P
E
B
Pρ

ΦK̄ρ

χ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0.035θ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + Γ

1 + Γ

1
Γ

Γ

Γ

Γ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5.12)

This expression highlights the importance of knowing the value of Γ , and its potential
dependence on any of the non-dimensional flow parameters such as θ, Re or Pr, as the
keystone to turbulent mixing in SID. Figure 14(g) shows B versus E (both of which
are fully resolved in our DNS) which strongly supports the constant value of Γ ≈ 0.1
in the two most turbulent datasets (0.097 and 0.096 in B8 and B10, respectively). The
experimental data Lefauve & Linden (2022b) also found Γ ≈ 0.1 but their insufficient
spatial resolution to fully capture E led them to conjecture a slightly lower value in the
range 0.05–0.07. Our DNS allow us to confirm that Γ ≈ 0.1 is a robust estimate, at
least for turbulence at Pr = 7 in this narrow region of the (θ, Re) space. This value is
smaller than the classical Γ ≈ 0.2 found in most of the literature, potentially because of
the shear-driven nature of SID turbulence, sustained by gravitational forcing, inducing a
different type of equilibrium from that in other canonical flows.

6. Conclusions

In this paper, we performed and interpreted DNS of stratified shear flows in a SID, that
is, a long rectangular duct connecting two reservoirs. The flow is continuously forced
by gravity by a modest positive tilt angle θ = 0◦−10◦, and has Reynolds number Re =
400−1250, bulk Richardson number Ri = 0.25 and Prandtl number Pr = 7. Our results
are summarised as follows.

6.1. An efficient numerical paradigm for SID
In § 2 we presented a new numerical set-up (figure 1) designed to closely mimic the
experimental set-up of the SID. We introduced a new forcing term in the reservoirs
(figure 1) that allows the exchange flow to be sustained indefinitely with smaller reservoirs
than the experiments (Lefauve et al. 2019), thus focusing our computational resources on
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the flow of interest within the duct. We also implemented an IBM (figure 2) to enforce the
boundary conditions on the duct walls that match the experiments, i.e. no-slip for velocity
and no-flux for density.

In § 3 we validated this numerical configuration. First, we showed that our artificial
forcing in the reservoirs was necessary to sustain the exchange flow by ‘refreshing’ any
finite-sized reservoirs beyond the short time scale over which they would otherwise fill
with mixed fluid (figure 3). Second, we showed that small reservoirs combined with the
appropriate forcing were sufficient to reproduce the flow of a benchmark case having
very large reservoirs and no forcing (figure 4). Additional evidence that the key flow
kinetics (e.g. wave propagation and turbulent intermittency) and statistics (e.g. mean
flow quantities) in the SID are largely independent of reservoir size, spanwise length and
perturbation magnitude is provided in supplementary material S1. This independence has
been explained by the establishment of hydraulic control (Meyer & Linden 2014; Lefauve
2018).

In § 4 we described the properties of increasingly disorganised and turbulent flow
regimes found by increasing Re and θ (figure 5). These regimes are similar to those
found in experiments where the stratification is achieved by temperature (approximately
matching our Pr = 7), which further validates the relevance and accuracy of our DNS
to faithfully reproduce experimentally realisable flows. These flow regimes are generally
found in the same region of θ–Re parameter space as the experiments (figure 6),
with very little difference between the larger reservoir (AR) and the smaller reservoir
(BR). This agreement between DNS and experiments carries over to more detailed
flow characteristics visualised by instantaneous shadowgraph snapshots (figure 7) and
spatio-temporal diagrams (figure 8).

In § 5 we studied quantitative DNS diagnostics that complement experimental
diagnostics. We first investigated the vertical velocity and density profiles. The gradient
Richardson number (figure 9) displayed the same turbulent ‘equilibrium’ with nearly
uniform Rig ≈ 0.10−0.15 across the shear layer as in the experiments, despite the
difference in Pr. We then moved to the mean and turbulent kinetic energies (figure 10),
introducing a moving-average (in x) definition suited to our DNS data, focusing on the
intermittency of the turbulence (figure 11). We investigated the spatio-temporal behaviour
of the TKE (figure 12), exploiting the fact that our DNS data are available along the full
length of the duct. We contrasted stationary and travelling waves, described where waves
originate from and how turbulence or relaminarisation sometimes occurs synchronously
along the duct, and sometimes in ‘waves’ propagating at the advective speed. Next,
we investigated the pressure field (figure 13) and discovered a large-scale low-pressure
zone inside the duct in all non-laminar flows, which was previously conjectured with
experimental data, but only proven now with DNS data. We showed that our ad hoc
forcing, even in the smallest geometry SR, was sufficient to reproduce this behaviour
observed with real reservoirs. This low-pressure zone creates a favourable pressure
gradient in both layers over roughly the first half of their transit, allowing them to
accelerate as they flow in, but, crucially, an adverse pressure gradient over roughly the
second half of their transit, causing them to decelerate before they flow out. This result
suggests a potentially new mechanism for hydraulic control in exchange flows tilted at
a favourable angle θ , which requires further study. Finally, we have largely confirmed
the simplified model in (5.6) for the steady-state kinetic and scalar energy fluxes in SID
turbulence, as well as the empirical relations in (5.10) (figure 14) hypothesised from
experimental data. This allowed us to express in (5.12) all seven fluxes fully characterising
the time- and volume-averaged turbulent energetics and mixing in SID as functions of θ
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and the flux coefficient Γ . Our data suggest Γ ≈ 0.1 in the most turbulent flows, a value
lower than the classical value of 0.2 used in most of the ocean mixing literature. The
physics behind this difference warrants further study.

6.2. Outlook
This paper introduced a computationally efficient way to simulate realistic shear-driven
stratified turbulence over long time periods, which shows excellent agreement with the
experiments, with all non-dimensional parameters being matched (at Pr = 7). We consider
this comprehensive agreement between highly nonlinear numerical and experimental fluid
dynamics to be the major result of this paper, and a milestone in the study of SID and
stratified turbulence. Furthermore, the numerics add considerable value to the experiments
by providing accurate and highly resolved data over the entire domain, and by allowing
arbitrarily long integration times with the addition of forcing terms in the reservoirs.

There is significant scope to build on this study, by overcoming technical challenges.
For example, improved experimental technology is needed to obtain more accurate,
higher-resolution data in more highly turbulent flows at Re = O(103−104). Increased
computational power is also needed to match such Re and Pr to tackle the differences
between temperature (Pr = O(1)) and salt stratification (Pr = O(102)). Finally, studying
the slow, quasi-periodic dynamics of intermittent turbulence requires large physical
reservoirs and data acquisition as well as long integration times and costly simulations.
Nevertheless, as experimental technology improves and computational power increases,
we anticipate that these techniques will be able to cover a much larger range in parameter
space and answer questions previously inaccessible to theory, observations, experiments
or simulations alone.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.502. The full flow data of the five main cases B2, B5, B6, B8, B10 can be downloaded from
the repository https://doi.org/10.17863/CAM.99586. Additional data can be provided upon reasonable request
to the authors.
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