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Abstract

A plethora of approaches have been proposed for joint entity-relation (ER) extraction. Most of
these methods largely depend on a large amount of manually annotated training data. However,
manual data annotation is time-consuming, labor-intensive, and error-prone. Human beings
learn using both data (through induction) and knowledge (through deduction). Answer Set
Programming (ASP) has been a widely utilized approach for knowledge representation and
reasoning that is elaboration tolerant and adept at reasoning with incomplete information. This
paper proposes a new approach, ASP-enhanced Entity-Relation extraction (ASPER), to jointly
recognize entities and relations by learning from both data and domain knowledge. In particular,
ASPER takes advantage of the factual knowledge (represented as facts in ASP) and derived
knowledge (represented as rules in ASP) in the learning process of neural network models. We
have conducted experiments on two real datasets and compare our method with three baselines.
The results show that our ASPER model consistently outperforms the baselines.

KEYWORDS: joint entity-relation extraction, semi-supervised learning, answer set program-
ming, knowledge-enhanced models

1 Introduction

Entity-relation (ER) extraction is to identify named entities and relations from unstruc-

tured text. For joint ER extraction, deep neural network (NN) models have created many

successful stories (e.g. the papers by Gupta et al . 2016; Eberts and Ulges 2020; Wang

and Lu 2020). Despite such success, the supervised NN methods depend on utilizing a

large amount of well-labeled training data. However, labeling free text data with entities/

relations is time-consuming, labor intensive, and error prone because of a lot of noise, as

shown by Chen et al . (2022).

Semi-supervised learning (SSL), introduced by Chapelle et al . (2006) and Ouali et al .

(2020), has been utilized to improve predictions by using a small amount of labeled data

and a much larger amount of unlabeled data. Among the many SSL approaches, the

proxy-label methods described in the papers by Ruder and Plank (2018) and Ouali et al .

(2020) are one commonly utilized strategy. These approaches create different strategies
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to utilize the pseudo labels that are predicted from the unlabeled data. However, most

of them do not make use of domain knowledge as discussed by Hu et al . (2016), which

is abundant and very useful, in symbolic forms in the learning process as shown in the

survey by Ouali et al . (2020).

Recent years have witnessed the increasing interest in utilizing general domain knowl-

edge (e.g. represented as symbolic knowledge) to improve machine learning models to

alleviate the issue caused by the lack of large amounts of labeled data. Such efforts

include neural symbolic modeling and abductive learning.

Neural symbolic models, referred by us as works that encode the knowledge and rules

to be a holistic component of neural network models (e.g. through the design of a new

loss function). Such models have achieved great success (e.g. see the papers by Hu et al .

2016; d’Avila Garcez et al . 2019). However, tightly modeling the symbolic knowledge

as a part of NN models suffers from the elaboration tolerant issue where the model is

hard to scale to changes of logical representations of facts (e.g. loss functions need to be

modified when adding new rules).

Zhou (2019), Dai et al . (2019), and Cai et al . (2021) introduced abductive learning

that combines machine learning models (which are mainly data-driven) and logic pro-

gramming (which encodes background knowledge and reason about them). In abductive

learning, an initial machine learning model M is trained from the labeled data and used

to get predicted labels from the unlabeled data (denoted as pseudo labels). Pseudo labels

may be wrong or inconsistent when the modelM is not effective. Example 3 demonstrates

different issues of pseudo labels. The pseudo labels are revised to get a new set of con-

sistent pseudo labels through minimizing the inconsistency of the abduced labels and

the knowledge. The revised set of pseudo labels are used to retrain a machine learning

model. Most existing abductive learning approaches use first-order logic (FOL) to encode

knowledge.

In this work, we propose to design an SSL approach by encoding domain knowledge

and rules using Answer Set Programming (ASP) for the joint recognition of entities and

relations. The purpose of using the domain knowledge is to generate consistent pseudo

labels (consistent w.r.t. the knowledge base) and derive more pseudo labels that cannot

be predicted using the pure data-driven models. ASP instead of FOL is used because of

multiple advantages ASP provides. ASP is a simple, rule-based, and declarative language

that possesses several theoretical building block results which support the development

of provably correct programs. In addition, ASP is non-monotonic, which is important for

dealing with commonsense knowledge, and supports an elaboration tolerant development

of programs. For non-logical experts, ASP-rules are easier to use and to understand than

FOL-formulae.

The main contributions of this work are as follows.

• A new framework, ASP-enhanced Entity-Relation extraction (ASPER), is intro-

duced to make use of sophisticated domain knowledge in neural network models.

ASP-encoded knowledge and rules intend to generate higher quality pseudo labels,

which are further used to improve the model. As far as we know, this is the first

work that incorporates logic programming to deep learning models for joint ER

extraction.
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• ASPER introduces novel commonsense rules to select pseudo labels that may im-

prove the model performance with higher probabilities.

• The experimental evaluation on two real datasets shows that the proposed AS-

PER consistently improves the other baselines.

In what follows, Section 2 reviews the related work, Section 3 formally defines the prob-

lem and related notations, Section 4 explains our new framework, Section 5 shows our

experimental results, and Section 6 concludes the work.

2 Related work

SSL methods are designed to make use of a small amount of labeled data and a much

larger amount of unlabeled data in the learning process. Traditional SSL methods in-

cluding self-training and tri-training have been revisited recently by Ruder and Plank

(2018). Both self-training and tri-training utilize an iterative process to improve the initial

model(s) trained on the small amount of labeled data by iteratively adding pseudo labels

to the training set. In each iteration, self-training picks pseudo labels that have higher

prediction probability and tri-training picks the pseudo labels that are agreed by at least

two models. A surprising finding in such revisit is that the classic tri-training, introduced

in the paper by Zhou and Li (2005), strategy with minor changes can outperform many

recent NN models.

Many recent SSL approaches have been proposed to conduct ER extraction. Hu et al .

(2021) proposes a self-training based SSL method for relation extraction. In each it-

eration, it adopts meta-learning to generate higher quality pseudo labels. Curriculum

labeling, introduced in the paper by Cascante-Bonilla et al . (2021), borrows the idea

of curriculum learning discussed in the paper by Bengio et al . (2009), which uses easy

samples first and proceeds to use hard samples, and proposes a self-paced curriculum

(curriculum labeling) in the pseudo labeling process. However, this model does not use

any symbolic knowledge. Most of these approaches do not make use of domain knowledge

in symbolic forms.

Similar to SSL, neural network models also alleviate the issue of insufficient labeled

data. Hu et al . (2016) is the first work of integrating logic rules with NN models. It

proposes an iterative distillation method to enhance several NNs with declarative first-

order logic (FOL) rules, which is encoded using soft logic. NeurASP, introduced in the

paper by Yang et al . (2020), also employs ASP and neural networks. Its knowledge

base is predefined and all the atoms are utilized in the learning process. However, our

knowledge base is used to generate answer sets with consistent pseudo labels and some

answer sets (when multiple are available) may not be utilized in the learning process.

Our work also shares similarity with the framework of abductive learning such as those

described in the papers Zhou (2019), Huang et al . (2020) in that symbolic knowledge

is used to improve the quality of pseudo labels. However, our work is different from

abductive learning in several aspects. Abductive learning (e.g. the paper by Huang et al .

2020) derives abduced pseudo labels through an optimization process. Once these labels

are revised, they are used to retrain a model. When they retrain a model, all the pseudo

labels are utilized. Our approach utilizes a subset of the pseudo labels, which have higher

probability to be true, to retrain a model. In addition, the pseudo labels are iteratively

refined using ASP, which provides powerful reasoning capability.

https://doi.org/10.1017/S1471068423000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000297


768 T. H. Le et al.

3 Problem definition and terminology

This section defines our research problem and related terminology.

Problem definition: Given a dataset DL (training data) with labeled entities and

relations, a dataset DUL without any annotated labels, where |DL| � |DUL|, and a

knowledge base1 KB which encodes the common sense facts and reasoning rules, our

problem is to learn an NN model M ← f(DL, DUL,KB) to capture the hidden patterns

about entities and relations in the datasets DL ∪DUL.

Definition 1 (Pseudo labels). Given a model M and a dataset DUL without any anno-

tated labels, the predicted labels from DUL using M are called pseudo labels.

The possible entity and relation labels that occur in the training data DL are repre-

sented as ent and rel. Given any token or word in a sentence, we use b and e to represent

the beginning and ending locations of that token in the sentence. The b and e are in the

range of 0 and the total number of tokens of a sentence. An entity pseudo label is in the

form of

ent(b, e), conf (1)

It means that the tokens at the locations [b, e−1] in the sentence is of entity type ent.

Here, conf is a value in the range of [0,1] indicating the confidence of the prediction.

A relation pseudo label is in the form of

rel(b, e, b′, e′), conf (2)

Here, b (b′) and e (e′) represent the beginning and ending locations of the first (second)

token in the relation. To make the descriptions more intuitive, we sometimes represent

a relation as

rel(tokens, tokens′), conf (3)

where tokens (tokens′) are the first (second) tokens at locations [b, e) (and [b′, e′)).
Without loss of generality, we may omit conf when writing the entity and relation pseudo

labels.

Example 1 (Running example notations). In later examples, we will use some well

defined entity types. For example, org, loc, and peop represent organization, location, and

people respectively. Some predefined relations are livedIn, locatedIn, and orgBasedIn.

They describe one person, a location, and an organization lives in, is located in, or is

based in a location respectively.

4 ASP-enhanced neural network models for Entity-Relation extraction

(ASPER)

This section presents our proposed ASPER method. ASPER targets at utilizing answer

sets and ASP to improve the quality of pseudo labels and derive more useful labels to

retrain the model.

1 The KB is domain-dependent. We discuss practical ideas on developing such KB for the joint ER
extraction problem in the later section.
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4.1 ASPER framework

The framework of ASPER is shown in Algorithm 1. ASPER first trains an initial model

using the limited amount of training data (Line 1) and improves the model through an

iterative process using ASP revised pseudo labels (Lines 3–20).

To train an initial neural network model, we utilize the SpERT architecture proposed in

the paper by Eberts and Ulges (2020) due to its lightweight nature. Multiple iterations

(Steps 3–20) are used to improve the model. In each iteration, ASPER predicts the

entities and relations in a sentence x (i.e. the pseudo labels) using the model M (Line 7)

where M can be the initial model (trained in Line 1) or the retrained model (Line 18).

Then, it utilizes ASP to update these pseudo labels (Lines 8–10). The updated pseudo

labels coupled with the selected sentences are then used to retrain the model (Lines 12–

18). There are many ways to revise pseudo labels. We define a preference relation over

the sets of revised labels (answer sets) based on the notion of the probability of a set

of revised labels (Definition 2 in Section 4.2). This preference relation is then used to

select the most preferred set of revised labels. The iteration condition can be that the

prediction of the unlabeled data does not change anymore or the number of iterations

reaches a threshold. In our experiments, we set the number of iterations to be a fixed

number.

4.1.1 Generate pseudo labels

Using the initially trained model or a model that is trained in the previous iteration M ,

the algorithm can recognize the entities and relations in the unlabeled dataset DUL. The

predicted entity and relation pseudo labels are in the form of equations (1) and (2).

Algorithm 1 ASPER framework
Input: Labeled data DL; Unlabeled data DUL; Knowledge Base KB
Parameter: Confidence step parameter Δ (e.g. 20)
Output: The model M

1: Learn an initial model M from DL

2: Δt = 100−Δ
3: while iteration condition is not met do
4: Z← ∅ # The set of the selected answer sets for all the sentences in DUL

5: Daug ← ∅ # The pseudo labels augmented to train the model
6: for each sentence x ∈ DUL do
7: z ← GenPseudoLabels(M , x)
8: AS ← Convert2Atoms(z)
9: W ← ReviseUsingASP(AS ∪KB) #W is an answer set associated with a confidence value

W.conf
10: Z← Z ∪W
11: end for
12: T ← the confidence value at Δt percentile of all the answer sets in Z

13: for each answer set W ∈ Z do
14: if W.conf ≥ T then
15: Daug ← Daug ∪W
16: end if
17: end for
18: Train model M on DL ∪Daug from scratch
19: Δt = Δt −Δ
20: end while
21: return M
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Fig. 1. Example of pseudo labels (a node represents an entity and a directed edge between a
source (first tokens) and a destination (second tokens) represents a relation).

Example 2 (Pseudo labels). Given a sentence “CDT Tuesday is in the area of Port

Arther and Galveston, Texas.” the predicted pseudo labels look like the following:

org(0,2), 0.888 other(1,2), 0.799 locatedIn(7,9,10,11), 0.998

loc(7,9), 0.998 loc(10,11), 0.998 locatedIn(0,2,12, 13), 0.993

loc(12,13), 0.998 orgBasedIn(1,2,12,13), 0.777 locatedIn(10,11,12,13), 0.993

The pseudo label “org(0,2), 0.888” means that the token from location 0 to 1 (which is

“CDT Tuesday”) is an organization (org). This prediction has confidence value 0.888.

Similarly, the pseudo label “loc(7,9)” means that “Port Arther” (the tokens at loca-

tions 7 and 8) is of type location (loc). Correspondingly, the predicted relation “locate-

dIn(7,9,10,11)” means that “Port Arther” is located in “Galveston.” The other entities

and relations can be interpreted accordingly. To assist the understanding of the relations,

we create a figure (Figure 1) for these entities and relations.

4.1.2 Improve pseudo label quality using answer sets

The predicted entity and relation pseudo labels may be wrong (just like any machine

learning model does) or inconsistent.

Example 3 (Inconsistent and hidden pseudo labels). Example 2 shows the pseudo labels

predicted from one sentence. They have different types of inconsistencies.

• (inconsistent labels) The relation locatedIn(CDT Tuesday, Texas) and entity

org(CDT Tuesday) are not consistent because the first term of locatedIn needs to be

a location, but CDT Tuesday is an organization. Similarly, the entity other(Tuesday)

and relation orgBasedIn(Tuesday, Texas) are not consistent because the first term of

orgBasedIn needs to be an organization.

• (overlapping entities) The two entities org(0, 2) and other(1, 2) overlap because

“Tuesday” is a part of “CDT Tuesday.” It makes more sense not to have both.

• (hidden labels) Given locatedIn(Port Arther,Galveston) and locatedIn(Galveston,

Texas), another relation locatedIn(Port Arther, Texas) should be valid. However, the

model does not predict this relation.

In utilizing pseudo labels to improve a model, a recognized problem is confirmation

bias as mentioned in the paper by Cascante-Bonilla et al . (2021), which means that

utilizing the wrong pseudo labels to retrain a model can amplify the error. It is critical

to control which pseudo labels are utilized to retrain the model.

The issues listed above are not inclusive. Their root issue is the ineffective pure data-

driven model learned from insufficient training data. The most commonly identified issue

with an ineffective model is its inaccurate predictions. We target at addressing the root

issue by somehow correcting the wrongly predicted pseudo labels. Our ASPER framework
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(Lines 8–10) improves the quality of pseudo labels by computing a consistent set of pseudo

labels (an answer set). It first converts all the pseudo labels (z) to a set of atoms AS

that ASP can process (using Function Convert2Atoms). Given AS and the knowledge

base KB, there may be multiple answer sets. ReviseUsingASP utilizes the rules in the

KB to calculate a probability for each answer set and chooses the one with the highest

probability and associates with it a confidence level. The details of the two steps are

described in Section 4.2.2.

4.1.3 Model retraining with improved pseudo labels

Once we get the improved pseudo labels from the unlabeled dataset DUL, these improved

pseudo labels are put to Z (Line 10) and are used to help retrain the model.

We observe that some answer sets have much higher confidence values than others.

The pseudo labels in these answer sets tend to be correct with higher probabilities.

Based on this observation, the model retraining first utilizes the pseudo labels in the

answer sets with higher confidence values and proceeds to use pseudo labels in answer

sets with lower confidence values. This idea is the same as that in curriculum labeling

proposed by Cascante-Bonilla et al . (2021) that uses a portion (with high prediction

confidence) of the pseudo labels to retrain a model in each iteration. This curriculum

idea is implemented through the use of Δt in Line 12. With the iterations proceed, Δt

decreases (Line 19). At the end, when Δt becomes zero, the model retraining uses the

pseudo labels in all the answer sets.

4.2 Computing improved pseudo labels via ASP

Background. ASP, proposed in the papers by Marek and Truszczyński (1999), and

Niemelä (1999), is a knowledge representation and reasoning (KR&R) approach to prob-

lem solving using logic programs under answer set semantics introduced by Gelfond and

Lifschitz (1990). In ASP, a problem is solved by first encoding it as an ASP program,

whose answer sets correspond one-to-one to the solutions of the problem. The encoded

ASP program is then given to an ASP solver (e.g. clingo as described in the paper by

Gebser et al . 2014) to compute answer sets and solutions can be extracted from these

answer sets.

The ASP language also includes language-level extensions to simplify the use of ASP

in practical applications. We will make use of the choice atom of the form l {l1; . . . ; ln}u
where li is an atom, l and u are integers. Intuitively, it says that the number of literal li
that is true must be within a lower bound l and an upper bound u. If l (resp. u) is not

specified, then the lower (resp. upper) bound is 0 (resp. +∞) by default. A choice atom

can appear in the head or body of a rule or after the default negation.

4.2.1 ASP for computing pseudo labels

First, the pseudo labels representing the entities (equation (1)) and relations (equa-

tion (2)) are represented in ASP using atoms of the form (4) or (5).
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atom(entity(ent, b, e), conf) (4)

atom(relation(rel, b, e, b′, e′), conf) (5)

Let AS be the collection of atoms of the form (4) or (5) for a sentence S. A sentence

is a part of a dataset D that often has declarative knowledge associated with it. In this

paper, we consider the different types of knowledge that are usually available given D

which can be specified as follows:

1. Type declaration: a type declaration defines the type of a relation and is given in the

form

type def(rel, ent, ent′). (6)

A type declaration by equation (6) says that relation rel is between entities ent and ent′.
For example, in the domain CoNLL04 (see next section), the relation liveIn is specified by

the atom type def(liveIn, peop, loc) which says that it is a relationship between entities

of the types peop and loc.

2. Inference rule: in many domains, there are relationships among relations. For example,

locatedIn is transitive in the sense that if area A is located in area B and B is located

in C then A is located in C. This rule can easily be specified by an ASP rule of the

following form2:

rule(X,Y, Z)← Body (7)

where X, Y , and Z is of the form relation(R,B,E,B′, E′) and Body is domain-specific
information. The rule relating to locatedIn discussed above can be encoded as follows:

rule(relation(locatedIn,B1, E1, B2, E2), relation(orgbasedIn,Bo, Eo, B1, E1),

relation(orgbasedIn,Bo, Eo, B2, E2))←
atom(relation(locatedIn,B1, E1, B2, E2)), atom(relation(orgbasedIn,Bo, Eo, B1, E1)),

not atom(relation(orgbasedIn,Bo, Eo, B2, E2)).

The head of the above ASP rule encodes an inference rule, whose first two labels (the

relations on the first line) are predicted but the third relation (underlined) is missing in

the set of predicted labels. This inference rule is used for inferring the third pseudo label

only if the first two pseudo labels exist and the third pseudo label is not in the predicted

model.

3. Optional parameters: in some dataset, entity pseudo labels cannot overlap and/or each

sentence has at least one relation. Such information can be specified by setting different

flags. In our experiments, we use the following:

overlap fl. % true if present (8)

relation fl. % true if present (9)

Form (8) forbids overlapping entities while (9) signals that each sentence should have a

relation.

2 We use variables (strings starting with an uppercase letter) in the logic program. A rule with variables
is the collection of ground rules obtained from substituting variables with any possible values; in this
case, variables refer to locations in the sentence.
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4. Other rules : any ASP rule can be a part of the domain-dependent part. Preferably,

these rules work with the predicates defined below.

We refer to the collection of rules of the form (7)–(9) and any other rules for a domain

D as KBD. We denote that AS is inconsistent when it contains pseudo labels that either

contradict to each other or violate the rules in KBD.

We next describe Π, the ASP program that takes the domain-dependent knowledge

KBD and the set of pseudo labels for a sentence AS as inputs and produces a consistent

set of pseudo labels. Π uses the following main predicates:

• pi(X): the prediction of X (entity/relation pseudo label) might be incorrect (pi stands

for possible incorrect);

• ok(X): the prediction of X is considered as correct; as such, X can be used as pseudo

label (for further training);

• nok(X): X is not included in the output (set of pseudo labels); and

• inf(X): X is derived using domain-dependent rules.

1. Overlap checking rules : Π contains the following rules:

2{pi(entity(N,B,E)); pi(entity(N ′, B′, E′))} ← overlap fl,

atom(entity(N,B,E)), B < B′, E > B′, atom(entity(N ′, B′, E′)). (10)

← overlap fl, ok(entity(N,B,E)), B < B′, E > B′, ok(entity(N ′, B′, E′)). (11)

Rule (10) states that if the starting location B′ of an entity (N ′) lies within the interval

of the some other entity (N) then the prediction of the two entities might be wrong

which is represented by the predicate pi. This leads to the constraints (11) that prevents

the consideration of both entities at the same time when they overlap in a sentence. The

presence of overlap fl in these rules indicates that they are in effect only if overlap fl is

set to true in KBD. Similar rules and constraints are also implemented for the case that

the starting indices of both entities are the same. They are omitted for brevity to save

space and are listed in the appendix.

2. Type checking rules : This type of rules is used to make sure that the entity types and

relation types are consistent with the type declaration information in KBD:

2{pi(relation(R,B,E,B′, E′)); pi(entity(N,B,E))} ← type def(R,N1, N2),

atom(relation(R,B,E,B′, E′)), atom(entity(N,B,E)), N1 �= N. (12)

← ok(relation(R,B,E, , )), ok(entity(N,B,E)), type def(R,N ′, ), N �= N ′.(13)

Rule (12) states that if the first entity in a predicted relation is different from its specified

type then both the predicted relation and the entity might be wrong. Constraint (13)

disallows the acceptance of both the relation and entity if their types do not march the

specification. Again, we omit some rule relating to the second entity and the relation.

3. Type inference rules : These rules use the type declarations from KBD to infer the

type of accepted entities or the possible incorrect predictions of relations and entities.

2{ok(entity(N,B,E)); ok(entity(N ′, B′, E′))} ←
type def(R,N,N ′), ok(relation(R,B,E,B′, E′)). (14)

pi(entity(N ′, B′, E′))← atom(relation(R,B,E,B′, E′)),

pi(entity(N,B,E)), type def(R,N,N ′). (15)
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Rule (14) says that if a relation R is accepted as a true prediction then we should also

accept its first and second entity with the type specified by the type declaration of R.

Rule (15) indicates that if the first entity of a relation R is potentially incorrect then so

is its second entity.

4. Rules for inference from predictions : The following rules are used for processing an

inference rule specified in KBD via atom of the form rule(X,Y, Z).

6{pi(X); pi(Y ); pi(Z); inf(Z); dependency(X,Z); dependency(Y, Z)} ←
rule(X,Y, Z), atom(X), atom(Y ), not atom(Z). (16)

← ok(Y ), inf(Y ), dependency(X,Y ), not ok(X). (17)

← rule(X,Y, Z), ok(X), ok(Y ), not ok(Z). (18)

Rule (16) says that if we have an inference rule rule(X,Y, Z) and X and Y were predicted

but not Z then Z is an inferred prediction and all the predictions might be incorrect.

Furthermore, Z depends on X and Y . Constraint (17) states that if Y is an inferred

atom and depends on X then the acceptance of Y cannot be done separately from the

acceptance of X. Constraint (18), on the other hand, states that if rule(X,Y, Z) is an

inference rule then the acceptance of X and Y cannot be done separately from the

acceptance of Z.

5. Rules for checking the existence of relation: The following rule records the acceptance

of some relation pseudo label whenever relation fl is defined:

relation exists← ok(relation(R, , , , )), relation fl. (19)

6. Rules for selection of a consistent set of pseudo labels : This set of rules defines the

various types of atoms that will be used for computing the probability of a set of pseudo

labels and selecting a set of pseudo labels.

atom(X)← atom(X,P ). (20)

prob(X,P )← atom(X,P ), ok(X). (21)

ok(X)← atom(X), not pi(X). (22)

invprob(X,P )← atom(X,P ), nok(X). (23)

{ok(X)} ← 1{atom(X); inf(X)}, pi(X). (24)

nok(X)← 1{atom(X); inf(X)}, not ok(X). (25)

Rule (20) projects an input atom(X,P ) to define atom(X) for use with other part of

the program. Rules (21)–(23) define the predicates prob and invprob that are used in

computing the probability of the set of selected labels (see later). Rule (22) says that if

there is no information about the potential incorrectness of the prediction of X then X

must be accepted as a pseudo label. Rule (24) states that if the prediction of X might

be incorrect then X could be accepted or not accepted as a pseudo label. Rule (25) says

that if X is not selected as a pseudo label then nok(X) is true.
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In summary, Π is the collection of rules of the Rules (10)–(25). Together with the set AS

of the predicted labels and the knowledge baseKBD, we can compute a new set of pseudo

labels by computing the answer sets of π(S) = AS∪KBD∪Π. Each answer set W of π(S)

consists of a set of atoms of the form ok(X). We say that L(W ) = {X | ok(X) ∈ W}
is the set of pseudo labels corresponding to W . Intuitively, L(W ) encodes a revision of

AS . For an arbitrary sentence S in a domain D, we can prove several properties of the

program π(S) such as (i) π(S) is consistent; (ii) if AS does not contain any relation

then relation exists does not belong to any answer set of π(S); and (iii) for every W ,

L(W ) does not contain any overlapping pseudo labels if overlap fl is true; and L(W )

does not contain type-inconsistent relations or entities. Intuitively, (i) represents the fact

that there is always some revision of AS . This can be proven using the splitting theorem

proposed by Lifschitz and Turner (1994); (ii) holds because of Rule (19); and (iii) holds

due to the rules and constraints defined for type inference and checking. Due to space

limitation, we omit the formal proof. The next example illustrates the use of Π.

Example 4. Consider the sentence in Example 2. The program produces twenty answer

sets (the KBCoNLL04 and the answer sets of the program are given in the Appendix). We

observe that

• Some answer set does not contain any atom of the form ok(relation(. . .));

• No answer set contains both ok(entity(org, 0, 2)) and ok(entity(other, 1, 2)) because

they overlap each other and KBCoNLL04 contains overlap fl;

• ok(relation(orgBasedIn, 1, 2, 12, 13)) belongs to some answer sets but not all. It is

because entity(other, 1, 2) is of the type other that does not match the required type

(org) in the definition of orgbasedIn; and

• If ok(relation(locatedIn, 7, 9, 10, 11)) and ok(relation(locatedIn, 10, 11, 12, 13)) be-

long to an answer set then ok(relation(locatedIn, 7, 9, 12, 13)) also belongs to the an-

swer set due to the transitivity of locatedIn, a part of the KBCoNLL04.

Note that encoding knowledge in ASP incurs extra works. However, compared with

manually labeling a large amount of data, this extra works pay off.

4.2.2 Computing the most preferred answer set

Definition 2 (Preference score of an answer set). Given an answer set W , its preference

score is defined as

pref(W ) = Πprob(a,p)∈W p ∗Πinvprob(a,p)∈W (1− p) (26)

The preference score pref(W ) is the product of two terms, the first term is the product of

the confidence level p of every pseudo label a such that ok(a) ∈W (hence, prob(a, p) ∈W ,

due to Rule (21)) and the second term is the product of the complement confidence level

1−p of pseudo label a such that ok(a) �∈W (hence, invprob(a, p) ∈W , due to Rule (23)).

It is easy to see that for two answer sets A and B such that L(B) ⊆ L(A) (i.e. A contains

all acceptable labels in B), if prob(l, p) ∈ A and p ≥ 0.5 for every l ∈ L(A) \ L(B), then

p(A) ≥ p(B). Intuitively, this probability definition favors answer sets containing more

(w.r.t. ⊆) pseudo labels whose confidence level is greater than 0.5. When relation fl is

set to true, we set pref(W ) = 0 if relation exists �∈ W . Preference will be given to the

answer set with maximal probability. When all answer sets have zero preference, we prefer
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those with higher number of entity pseudo labels. The selection of the most preferred

answer set is implemented using clingo and its PythonAPI library. The confidence level

of an answer set W (i.e. W.conf) is defined by min{p | prob(l, p) ∈W}.

5 Experiments

The algorithms and models are implemented in Python 3.8 and run on a server with two

32-core GPU @3.9 GHz, 512 GB RAM, and one NVIDIA A100 GPU. The Clingo version

is 5.5.2.

Data. We use two datasets, CoNLL04 (Eberts and Ulges 2020; Roth and Yih 2004; Gupta

et al . 2016; Wang and Lu 2020) and SciERC (Eberts and Ulges 2020; Luan et al . 2018),

which have been utilized in other entity/relation extraction work. The CoNLL04 dataset

contains sentences extracted from newspapers. We employ the training (922 sentences),

development (231 sentences) and test set (288 sentences) split, which is similar to that

of Gupta et al . (2016). The SciERC dataset consists of abstracts of artificial intelligence

research papers. The training/development/test split is 1861/275/551 sentences, which

is the same as that of Luan et al . (2018).

These datasets all have training sets. To utilize these datasets to verify the effectiveness

of our method, we do not use the whole training set to train the initial model. Instead,

we use a small percentage of the training data (e.g. ptr∈(0, 1]) as the actual training data

DL and use the remaining (1−ptr) training data as the unlabeled data DUL to calculate

pseudo labels. The original testing data is still utilized to test the model performance. To

get stable results, for each dataset, we randomly choose five subsets (each one contains

ptr of the training data) from the training data and train five models. Then, we report

the averaged results from the five models.

Performance metric. We report the micro and macro F1 values for entities (E), rela-

tions (R), and relations together with entities (ER). The micro F1 is calculated globally

by counting the total true positives (TP), false negatives (FN), and false positives (FP).

In all the counting, a special class (not-an-entity or not-a-relation), which is encoded as

zero, is never treated as positive. For example, considering the E type, all the correctly

predicted non-zero entities are counted as TP. Among the wrongly predicted entities, an

entity is counted as FP if it is wrongly predicted to be non-zero, and an entity is counted

as FN if its true class is non-zero. Some wrongly predicted entities are counted in both

FP and FN. The macro F1 is obtained by calculating the prediction F1 when treating

each class as positive (and all the others as negative) and averaging the F1s for all the

classes. We also report the running time of the models.

Methods. We compare our ASPER method with three classical and state-of-the-art

baselines listed below. (1) Self-training as described in the papers by McClosky et al .

(2006), Reichart and Rappoport (2007). For this method, we use 90% as the thresh-

old to select pseudo labels to be included for model retraining. (2) Curriculum labeling

(CL): this method retrains the model using the curriculum-labeling strategy proposed by

Cascante-Bonilla et al . (2021). This is a state-of-the-art approach for SSL using pseudo

labels. It has one hyper parameter (stepping threshold) controlling the confidence value

of pseudo labels that are included in the training of the model in one iteration. This

parameter is set to the same (20%) as the original paper. (3) Tri-training: this method

retrains the model using the tri-training strategy proposed by Zhou and Li (2005). A re-
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Table 1. Performance comparison of ASPER and other baselines on the two datasets

(E: entity, R: relation, ER: entity and relation; ptr = 10%)

CoNLL04 dataset

F1 (micro) F1 (macro)

Method E R ER E R ER

Self-train 77.74±1.7 41.76±5.7 41.39±5.7 72.50±1.9 43.19±6.0 42.82±6.0
CL 77.49±1.1 41.61±3.0 41.35±3.2 72.03±1.6 43.07±3.8 42.77±4.0
Tri-train 78.63±2.4 42.60±6.7 42.29±6.7 72.49±2.5 42.99±7.1 42.64±7.2
ASPER 81.25±1.2 52.47±3.6 52.41±3.6 75.90±1.7 53.32±4.0 53.27±4.0

SciERC dataset

F1 (micro) F1 (macro)

Method E R ER E R ER

Self-train 56.72±1.2 18.60±2.6 12.36±1.7 54.43±1.4 11.07±3.7 6.98±2.3
CL 60.75±0.8 31.00±2.1 20.81±1.0 59.19±0.4 22.00±3.8 15.55±1.8
Tri-train 60.99±0.7 27.43±1.9 18.94±1.4 59.52±0.4 17.09±3.6 11.59±2.7
ASPER 60.34±0.6 32.30±1.2 21.73±1.2 59.10±0.4 22.72±3.1 16.06±2.3

cent study by Ruder and Plank (2018) has shown that the classic tri-training method is

still a strong baseline for neural semi-supervised learning for natural language processing.

For fair comparison, we run five iterations (retraining of the model) for every model.

For our model, Δ is set to be 20% as that in curriculum-labeling approach.

5.1 Effectiveness analysis

We conduct experiments to examine the effectiveness of our approach. Our first set of

experiments is to compare our ASPER method with the other baselines. In these experi-

ment, ptr is set to be 10%. That is, 10% of the training data forms DL. Table 1 shows the

results on the CoNLL04 and the SciERC datasets. It shows that ASPER outperforms

all the other baselines on all the calculated F1 measurement on recognizing relations (R)

and both entities and relations (ER) no matter it is at the micro or macro level. For En-

tity (E) recognition, Tri-training is slightly better than our method. This is because our

training process gives higher preferences to sentences with potentially correct relations.

These results show the superiority of our proposed method.

When more training data is available and the KB cannot provide extra information

than what the labeled data can provide, ASPER may not beat the pure data-driven

models such as tri-training and curriculum labeling. However, ASPER is able to improve

(at least not hurt) its base deep learning model (the SpERT model in this paper) that

ASPER is built upon no matter whether the KB can provide much more information

than the training data or not.

We conduct a more detailed analysis about the running of ASPER by showing its

performance in three iterations (other iterations show similar trend). This analysis is to

show the quality of the pseudo label revision. The quality can be measured by comparing
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Table 2. The effect of the ASPER algorithm to improve the quality of the pseudo labels

on the two datasets. (E: entity, R: relation, ER: entity and relation; ptr = 10%)

CoNLL04 dataset

F1 (micro) F1 (macro)

ASPER E R ER E R ER

Iter 1 no-ASP 75.65 41.62 41.07 69.81 42.86 42.29
with ASP 77.06 44.45 44.45 71.16 45.40 45.40

Iter 2 no-ASP 78.68 49.78 49.08 73.24 50.86 50.16
with ASP 79.01 50.19 50.19 73.49 51.27 51.27

Iter 3 no-ASP 79.98 52.92 52.66 74.25 53.97 53.72
with ASP 80.24 53.62 53.62 74.52 54.67 54.67

SciERC dataset

F1 (micro) F1 (macro)

ASPER E R ER E R ER

Iter 1 no-ASP 60.34 30.87 21.98 58.78 21.47 16.59
with ASP 60.34 31.12 22.09 58.78 21.75 16.79

Iter 2 no-ASP 60.86 32.59 23.10 59.39 22.34 17.25
with ASP 60.86 32.83 23.24 59.39 22.58 17.42

Iter 3 no-ASP 60.65 33.11 23.53 59.31 22.79 17.74
with ASP 60.65 33.12 23.54 59.31 22.82 17.76

(a) (b)

Fig. 2. Performance comparison (varying training data amount).

the pseudo labels and the ground truth labels (which are the training data with the

correct labels, but are not directly used for training) and calculating the F1 score.

Table 2 shows the detailed analysis of how the ASP component helps improve the

quality of the generated pseudo labels. We can see that after each iteration, the F1 of

the ASP generated pseudo labels is always higher than that of the raw pseudo labels.

This confirms that the use of answer sets and ASP helps improve the quality of the

pseudo labels. Table 2 also shows that the performance improvement in earlier iterations

is better than that in later iterations. This is also consistent with our design of utilizing

curriculum labeling, that is, answer sets with higher confidence values are used in earlier

iterations (Section 4.1.3).
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Table 3. Ablation study on ASPER; CoNLL04

(F1 micro) F1 (macro)

E R ER E R ER

with all rules 81.25 52.47 52.41 75.90 53.32 53.27
with all rules except the relation exists rule 76.64 34.13 33.84 70.56 34.87 34.57
without any rules 76.74 31.07 31.07 70.52 31.99 31.99

The second set of experiments examines the effect of the amount of initial training

data on ASPER. We change the amount of initial training dataset DL by varying the

percentage ptr with different values (5%, 10%, 20%, 30%).

The results are reported in Figure 2. We only report the F1 of relation with entity

(micro) because the trend of the other F1 values is the same. The figure shows that,

when there is less initial training data, the overall performance is worse. However the

positive effect of ASPER is more obvious when there are less training data, which can

be observed from the larger gap between ASPER and other methods for smaller ptr (e.g.

5%). This result is consistent with our intuition of designing ASPER to alleviate the

issue of insufficient amount of training data. Figure 2(b) also shows that our method

does outperform, but has comparable performance as, CL and tri-training when ptr is

larger. The major reason is that the knowledge base is less effective in capturing the

characteristics of the second domain (research articles). More effective rules need to be

developed to enrich the knowledge base in the future.

The third set of experiments conduct an ablation study to investigate the effect of

the rules in the ASP program. Due to space limitation, we present this analysis on one

dataset. Table 3 shows the results. The first row (with all rules) shows the results when

all the rules are utilized. The third row (without any rules) on the other hand shows the

results when no rule is utilized. The results (improvement of the first row comparing to

the third row) clearly demonstrate that the rules contribute positively to the performance

of ASPER. We conduct a further analysis about the effect of the different type of rules

and find that the relation exists rule (Rule (19)) plays the most significant role. The

second row shows the results from the program while the relation exists rule is not

utilized, but all the other rules are used. The improvement of all the other rules to the

algorithm (which is captured by the difference between the 2nd and the 3rd row) is not

as much as the relation exists rule (which is observed from the difference between the

1st and the 2nd row).

5.2 Efficiency analysis

We also examine the running time of the different methods to understand the overhead

brought by the ASP program. Due to space constraint, we report the summarized data

here. Self-training, curriculum labeling, and ASPER use similar amount of time. On

the CoNLL04 dataset, it takes approximately 40–50 min to run the five iterations. Tri-

training’s time is approximately three times of the other three methods because it needs

to train three models in each iteration. The overhead of using ASP to generate the
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updated pseudo labels is about 30 s in each iteration. This time is negligible compared

with the expensive NN model training.

6 Conclusions

In this paper, we presented a novel method ASPER, which leverages Answer Set Pro-

gramming (ASP) to improve the performance of Neural Network models in the joint

recognition of entities and relations from text data when limited amount of training data

is available. ASPER makes use of pseudo labels. The ASP program encodes different

types of commonsense rules by taking advantage of the commonsense domain knowl-

edge. The experiments on two real datasets show that ASPER can report significantly

better results than the other baselines in most cases.
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