
BULL. AUSTRAL. MATH. SOC. 6 0 F 1 0

VOL. 63 (2001) [151-165]

LARGE DEVIATION RESULTS FOR A
[/-STATISTICAL SUM WITH PRODUCT KERNEL

Y.V. BOROVSKIKH AND N.C. WEBER

Large deviation theorems are proved for non-degenerate {/-statistical sums of degree
m with kernel /i(xj, - . . ,x m ) = x\ • • • Xm under the Cramer condition and under the
Linnik condition. The method of proof uses truncation and the contraction technique.

1. INTRODUCTION AND THEOREMS

Let Xi, • • • , Xn be independent and identically distributed random variables with

distribution function F. Assume EX\ = fi # 0 and 0 < a2 = B{Xi - n)2 < oo. Consider

the [/-statistic of the form

According to the Hoeffding decomposition

For m = 1, Un — fi = n"1 ^ (Xt — fi) is the usual sum of independent and identically
t=i

distributed random variables. Large deviation results with Cramer series for such sums
have been developed in many papers including [1, 4, 6, 7, 8], both under the Cramer
and Linnik conditions and under violation of these conditions.

Let Fn(x) = PL/n{Un - nm)/'{ma\n\m-1) < i), x € R. By the central limit
theorem for non-degenerate [/-statistics, Fn(x) —*• $(x) uniformly in x as n —»• oo, where
$(z) denotes the standard normal distribution function. Hence for any fixed m and x

(2) ( 1 - F n ( x ) ) / ( 1 - * ( * ) ) = (l + o(l)),

as n -*• oo. We are interested in (2) when x tends to infinity together with n and
x = o(y/n). All existing large deviation results for ^/-statistical sums with x in this range
require the kernels to be bounded and so they do not apply here. For our special case we
have the following result where the coefficients Xkm are defined via equation (18).
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THEOREM 1 . Let x = o(y/v) and suppose that the Cramer condition

(3) £exp(a|Xi|) < oo

is satisfied for some a > 0. Then for any fixed m ^ 1

with the Cramer series

fc=O

which converges for 0 ^ u ^ e for some e > 0.

Further, for 0 < a < 1/2, let s = [4o:/(l-2a)] denote the integer part of 4a/( l -2a) .
Introduce the truncated Cramer series

Alrou + •

THEOREM 2 . Let x = o(na) and suppose that the Linnik condition

(4) Eexp{a|A:1|4a / (2Q+l )}<oo

is satisfied for some a > 0. Then for any fixed m ^ 1

2. PROOFS

In the following we can suppose that i > 1. In fact, by [2, Theorem 6.3.2]

sup|Fn(x) - *(x)| ^ xfa-tEW! - M|3 + mexp{2(a/M)2})4=

for all 1 ^ m s% V"- Further 1 - $(x) ^ TT"2 for 0 ^ x ^ 1. Hence for any fixed m
and for 0 ^ x ^ 1

P R O O F OF THEOREM 1: The contraction technique for [/-statistics of degree 2,
proposed in [5] , was extended in [3] to [/-statistics with bounded kernels of any degree.
Following their approach we define the operator J^1'1: g _> T^~lg, by
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[3] Large deviations for {/-statistics 153

for any fixed integer m — 2 , 3 . . . , where g{X{) satisfies the Cramer condition, that is,

£exp(a|<7(.Xi)|) < oo for some a > 0.

The following lemma shows that under the Cramer condition (3), for sufficiently

small t, the equation g = TJ""1? with kernel

(5)

has a unique solution gt, that is,

(6)
u

LEMMA 1 . If the Cramer condition (3) is satisfied tien the function

gt{x) = /C~1(*)'x* x€R

is the solution of (6) for kernel (5), where fim(t) is an analytical function in the region
0 < t < b for some sufficiently small b > 0.

PROOF: If some function gt(x) is the solution of (6) then we can write

( \ m-l
Eie^w'Xi) 1

Jft W = — , _ .xm-i x-

Let

Hence, for /Xm(t) we obtain the equation

Futher we shall prove that this equation has a unique analytical solution for small t. To
show this let

(8) e = «/C-xW-

Then (7) can be written as

ro"1

Under condition (3) the functions Eexp(£Xi), E{X\ exp(^Xi)) and
Eexj>(^Xi)/E(Xiexp(^Xi)) are analytic for |f| ^ a/2 and therefore in (9)

(10) • t = €-
fc=0
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where the power series converges for small |£|. For any sufficiently small |t| the equation
(10) has a unique real solution £ = £(t), where

(ii)
fc=O

with convergent series for small \t\. From (8) and (11) we obtain

fc=0

From (12) we see that for any m > 2

(13)
fc=0

where the power series converges for sufficiently small t. This proves Lemma 1. D

Let ip{i) = ]nEexp{tgt(Xi)}, where gt(x) is given in Lemma 1. Define Ft by

dFt = e^-^dF.

Let Pt denote the probability measure under which Xi,X2,--- are independent and
identically distributed from Ft and let Et denote the expectation under Pt. Hence, in (7)

(14) / U * ) = EtXx.

Let t = t(x/y/n), where t{x/y/n) is the solution of the equation

(15) fCW-fjr^^Lmvlur-1

with i n ' 1 ' 2 —)• 0. The existence of this solution is guaranteed by (13). In fact,

J k = l

where the power series converges for sufficiently small t. From (15) we obtain

By the inversion theorem for analytic functions we get

k
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with convergent series for small i n " 1 ' 2 .

Further, let Un(t) denote the (/-statistical sum Un, where X\, ...,Xn are independent
and identically distributed with distribution function Ft. By analogy with (1) and by
using Lemma 1 we have the Hoeffding decomposition under Pt

n
m= tC(t) + - £ {MX*) - tC(t))

Let

j=l c=2

where
A (t) - ( m - 1 ) - " ( m - c + 1 )Mt)~ ( n l ) ( n

and

Then

Hence using (15)

Un(t) - -^mo]^"1'1 = max + mvn + /x"

and

(17) .

T
•'ni

where Jn = ^te-faUTl/(ai + wn > 0).

Using (16) and the definitions of ip(t) and Mm(*) we have

(18) r*p{t) nttC{t) + Xom4 + X^
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Next we shall estimate Jn- Let £,- = gt(Xj) — /4U(t), j = l , . . . , n , and introduce the
truncated random variables

Then J n = 4>(€i, - • •, £„) and J n = Jn(e1} . . , € „ ) = £ t e - t n 5 l / (a i + vn> 0).

LEMMA 2 . Ifx ^ 1 a n d s n ~ 1 / 2 - > 0 a s n - » o o , then

P R O O F : Denote

/ (&, •••,&) = e-ftUT1/(a1 + «„ > 0).

Note

- Jn = ^ [/(6, - - •, &) - / ( ? ! , . - , In)]
n

7=1
n

Thus

(19) | Jw - 7 . | < J > [ / ( | 6 | > xy/n)(d*l +1)] (JSie*)^
J=I

Since

(20) c» = l + y + tfy2ew, | « K 1, » € fl

under condition (3), ^ e ^ 1 ^ exp{ciZ2/n}, ^ e ^ 1 ^ exp{ciZ2/n}, and

for some positive constants c* > 0, which do not depend on x and n. Hence in (19)

\Jn - Jn\ ^ 2c2nexp{c1x
2 - c3i>/n}
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since

This proves Lemma 2. 0
Consider Jn. The second Waring formula gives the following representation for Wc:

where

Next we introduce the truncated random variables

for some sufficiently small 6 > 0. In addition, Jn, vn, nc are obtained from Jn, vn, We,
respectively, by substituting Oj for Oj.

LEMMA 3 . Ifx ^ 1 and i n " 1 ' 2 -¥ 0, then

PROOF: Denote ipfa,... ,am) = e"1""1/^ + «„ > 0).
Arguing as in the proof of Lemma 2

~Jn-Jn = Et [<p(pu ...,am)- (p{au.. .,am)]
m

k = l

- ¥ > ( 5 i , . . . , ak-i, 0 , ak+i, •••,

from which we obtain

Here
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and

(21) Pt(\ak\ >6)<£

Now

and using (20)

For k = 1, \E£X\ ̂  ceixy/n)-1, and

g{fo|} ( ^^ l ^H j } ) ^ c7.
Hence

(23) Et exp {x-v/^i} < exp{cg 4- C7X2}.

Now consider (22) when k ̂  2. In this case |£tf 11 ^ cgi and

1/2

Hence for fc ̂  2,

(24) Etexp{xy/riak} ^explcs-j^ + cgl-^^j \

for some positive constants q. These estimates combined with (21) prove Lemma 3. D
Next we shall estimate Jn.

LEMMA 4 . Ifx ^ 1 and x = o(y/n), n -*• 00, tien

P R O O F : Write
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where

OCc-

A - E (-i

Then

(25) vn = 3=iQ + 0,

where
m

and £ =
e=2 c=2

Note that | a | ̂  ax • <5 ^ 1/2 for some constant Oi > 0 and sufficiently small 6. Further,

taking account of (25) we have

Jn = Ete-^lfr+vn > 0) = j^)
^ t=i

where

> 0),

A2 = Ete-^Ifo > 0) - Ete-^Iiox > 0),

A3 = Ete-^Ifa > 0) - -Ete-*"*1 J(ax > 0),

n

ESTIMATE A I . Let o* = Et(gt{Xi) - /*™(t))2, xt = y/Ztat,

Note that by Lemma 1, (15) and (16)

^=)), and

(26) t ^
n
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By definition

(27) A1

Recall ez = 1 + z /o
x euzdu, z € R, so using (26) we have

Here

and

Consequently,

A00 e-Xt*d*{y) = e*'2(l - *(x)) ( l + 0

Further, in (27)

y) - *(y)) = -(*n(0) - $(0)) + i t / ( * „ ( » ) - *(y))e—
Jo

By the Berry-Esseen theorem (see, for example, [7])

sup|$n(y) - *(y)| ^ a ^ l f t ^ ) 3 ^

Hence,

and so we have
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ESTIMATE A2. Let * ( & , . . . ,£„) = e"tn<ri/(a1 > 0). Then

and therefore

|A2| < 2

Hence,

ESTIMATE A3. By definition, A3 = ^ t / ( | a i | > 5)(l-e~ta"lI(ai > 0)) and so from (21)
and (23) we have

ESTIMATE A4. Clearly

U < ox <k i ) ^ A4

That is,

(28) IA4I ^ e ' M f r l < n"1)
5)7(15x1 ̂  n"1) +^t/(|a1| > 5)7(15x1 ̂  n"1)]

But
Pt{\oi\ >

and so from (21) and (23)

(29) Pt(|ax| > S) =

Further in (28)
yn),
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where

i n = - (
n

i-E^i)/(^y/n), and of

Let $n(y) = P(s ^ y). Then

(30)

Hence, from (28)-(30) we find

ESTIMATE A5. Since |Q| ^ 1/2, then

By Holder's inequality

(31) A5

Using the inequality

we obtain

(32)

for some positive constants a*. Without loss of generality we can suppose that in (32) all
is ^ 1, s = 2 , . . . ,m. Otherwise, if ifc = 0 for some fc ̂  2 then 5J.* = 1. Hence, in (32), if

c=2 2«j+—hdt=

and so using (24) we get

* * " " w ^ c10.
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Further in (31) we have for any integer I ^ 8

(33) Pt{2n\0\ £ 1) < (2n)lEt\0\l < (2m)' f>(*) | '{n 'Wei '}-
e=2

Let Tj ^ 1, j = 1 , . . . ,p, be the non-zero terms in the solution of the equation 2t2 -\ h
cic = c, c ^ 2. Hence *t, = ri, . . . , t^ = rp for some sequence fci,..., kj, with kj ^ 2.
Then in (33)

It is easy to see that

n '£ t | a t j |^ '< C l 2 n - ' / 2 , 5 = 1 , . . . , p .

Hence in (33), Pt(2n\0\ ^ l) ^ c^-nr1. Substituting into (31) gives

Combining the bounds for the Aj completes the proof of Lemma 4.
Theorem 1 follows from (17), (18) and Lemmas 2,3,4.
PROOF OF THEOREM 2: At first we introduce the truncated random variables

and define the {/-statistic Un = Utt(Xi,.. .,Xn). The proof of Theorem 2 follows from
Lemmas 5 and 6 below. D

LEMMA 5 . Assume condition (4) holds. Then for 1 ^ x ^ o(na)

where Jl = / x ^ ) = EXU o* =

PROOF: By analogy with the proof of Lemma 2 we can write the inequality

n-ii
m > -^malfir-1) -p(un-7r > -^mafcr-1) < 2nP{\Xl

Here

P[\Xi\ > ft
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Since x ^ 1 and xn~a —• 0 as n - • oo then

M J 2

completing the proof of Lemma 5. D

LEMMA 6 . Ifl^x^ o(na) and condition (4) is satisfied then

P R O O F : We shall apply Theorem 1. In the following p, o, i, lp,... denote
H, a, t, ip,... respectively, where, instead of X\, we substitute X\. For example,
fi = EXi and a2 = E{XX - JZ)2. At first we note that for \z\ ^ (l/2)an-W+a,

\EexpizXijXil2 ^ EX\Eexplol

Hence, given condition (4), the function Eexp(zXi)/Eexp(zXi)Xi in (9) is majorised
by an analytic function uniformly in n for \z\ ^ (l/2)an~(1M+a. Further, by analogy
with (18)

Therefore, under condition (4), applying Theorem 1 for 1 ^ x < o(na)

p(r.-r>^-w«)-(i-^)^{^(^)}(.+o(^)).
with Cramer series

(34)
k=0

which converges for 0 s$ u ^ en~(1/2)+Q and sufficiently small e > 0. The coefficients
Afcm = Afcm(Xi) depend on the moments of the truncated random variable ~X\.

Let

Jfc=0
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00 _

where p(u) = £ ) -**mu*- Note s + 1 ^ 4 a / ( l - 2a) and in (34) the series is convergent
fc=»+l

and uniformly bounded. Hence for x = o(na)

Moreover

Thus

This proves Lemma 6. D
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