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Instantaneous features of three-dimensional velocity fields are most directly visualized via
streamsurfaces. It is generally unclear, however, which streamsurfaces one should pick
for this purpose, given that infinitely many such surfaces pass through each point of the
flow domain. Exceptions to this rule are vector fields with a non-degenerate first integral
whose level surfaces globally define a continuous, one-parameter family of streamsurfaces.
While generic vector fields have no first integrals, their vortical regions may admit local
first integrals over a discrete set of streamtubes, as Hamiltonian systems are known to
do over Cantor sets of invariant tori. Here we introduce a method to construct such first
integrals approximately from velocity data, and show that their level sets indeed frame
vortical features of the velocity field in examples in which those features are known from
Lagrangian analysis. Moreover, we test our method in numerical datasets, including a flow
inside a V-junction and a turbulent channel flow. For the latter, we propound an algorithm
to pin down the most salient barriers to momentum transport up to a given scale providing a
way out of the occlusion conundrum that typically accompanies other vortex visualization
methods.
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1. Introduction

Streamsurfaces of a three-dimensional flow are two-dimensional surfaces composed of
streamlines. Even a small but judiciously chosen set of such surfaces can give an effective
characterization of the global topology of the velocity field. In steady flows, streamsurfaces
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are also invariant manifolds for the particle motion and hence frame the Lagrangian
particle dynamics. For these reasons, streamsurfaces should be, in principle, the simplest
tool for illustrating instantaneous features of a velocity field.

Analogously, to identify and visualize vortical features of a velocity field, Yang &
Pullin (2010) generalized the notion of vortex tubes and sheets (Batchelor 2000) by
defining the vortex-surface field (VSF), i.e. a smooth scalar field whose isosurfaces act
as two-dimensional (2-D) invariant manifolds of the vorticity field. Initially developed for
symmetric, inviscid flows (Yang & Pullin 2010), this work has been extended to capture
approximations to the Lagrangian (material) evolution of VSFs in analytic viscous flows
(Yang & Pullin 2011), shear flows (Xiong & Yang 2017), compressible flows (Peng & Yang
2018), transitional wall flows (Zhao, Yang & Chen 2016a,b) and in homogeneous isotropic
turbulence (Xiong & Yang 2019). A different approach, based on the spherical Clebsch
maps, was used by Chern et al. (2017) to visualize vortex lines and surfaces in computer
graphics. However, neither VSFs nor streamsurfaces are objective (frame-indifferent;
Haller 2005), which renders their experimental detection ambiguous.

In contrast, recent results on the transport of dynamically active vector fields (such
as the momentum and vorticity fields) have yielded objectively defined barrier vector
fields whose distinguished invariant surfaces turn out to be frame-indifferent material
barriers to active transport (Haller et al. 2020). Specifically, the barrier vector fields
are the velocity and vorticity Laplacian in the instantaneous (Eulerian) limit and the
time-averaged pullbacks of these Laplacian fields in the Lagrangian case. The invariant
manifolds of these barrier vector fields have been shown to highlight vortical features of
the velocity field with increased accuracy in several 2-D and three-dimensional (3-D) flows
(Haller et al. 2020; Aksamit & Haller 2022).

Irrespective of the underlying vector field, no general methodology is available for
its efficient visualization via a well-placed set of invariant surfaces. This is because
streamlines launched from any smooth curve form a streamsurface by definition. As a
consequence, infinitely many streamsurfaces cross through any point of the flow domain.
It is thus unclear which (if any) of these surfaces should be selected even locally as a
representative of the vector field topology. As a consequence, flow visualization packages
tend to rely on user input for seed points of streamlines and streamsurfaces.

Most related ongoing research in the scientific visualization community focuses either
on the more accurate computation of streamsurfaces from select seed points (Hultquist
1992) or streamline selection for streamsurfaces based on visual optimization (Born
et al. 2010; Schulze et al. 2014). A relatively recent realization is that the streamsurfaces
framing the instantaneous flow behaviour most efficiently are the key invariant manifolds
of the instantaneous velocity field. Local stable and unstable manifolds near stagnation
points and closed streamlines indeed well illustrate the instantaneous local velocity field
geometry (see, e.g. Peikert & Sadlo 2009) but generally stretch and fold globally. These
globally filamented streamsurfaces then lose their ability to demarcate different flow
regions efficiently, with unavoidable inaccuracies also arising in their computation (Sadlo
& Peikert 2007). Closest in spirit to our work is the observation of Van Wijk (1993), who
seeks streamsurfaces as level sets of a scalar function. After defining a scalar distribution
within an inflow boundary, the level curves of this scalar field are propagated along
streamlines into the flow. As a consequence, the resulting surfaces will generally stretch,
fold and self-accumulate, resulting in filamenting streamsurfaces that also depend on the
choice of the initial scalar distribution. Reviews of all these approaches in the scientific
visualization community can be found, e.g. in Peikert & Sadlo (2009) and Martinez–Esturo
et al. (2013).
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Approximate streamsurfaces for flow visualization

A representative set of streamsurfaces for flow illustration should arguably include at
least one surface for each typically observed streamline topology, as well as the (generally
unobserved) surfaces separating these different topological classes. Finding such a set of
streamlines is straightforward for 2-D incompressible flows by the existence of a first
integral (conserved quantity) for the equation of instantaneous streamlines. This first
integral is the streamfunction, whose set of level curves contains all typically observed
streamline families as well as separatrices among them. Therefore, one can systematically
scan through the one-parameter family of level curves and select those that stand out to be
included in the visualization.

For the lack of a streamfunction in 3-D flows, the above program can only be carried out
for streamsurfaces of integrable 3-D flows, such as steady Euler flows that do not satisfy
the Beltrami property. For such flows, the Bernoulli function provides a non-degenerate
first integral (Arnold & Khesin 1999) whose one-parameter family of level surfaces can be
scanned and filtered to obtain the required representative set of streamsurfaces. A similar
result is available for incompressible velocity fields with a volume-preserving symmetry
group (Haller & Mezić 1998). For general 3-D incompressible flows, however, no first
integrals will exist. This is because even steady 3-D flows can be chaotic (see, e.g. Dombre
et al. 1986) and hence cannot have smooth non-trivial conserved quantities. This is equally
valid for the autonomous 3-D differential equation defining the instantaneous streamlines
of a generic 3-D unsteady flow, excluding the existence of a regular foliation of the flow
domain by streamsurfaces that are level sets of a smooth scalar function.

Often, however, the most important parts of a flow turn out to be vortical regions filled
with tubular or toroidal streamsurfaces. One cannot expect these surfaces to necessarily
form a continuous family, especially the toroidal ones. Indeed, families of 2-D tori
composed of streamlines typically form Cantor sets (as opposed to a continuous family)
in the 3-D set of differential equations generating the streamlines (Cheng & Sun 1989).
While this is also the case for classic Hamiltonian systems admitting families of invariant
tori (Arnold 1989), those systems nevertheless turn out to be integrable restricted to this
Cantor set of tori in an appropriate sense (see Chierchia & Gallavotti 1982; Pöschel 1982).
Specifically, smooth functions can be constructed that act as first integrals over the Cantor
family of tori but not in the small gaps among those tori.

Motivated by this idea of integrability over Cantor sets in Hamiltonian systems, we
seek here smooth scalar functions that serve as approximate first integrals over a set of
streamsurfaces forming vortical (elliptic) regions of a given vector field. As there is no
widely accepted definition of a vortex, we use the term ‘vortical’ loosely to describe
families of toroidal or cylindrical surfaces to which either the velocity, vorticity or barrier
field is tangent. The approximate first integrals arising from this procedure will be steady
for steady vector fields and time-varying for unsteady vector fields. We construct these
(approximate) first integrals by seeking scalar functions whose gradient vector field is as
close to being normal to the given vector field as possible. To avoid the trivial solution to
this problem, we use a constrained minimization approach that does not allow for globally
constant first integrals.

Our method resembles that of Yang & Pullin (2010) for the construction of VSFs in
inviscid, analytic and highly symmetric flows. Ours, however, differs crucially in that we
work with a grid in the physical space over which we expand the unknown approximate
first integral in a Fourier series. We then only use the known values of the vector field
at the gridpoints. We find that this approach results in an homogeneous linear system
of equations whose unique, unit-norm least-squares solution yields the unknown Fourier
coefficients of the approximate first integral. Thus, in contrast to Yang & Pullin (2010), this
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procedure is free from any symmetry assumptions on the first integral and does not require
rewriting the homogeneous system as an inhomogeneous one under further assumptions.
As we show in one of the appendices, these features of our approach significantly enhance
the quality of the final solution.

Outside elliptic regions (i.e. in hyperbolic streamline domains), the streamlines
are generically chaotic and hence will admit only trivial approximate first integrals.
Accordingly, we expect the approximate first integrals to be nearly constant outside vortical
regions, while admitting non-trivial shapes inside such regions. In those elliptic regions,
level sets of the approximate first integrals will be close to streamsurfaces that form
vortical features.

The result of this approach is an automated numerical visualization method that does
not require the user to guess seed points in the flow for streamsurfaces in vortical regions.
The simplicity and generality of the proposed method allows us to employ it to complex
flows defined either analytically or through numerical data. Our examples include spatially
periodic integrable and non-integrable flows, a non-periodic vortex ring flow, a V-junction
flow and a fully developed turbulent channel flow. The latter flow exemplifies a case
wherein exact streamsurfaces tend to obscure the visualization of the most prominent
features of the barrier field. Indeed, for such a flow, vortical regions have been delineated
via diagnostic tools such as the active version of the finite-time Lyapunov exponent
(aFTLE), as described by Haller et al. (2020). Yet, tracking barrier streamlines originating
in the neighbourhood of aFTLE ridges quickly results in the streamsurface falling apart,
despite some initial vortical motion. In contrast, the structures based on the approximate
first integral are able to follow closely the valleys around the aFTLE ridges allowing for a
better visualization.

To obtain these results, we divide the computational domain into smaller subdomains
and seek approximate first integrals in each one of them separately. In this way, we can
capture the most salient structures up to a given scale without the problem of obstruction
by smaller structures. These in turn can be captured by further refining the domain
subdivision based on their signatures in the aFTLE field. Further, upon assuming mild
convexity for the vortical structures to be extracted, we obtain families of barrier surfaces
whose outermost members act as vortex boundaries. Thus, we propound a way out of the
isocontour value dilemma that besets the typical vortex identification criteria used in the
literature (Kim, Moin & Moser 1987; Jeong & Hussain 1995; Zhou et al. 1999), causing
them to produce dissimilar structures for different isocontour values.

2. Set-up of the minimization scheme and reconstruction algorithm

Let v(x, t) be a smooth vector field defined on some open subset U ⊆ R3. The associated
dynamical system for the instantaneous streamlines of this vector field at time t is given by

x′ = v(x, t), x ∈ U, (2.1)

where the prime denotes differentiation with respect to a curve-parameter s ∈ R along
the streamline. A continuously differentiable, scalar function H(x, t) is called an
(instantaneous) first integral for v(x, t) at time t if it is constant along each solution of
(2.1), i.e. (∂/∂s)H(x(s), t) = 0. This condition implies that

∇H(x, t) · v(x, t) = 0, (2.2)

for all x ∈ U, where ∇ denotes the gradient with respect to x.
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For an arbitrary vector field v, no first integral will exist, in general, pointwise, i.e. for
all x ∈ U. We may, however, relax the constraint (2.2) by seeking a function H(x, t) that
minimizes the functional

J[H] = 1
2

∫
U

|∇H · v|2 dV, (2.3)

which measures the average deviation of H(x, t) from being an exact, pointwise first
integral in the domain U at time t. Any minimizer of (2.3) is called an approximate first
integral.

First, let us assume that the domain U is triply periodic. This allows us to expand H in
a Fourier series and define its modal truncation of order N as

H≤N(x) =
∑

0<|k|≤N

Ĥkeik · x. (2.4)

For the application to the examples in later sections, let us remark that the truncated
expansion (2.4) can also be used locally on non-periodic domains, as long as we stay
away from the domain boundaries. The integrand of the functional (2.3) in Fourier basis
takes the form

∇H · v =
∑

0<|k|≤N

Ĥkeik · xik · v. (2.5)

Because of the linearity of the gradient operator, the expression in (2.5) is linear in the
unknown Fourier coefficients.

We assume that the vector field v is known on a discrete, three-dimensional grid of
points which we enumerate from 1 through m, where m is the total number of points. Also,
to target data-driven applications specifically, we work with the discretized version of (2.3)
using the vector of pointwise inner products defined as

[ ∇H1 · v1 ∇H2 · v2 · · · ∇Hm · vm
]T = Ch, (2.6)

with C ∈ Cm×n. Here, n is the number of modes used, Cij = exp(ikj · xi)kj · vi is the
(i, j) entry of C and h = {Ĥk|k ∈ Z3, 0 < |k| ≤ N} is the vector comprising the Fourier
coefficients to be determined. Approximating a first integral through the functional (2.3)
then amounts to minimizing the squared vector norm |Ch|2. To exclude the trivial solution
H ≡ const. from our analysis, we add the constraint |h|2 = 1.

Solving this optimization problem is equivalent to finding the eigenvector corresponding
to the minimal eigenvalue of the symmetric matrix A = C∗C, where C∗ denotes the
conjugate transpose of C (see Appendix B). Since the eigenvectors of A are the
right-singular vectors of C, the solution to our algorithm can also be calculated from the
singular-value decomposition (SVD) of C.

We refrain from expanding the known vector field v into a Fourier series and we write
down (2.2) explicitly for every point in the computational grid without working with the
coefficients of each Fourier mode. These features distinguish our method from the one
presented by Yang & Pullin (2010), as already noted in § 1. This difference will allow us
to obtain unique solutions as well as apply our approach even to turbulent flows without
additional assumptions.

In the absence of further constraints, the resulting approximate first integral H will,
generally, be a complex-valued scalar field. Denoting by Hr and Hi its real and imaginary
parts, respectively, we have 〈∇H, v〉C = 〈∇Hr, v〉 − 〈∇Hi, v〉 i. This implies that by
considering the expression in (2.6), we essentially optimize both the real and imaginary
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parts of H. This allows us to use |H| as the approximate first integral. Alternatively, we
can require H to be real a priori. We discuss the latter procedure in Appendix C and show
that its results are similar to those obtained without imposing this constraint.

As already noted, for generic flows, a non-trivial approximate first integral is only
expected to exist in vortical regions. Outside such regions, we expect our algorithm to yield
almost flat first integrals. Such a function, locally supported on several vortical regions,
would generally require a large number of Fourier basis functions, which in turn would
lead to numerical inefficiencies and cost. To avoid this, we work with a comparably small
number of basis functions and only use the level surfaces of the emerging approximate
first integral in regions where those surfaces are indeed nearly tangent to the given vector
field. To identify such regions, we introduce the invariance error as

EA = 1
A

p∑
i=1

∣∣∣∣ ∇ |Hi| · vi

|∇ |Hi|| |vi|
∣∣∣∣ , (2.7)

where A is the surface area of a level set and p the number of points in the level
set. This type of error estimate was first introduced by Yang & Pullin (2010). In our
visualizations, we will discard streamsurface candidates with invariance errors exceeding
a certain threshold value.

Finally, we note that our minimization procedure can also be viewed as finding for v,
in the appropriate norm, the closest member of the integrable, 3-D incompressible vector
field family

x′ = J(x)∇H(x, t), ∇ · J ≡ 0, (2.8)

with J = −JT and ∇ · J denoting the divergence of the tensor field J. Indeed, all these
vector fields in (2.8) share the same streamsurfaces, the level sets of H. Working with (2.8)
directly, however, is much more demanding numerically in our experience and would also
require specific assumptions on the form of J.

Before moving to specific examples, we note that finding an exact, pointwise first
integral in (2.2) is not a well-posed problem by itself. Indeed, if H(x, t) is a solution,
then, for any sufficiently smooth function F, F(H(x, t)) will also be a solution due to the
homogeneity of (2.2). This would not be an issue for the detection of streamsurfaces if the
isocontours of H and F(H), expressed through the gradient of these fields, represent the
same geometric and topological features for the given vector field v. Unfortunately, we can
construct simple counter-examples where this is not the case. For instance, if we denote
by vx, vy and vz the three components of v and assume that vx = 0, then the function
G(x)H( y, z) will be an exact, pointwise first integral as long as vyθyH + vzθzH = 0. By
tweaking G, one can easily obtain markedly different topological features resulting from
the corresponding streamlines. We also refer to Pullin & Yang (2014) for more examples
of first integrals with different topology for the vorticity field of the Taylor–Green flow
stemming from the superposition of independent solutions to (2.2).

Consequently, our variational principle (2.3) will exhibit the same non-uniqueness
issues whenever an exact, pointwise first integral is admitted by the underlying vector field.
To resolve this, we will only consider approximate first integrals for which the weakest
eigenvalue of A = C∗C is not considered (numerically) zero. In addition, we will only
retain the streamsurfaces whose topology remains unaltered when, for the same set of grid
points, a larger number of Fourier modes is used allowing for small geometric refinements
due to the increased accuracy of the solution. If these two conditions are met, we will
consider the resulting structures as robust and they will be included in the visualization.
Furthermore, we will see that the more complex a flow is, the larger the spectral gap to the
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second-smallest eigenvalue will be. Irrespective of this gap, however, in all the examples
that follow, we will build our solution based only on the eigenvector corresponding to the
smallest eigenvalue of A. We close this section by noting that our approach is in agreement
with the findings of Xiong & Yang (2017, 2019) who showed that the construction of VSFs
in turbulent flows through the use of partial differential equations leads to robust structures
despite the non-uniqueness issues.

3. Approximate first integrals for explicit solutions of the Euler equations

In this section, we illustrate our minimization algorithm to construct approximate first
integrals and use their level sets as approximate streamsurfaces in analytic examples.

3.1. ABC flow
As a first test case, we investigate the ABC (Arnold–Beltrami–Childress) class of flows
(Dombre et al. 1986; Henon 1966), defined as

ẋ = A sin z + C cos y,

ẏ = B sin x + A cos z,

ż = C sin y + B cos x,

⎫⎪⎬
⎪⎭ (3.1)

for A,B,C ∈ R and (x, y, z) ∈ [0, 2π]3, together with periodic boundary conditions. The
right-hand side of (3.1) defines an exact steady solution to the incompressible Euler
equations. For ABC /= 0, the flow exhibits chaotic behaviour (Dombre et al. 1986; Henon
1966), whereas some analytic non-integrability results have been reported by Ziglin (1988,
1998).

3.1.1. Integrable case
We first analyse the ABC flow with A = 0 for which (3.1) is completely integrable. For
BC /= 0, an exact, pointwise first integral is given by H1(x, y) = C sin y + B cos x, while
another independent first integral can be constructed through the use of elliptic functions
(Llibre & Valls 2012). The level sets of H1 are depicted in figure 1(a) on one cross-section
of the computational domain for B = √

2 and C = 1. These curves, therefore, represent
the intersections of a representative set of streamsurfaces with the z = 0 plane. These
streamsurfaces are also exact invariant manifolds for the Lagrangian particle motions in
this steady flow.

To test our proposed algorithm for constructing approximate first integrals, we start from
a discretized version of the full 3-D velocity field (3.1) along 100 points per direction, using
approximately 9000 Fourier modes in (2.4)–(2.6). Solving the underlying optimization
problem using the algorithm in Appendix B, we obtain the results shown in figure 1(b) at
the same cross-section as in figure 1(a). The numerically constructed approximate level
sets match the analytic first integral closely. To measure the proximity of streamsurfaces
and approximate streamsurfaces along the z = 0 plane, we introduce a planar version of
the general invariance error (2.7) by defining

El = 1
l

p∑
j=1

∣∣∣∣∣
∇ ∣∣Hj

∣∣ · ∇H1j∣∣∇ ∣∣Hj
∣∣∣∣ ∣∣∇H1j

∣∣
∣∣∣∣∣ , (3.2)

where l is the length of the level and p is the number of points for each level set. We use
this metric to remove level curves with fewer than 30 points and those with invariance
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Figure 1. Analysis of the integrable ABC flow using a computational grid of 1003 points and approximately
9000 Fourier modes. (a) Intersections of the level surfaces of H1 with the z = 0 plane. (b) Intersections of
the level surfaces of the approximate first integral H with the z = 0 plane. (c) Same as panel (b) but after the
removal of small-scale structures of panel (b) as well as the structures with El > 10−5.
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Figure 2. Same as figure 1 but with a computational grid of 1503 points and 1200 Fourier modes.

errors El > 10−5. The results shown in figure 1(c) confirm that choosing these thresholds
removes small-scale artefacts arising from numerical inaccuracies.

We perform the same analysis on the z = 0 plane using 150 points per direction but only
approximately 1200 Fourier modes. The results are depicted in figure 2. Again, we observe
close agreement between the known first integral and the reconstructed curves. At some
points, the agreement is even closer when compared to figure 1(c) due to the higher spatial
resolution, even though the number of Fourier modes is significantly smaller.

3.1.2. Non-integrable case
For a different set of parameter values (A = √

3, B = √
2 and C = 1), the ABC flow (3.1)

is non-integrable and shows chaotic behaviour in some regions. The dynamic behaviour
of trajectories for this set of parameter values is well studied, including the KAM-type
tori highlighted by Poincaré maps (Dombre et al. 1986) and elliptic Lagrangian coherent
structure (LCS) techniques (Blazevski & Haller 2014; Oettinger, Blazevski & Haller 2016).
We use this velocity field as a benchmark to test different solution algorithms for finding
an approximate first integral for a non-integrable flow. Also, this will serve as a proof of
concept for finding elliptical regions.

We have already noted that the unit-norm least-squares solution to the homogeneous
system of (2.6) coincides with the right-singular vector of C associated with its
smallest singular value or, equivalently, with the eigenvector associated with the smallest
eigenvalue of A = C∗C. To improve numerical stability, the SVD-based solution is
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preferred (Golub & Pereyra 1973). Indeed, the eigenvalue calculation requires a matrix
multiplication to form A, which invariably squares the condition number of C. For
comparison, we calculate both the singular-vector-based and the eigenvector-based
solutions on the triply periodic box [0, 2π]3 with 100 points per direction and N = 13
(or 9170 Fourier modes). In this setting, running the SVD algorithm of MATLAB on C,
which is a (102)3 × 9170 matrix, would require an exorbitant amount of memory (more
than 400 GB), indicating that the classical SVD algorithm is not optimized for tall-skinny
matrices (such as our coefficient matrix). To proceed with our comparison test, we instead
follow the modified SVD method discussed in Appendix D for tall-skinny matrices.

With this modification to the SVD-based solution, the results from the two approaches
for the non-integrable ABC flow are presented in figure 3 on the z = 0, y = 0 and
x = 0 planes. We observe that the differences between the eigenvector-based and
singular-vector-based computations are marginal, indicating that the larger condition
number of A does not affect the results. Furthermore, we use the same three planes as
Poincaré sections to integrate trajectories up to an arclength of 104 from a uniform grid of
20 × 20 initial conditions on each section. We observe a very good agreement between the
predicted structures and the intersections of the KAM surfaces with each of these sections.
This is highlighted perhaps even better by the reconstructed KAM surfaces as approximate
streamsurfaces in figure 4, which are to be contrasted with the λ2-based structures in
Appendix A. Since the ABC flow is a Beltrami flow, its velocity v is parallel to the vorticity
ω = ∇ × v (in fact, v = ω); consequently, the approximate-first-integral-based tori we
have constructed are also VSFs. This illustrates that our algorithm can identify VSFs in
flows where the methodology of Yang & Pullin (2010) is inapplicable. Indeed, as already
noted, the non-integrable ABC flow has chaotic streamlines and, thus, no symmetry
assumptions regarding these streamlines can be used to accelerate the convergence rate
for the optimization technique presented by Yang & Pullin (2010). Even if this rate was
irrelevant, however, expanding the known velocity field in a Fourier series would result
in an optimization problem with many (numerically) zero eigenvalues and, thus, infinitely
many possible minimizers.

Upon taking a closer look at the results of figure 3, we notice that the reconstructed
level sets attain their values in a longer range (i.e. [0, 3.5]) for the larger KAM surfaces,
whereas, in the vicinity of the smaller structures, they are confined to a narrow band (i.e.
[0.25, 0.35]). Here the adjectives larger and smaller are used to refer to either the area
(figure 3) or the volume (figure 4) these families enclose. This is a type of overfitting that
we would like to mitigate. One way to achieve this is by considering a slightly different
optimization problem (see Appendix E) which resembles the one put forward by Yang &
Pullin (2010). This different approach, however, turns out to be computationally intense,
posing severe limitations on its use for typical grid sizes while its results are arguably
of inferior quality. All in all, obtaining the solution to the proposed algorithm as the
eigenvector corresponding to the smallest eigenvalue of A is computationally superior to
all the other techniques used and, thus, it is the one that we will follow in the rest of this
article.

We conclude this section by performing a convergence analysis for different numbers of
modes in figure 5. We observe that the least-squares error (as the smallest eigenvalue of A)
approaches zero as the number of modes used in the analysis increases. Furthermore, the
second smallest eigenvalue converges to the smallest one for higher modes. In Appendix B,
we show that when the smallest eigenvalues are almost equal, we can construct the
solution as a linear combination of the eigenvectors corresponding to these near-identical
eigenvalues. Here, however, we can base our solution only on the weakest eigenvector

954 A28-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.992


S. Katsanoulis, F. Kogelbauer, R. Kaundinya, J. Ault and G. Haller

6

4

2

0 2 4 6

x

6

4

2

0 2 4 6

x

6

4

2

0 2 4 6

y

6

4

2

0 2 4 6

x

y z z

y z z

6

4

2

0 2 4 6

x

6

4

2

0 2 4 6

y

3

2

1

8 0.34

0.32

0.30

0.28

0.26

6

4

2

3

2

1

8 0.34

0.32

0.30

0.28

0.26

6

4

2

H H H

H H H

(a) (b) (c)

(d ) (e) ( f )

Figure 3. Analysis of the non-integrable ABC flow using a computational grid of 1003 points and 9170 Fourier
modes. Level sets of the approximate first integral at (a,d) z = 0, (b,e) y = 0 and (c, f ) x = 0. Panels (a–c) are
constructed from the eigenvector of A corresponding to the smallest eigenvalue, whereas panels (d–f ) are
produced using the SVD of C. The overlaid Poincaré map (black dots) on each section is based on a uniform
grid of 20 × 20 initial conditions.

(a) (b)

Figure 4. Two different views of the approximate streamsurfaces (level sets of the approximate first integral)
closely approximate the KAM-type surfaces of the non-integrable ABC flow in elliptic regions. Also shown
are iterations of the Poincaré map (black dots) on three orthogonal planes. The results were obtained using the
weakest eigenvector of the positive definite matrix A. See also the supplementary movie 1 available at https://
doi.org/10.1017/jfm.2022.992.
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Figure 5. Five smallest eigenvalues of A = C∗C for different numbers of modes
(2108, 3070, 4168, 5574, 7152, 9170 modes for N = 8, 9, 10, 11, 12, 13, respectively).

since we have d1 = 0.015415 and d2 = 0.01596 for N = 13. This gap between d1 and
d2 will prove significantly larger in the following, data-based examples, confirming the
uniqueness of solutions to the optimization problem.

3.2. Further analytic solution to the Euler equations
A set of analytic, unsteady, tri-periodic laminar solutions of the Navier–Stokes equations
was put forward by Antuono (2020). Here, we consider only the steady part of these
solutions, which is a Beltrami solution to the Euler equations with no known first integral.
We therefore expect the streamlines of this velocity field to be chaotic and the overall
dynamics to be non-integrable. Representative (approximate) streamsurfaces have not yet
been constructed for this flow in the literature.

The velocity field is given by

v = 4
√

2

3
√

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin
(

x − 5π

6

)
cos

(
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6

)
sin(z)− cos

(
z − 5π

6

)
sin

(
x − π

6

)
sin( y)

sin
(

y − 5π

6

)
cos

(
z − π

6

)
sin(x)− cos

(
x − 5π

6

)
sin

(
y − π

6

)
sin(z)

sin
(

z − 5π

6

)
cos

(
x − π

6

)
sin( y)− cos

(
y − 5π

6

)
sin

(
z − π

6

)
sin(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.3)
Using a uniform grid of 20 × 20 initial conditions on the y = 0 plane, we integrate
trajectories up to an arclength of 104 and, upon retaining their long-term behaviour
from the interval [5 × 103, 104], we show the resulting Poincaré map in figure 6(a)
where a plethora of KAM tori are discernible. Selecting the triply periodic box [0, 2π]3

and sampling it with 1003 points, we run our algorithm for N = 13. Upon constructing
isosurfaces for 10 different isovalues of the resulting approximate first integral, we locate
their intersections with the y = 0 plane and superimpose them on figure 6(a). We then
compute the invariance error based on (2.7) and colour the isocontours of figure 6(a) blue
or red depending on whether their average error corresponds to an angle of less or more
than 5◦. Based on this, contours lying inside the chaotic sea of the Poincaré map show the
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Figure 6. (a) Comparison of the Poincaré map on the plane y = 0 for the steady Euler flow (3.3) overlaid on
the intersections of the tori obtained from an approximate first integral with the same plane for N = 13. The
blue (red) isocontours depict tori whose invariance error (see (2.7)) is smaller (larger) than 5◦ on average.
(b) 95th percentile of the distance (in non-dimensional units) between trajectories emanating from the
isocontours of panel (a) with the corresponding 2-D tori inside the computational box [0, 2π]3. The points
to the left (right) of the dash–dotted line correspond to trajectories originating in the blue (red) contours of
panel (a).

largest invariance error despite our algorithm not using any knowledge of the long-term,
chaotic dynamics.

For every isocontour of figure 6(a), we launch trajectories following the vector field
v of (3.3) until they leave the computational domain [0, 2π]3, and then calculate their
distances from the corresponding isosurfaces. Thus, in figure 6(b), we present the 95th
percentile of those distances for each streamsurface after separating them according to
figure 6(a), i.e. we depict the trajectories corresponding to the blue contours in the left side
of the dash–dotted line, whereas the ones for the red contours in the right side. We note
the correlation between the retained (blue) isocontours of figure 6(a) and the significantly
smaller percentiles of figure 6(b).

Similarly, we present the reconstructed tori for N = 15 or 14 146 modes in figure 7(a).
We observe that for N = 13, the approximate first integral captures virtually all the KAM
surfaces indicated by the Poincaré map. In contrast, for N = 15, some of the structures are
captured more accurately while others are missed completely. The convergence analysis
depicted in figure 8(a) shows that the least-squares error follows a declining trend as N
grows. This prompts us to consider an error measure similar to the one in (2.7), defined as

Em = 1
m

m∑
i=1

∣∣∣∣ ∇ |Hi| · vi

|∇ |Hi|| |vi|
∣∣∣∣ . (3.4)

In this expression, the summation is taken over all the grid points, providing an estimate for
the mean invariance error of the entire solution. This allows us to make a direct comparison
among solutions corresponding to different numbers of modes. Specifically, excluding
points that lie in the vicinity of fixed points of either v or ∇|H|, we show the dependence
of the invariance error Em on the number of Fourier modes used in our algorithm in
figure 8(b). We observe that the error attains the minimum value for N = 13, in agreement
with what is inferred from figure 6(a).

Moreover, to mitigate minor discrepancies between the reconstructed tori and those
outlined by the Poincaré map of figure 6(a), we increase the number of Fourier modes
to 28 670 (N = 19), while keeping the same set of grid points. A closeup view of a region
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Figure 7. (a) Same as in figure 6(a) with the tori reconstructed for N = 15. (b) Closeup view on a region filled
with two families of invariant tori. Overlaid on the Poincaré map are the tori obtained from an approximate first
integral for N = 19.
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Figure 8. Numerical details of the approximate first integral calculation for the steady Euler flow (3.3).
(a) Five smallest eigenvalues of A = C∗C and (b) normalized error estimate (3.4) for different numbers of
modes.

filled with invariant tori in figure 7(b) confirms that there is a close agreement with the
tori obtained from an approximate first integral. There is, however, a trade-off between the
increased accuracy and the ensuing computational burden that an end user must consider.

We also note that, while for N = 15 we have d1 ≈ d2 = 839.8079, for N = 19 we have
d1 = 204.5165 and d2 = 218.2078, further corroborating that our approach leads to a
unique solution. Finally, we conclude this section with figure 9(a) showing 3-D rendered
images of the three Poincaré maps on the planes x = y = z = 0, figure 9(b) showing
representative streamsurfaces obtained as level surfaces of an approximate first integral
for N = 13 and figure 9(c) showing the superimposition of panel (a) on panel (b), which
confirms the close agreement between the expected and reconstructed structures.

3.3. Hill’s spherical vortex
We now turn to a spatially non-periodic, integrable flow given by Hill’s spherical vortex
(Hill 1894). The axial-symmetric (approximately the z-axis) streamfunction for Hill’s
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(a) (b) (c)

Figure 9. Results for the steady Euler flow (3.3). (a) Poincaré maps on x = y = z = 0. (b) Streamsurfaces
approximating the KAM surfaces of (3.3). (c) Panel (a) superimposed on panel (b).

solution to the Euler equations is

ψ(h, z) =

⎧⎪⎪⎨
⎪⎪⎩

3
4

U0h2 (
1 − r2) , r ≤ 1,

−1
2

U0h2
(

1 − 1
r3

)
, r > 1,

(3.5)

where h is the distance from the axis of symmetry (h2 = x2 + y2) and r2 = h2 + z2. Using
the relations uh = −(1/h)(∂ψ/∂z) and uz = (1/h)(∂ψ/∂h), we obtain the corresponding
velocity field in Cartesian coordinates

v(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

3
2

U0
(
xz, yz, 1 − (r2 + h2)

)
, r ≤ 1,

3
2

U0

(
xz
r5 ,

yz
r5 ,

2
3

1
r3 − h2

r5

)
, r > 1.

(3.6)

As for periodic domains, we can compute a Fourier expansion on a bounded subdomain,
bearing in mind that the convergence of the partial Fourier sum will be slow in general
(Gottlieb & Shu 1997). To mitigate this issue, we will have to consider a sufficiently high
number of modes. Furthermore, due to the well-known Gibbs phenomenon, there will be
sizeable spurious oscillations in the approximate first integral near the box boundary that
do not diminish after an increase in the number of modes. To damp this effect in our
algorithm, we discard all the reconstructed surfaces that fall within 5 % of the box size in
all three directions.

The velocity field of (3.6) has toroidal streamsurfaces inside the spherical domain {x ∈
R : |x| ≤ 1} (see figure 10a). We reconstruct these streamsurfaces over the computational
domain [−2, 2]3 with 60 points per direction, running our algorithm for different numbers
of Fourier modes with U0 = 1. In some cases with N < 15, the non-periodic nature of the
velocity field results in the breakdown of the reconstructed toroidal structures. For N ≥ 15,
however, we obtain fully symmetric solutions. Specifically, for illustration purposes, we
work with N = 17 (or 20 478 Fourier modes) which yields a unique solution corresponding
to the smallest eigenvalue of A, d1 = 23.5169 (d2 = 25.3118). Based on this, we create
10 isosurfaces in the interval

[|H|min, |H|max
]
. Upon locating the intersections of these

surfaces with eight radially equidistant planes, we launch trajectories corresponding to
these intersections and compute the pointwise distance of the solution curves to the
reconstructed surfaces. The results (in terms of percentiles) are presented in figure 10(b).
A comparison between the reconstructed streamsurfaces and indicative solution curves is
given in figure 11.
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Figure 10. (a) Level sets of Hill’s streamfunction on the x = 0 plane. (b) 25th, 50th, 75th and 95th percentile
of the pointwise distances (in non-dimensional units) between solution curves and 10 different reconstructed
streamsurfaces for N = 17.
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Figure 11. (a) Streamsurfaces of figure 10 that have a 95th percentile less than 0.05 for x > 0. (b) Solution
curves of (3.6) for 5 different points lying on the outer streamsurface of panel (a).

3.4. Flow inside a V-junction
Next we investigate the flow inside a V-junction, as depicted in figure 12. Despite the
simple geometry, recent experiments have suggested that pumping a particle-laden fluid
into such a configuration allows light particles, such as gas bubbles in water, to be
permanently trapped in the junction (Vigolo, Radl & Stone 2014). This phenomenon arises
for a wide range of Reynolds numbers and for various junction angles (Ault et al. 2016).
Here we consider one such flow with junction angle 70◦ and Re = (ūL/ν) = 230 (Shin,
Ault & Stone 2015), where ū is the average inlet flow speed, L is the side length of the
square channel and ν is the kinematic viscosity.

We use a finite-volume solver from the OpenFOAM library to obtain a steady solution to
the 3-D incompressible Navier–Stokes equation (Weller et al. 1998). The same numerical
solution has recently been analysed using methods from dynamical systems theory, which
revealed large, anchor-shaped trapping regions for light particles (Oettinger et al. 2018).
These trapping regions, however, have been invariably linked to bubble-type vortex
breakdown structures in the fluid flow, which are formed downstream in the junction
(Ault et al. 2016). These structures are depicted as dark grey blobs in figure 12, obtained
from a careful advection of streamlines from the vicinity of known stagnation points.
Their construction, therefore, is by no means automated and assumes a detailed knowledge
of the streamline geometry.
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Figure 12. Velocity streamlines, colour coded with their magnitude, emanating from the inlet of the V-junction
and leaving the domain from the two outlets. For Re = 230 and a junction angle of 70◦, four symmetric
vortex-breakdown bubbles are portrayed in grey.

(a) (b)

Figure 13. Different views of the computational box used to construct an approximate first integral for one of
the bubble-like structures in the V-junction flow.

Each vortex breakdown bubble is demarcated by the 2-D stable and unstable manifolds
of two saddle-type fixed points. In a generic 3-D flow, these two manifolds do not
coincide because that configuration would not be structurally stable. Instead, they are
expected to intersect transversely. In such a scenario, the original streamsurface breaks
down allowing fluid particles from the main stream to be entrained into the bubble and,
conversely, particles to return from the bubble to the main stream (Holmes 1984; Peikert
& Sadlo 2007). Sotiropoulos, Ventikos & Lackey (2001) showed that a very careful mesh
refinement is required to reveal the splitting of the manifolds. Here, we will only be
interested in reconstructing a closed streamsurface that manifests minimal fluid exchange
(see Peikert & Sadlo (2007) for a discussion of this surface).

We select as computational domain the box depicted in figure 13 with 110, 90, 80 points
in the x, y and z direction, respectively. This box is chosen so that the bubble-like vortical
structure lies approximately in its centre. The dimensions of the box are Lx = 1 m, Ly =
0.6 m and Lz = 0.4 m. This procedure incorporates a priori information approximating
the rough location of the streamsurface of interest. We will see in the next section how
the same algorithm can be extended to uncover a priori unknown structures in a turbulent
flow.
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Figure 14. Results for an approximate first integral in the V-junction flow, framing one of the elliptical vortex
regions. (a) Approximate first integral distribution on a plane which coincides with the middle, in the x
direction, of the computational domain presented in figure 13. (b) Normalized invariance error as a function of
the extracted isosurfaces sorted in descending order with respect to their volume.

(a) (b)

Figure 15. Streamsurfaces as level sets of an approximate first integral in the V-junction flow, corresponding
to one local (i = 15) and the global minimum (i = 25) of the normalized error EA depicted in figure 14(b). The
duct is cut transversely to help the visualization.

We use our algorithm with N = 15 or 14 146 Fourier modes and show a 2-D
cross-section at the middle of the computational domain in figure 14(a). For the smallest
eigenvalue of A, d1 = 58.1538 (d2 = 376.9696), a very pronounced circular structure is
clearly visible approximately in the middle of the domain bordering an otherwise flat
landscape. To obtain the full, 3-D reconstruction, we use 40 equidistant values between
|H|min and |H|max and extract 28 different level surfaces of the approximate first integral.
We then sort them in decreasing order based on the volume they enclose.

Plotting this error estimate for the extracted isosurfaces (figure 14b) yields a global
minimum for the surface i = 25 and a local minimum for the surface i = 15. Rendered
depictions of the extracted isosurfaces corresponding to these two minima are shown
in figure 15. We note the close agreement between the reconstructed structures and the
structure delineated by the judiciously chosen streamlines. This is in stark contrast to the
structures suggested by the Q-criterion as demonstrated in Appendix A.

4. Momentum transport barriers in a turbulent channel flow

As we have mentioned in § 1, the shape of streamsurfaces is observer-dependent: their
geometry changes under general time-dependent rotations and translations of the observer.
Therefore, unless the flow has a distinguished frame in which streamsurfaces coincide with
material surfaces, streamsurfaces simply highlight features of the velocity field in a given
frame, as opposed to intrinsic, observer-indifferent features of the flow of fluid particles.
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For studies seeking to be consistent with observed flow physics, the latter features are
relevant (Haller 2021). This is because flow visualization experiments with dye particles
highlight material (and hence objectively defined) transport barriers, which generally
differ substantially from streamsurfaces in unsteady flows. At the same time, classic studies
focused on momentum, energy or vorticity transport are inherently frame-dependent by the
frame-dependence of all these Eulerian fields.

To reconcile these two objectives, Haller et al. (2020) developed a theory of objectively
defined barriers to the transport of active vector fields, such as the vorticity and
momentum. Aksamit & Haller (2022) used this theory to locate instantaneous (Eulerian)
frame-indifferent momentum transport barriers in 3-D turbulent channel flows. Active
barriers turn out to be distinguished streamsurfaces of appropriately defined steady,
3-D incompressible vector fields (Haller et al. 2020). Specifically, momentum transport
barriers of a Navier–Stokes velocity field v(x, t) at time t are streamsurfaces of the barrier
equation

x′(s) = �v (x(s), t) , (4.1)

with s ∈ R denoting a parametrization of streamlines forming the streamsurfaces and �
the Laplace operator. For an incompressible velocity field, we further note that �v =
−∇ × ω holds.

Haller et al. (2020) and Aksamit & Haller (2022) detected distinguished streamsurfaces
of the momentum barrier equation (4.1) using active versions of some of the passive
hyperbolic and elliptic LCS diagnostics reviewed by Haller (2015). These Lagrangian
calculations involve arrays of trajectories and return diagnostic scalar fields for visual
inspection rather than explicit streamsurfaces families. In the following, we will use our
approach for finding approximate first integrals to obtain vortical momentum barriers as
level surfaces of an approximate first integral for (4.1).

4.1. Numerical dataset
We study the 3-D incompressible, turbulent channel flow which can be found here. The
friction Reynolds number is Reτ = uτh/ν = 150, where uτ is the friction velocity, h is
the channel half-height and ν is the kinematic viscosity. We denote by x, z and y the
streamwise, spanwise and wall-normal directions, respectively. The computational domain
is Lx = 2.5πh long and Lz = πh wide.

The number of Fourier modes used in the simulation was 192 in both the streamwise
and the spanwise direction. The number of points in the wall-normal direction is 194,
inhomogeneously spaced so that the grid becomes more refined closer to the walls. No-slip
boundary conditions were applied at the two channel walls and the governing equations
were integrated forward in time with a constant pressure gradient dp/dx = −1 enforced so
as to drive the flow through the channel. Ten thousand velocity field snapshots were stored
at multiples of the simulation time step �t = 0.001 once the flow reached a statistically
stationary state. We will identify the 5000th snapshot of this time series with the time
t = 0.

4.2. Momentum barrier extraction
We seek to uncover objectively defined instantaneous momentum transport barriers
corresponding to the time t = 0 as specific streamsurfaces of the vector field �v(x, 0)
in (4.1). First, as illustration of prior results by Haller et al. (2020) on this problem,
we show the FTLE field computed for �v(x, 0) (called active FTLE or aFTLE) from a
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Figure 16. (a) Active FTLE (aFTLE) for the momentum barrier field (4.1) at t = 0 over a 2-D cross-section
of the channel at x/h = 2. (b–d) Projections of the approximate first integral (black lines) on the same
cross-section using as computational domains for the analysis the (red) boxes [1, 3] × [0, 2] × [0,π], [1, 3] ×
[0, 2] × [0.5, 2.5] and [1, 3] × [1.25, 2] × [0.4, 1.4], respectively, superimposed on the aFTLE landscape.

grid of 800 × 1000 initial conditions uniformly placed in the wall-normal and spanwise
directions, respectively, up to s = 10−3 (see figure 16a). This plot indicates the signatures
of two larger barriers to momentum transport, with the first located approximately around
[z/h, y/h] = [0.75, 1.25] × [1.5, 1.75]. The second, a mushroom-type barrier, is located
around [2.25, 2.75] × [1.25, 1.75]. A plethora of other smaller-scale structures are also
present in the aFTLE plots.

We use three different computational domains to illustrate the potential of the algorithm
presented in § 2: the boxes [1, 3] × [0, 2] × [0,π], [1, 3] × [0, 2] × [0.5, 2.5] and [1, 3] ×
[1.25, 2] × [0.4, 1.4] with 80 × 85 × 80 points in the streamwise, wall-normal and
spanwise direction, respectively. In each of these boxes, the points are evenly spaced and a
tri-linear interpolation scheme is employed to obtain the necessary �v values. Moreover,
we perform another rescaling of the dummy time s to pointwise normalize the right-hand
side of (4.1). This eliminates the high norms of �v near the wall in the expression (2.6).
If this normalization is not used, our algorithm tends to miss the turbulent regions close to
the wall and touches more on the central part of the channel.

For N = 13 (9170 Fourier modes), 20 isovalues of the approximate first integral are
depicted in figure 16(b–d) on the x/h = 2 plane. We note the progressive improvement
in the reconstruction of the first structure discussed above, as the computational domain
starts to close in on it. This observation prompts us to use a greedy algorithm
compartmentalizing the domain into smaller, overlapping domains. The size of these
domains will be dictated by the scale of the structures to be extracted.

Our algorithm so far generates families of streamsurfaces. We now seek to locate
outermost members of nested elliptical barrier families. To this end, for each of the
overlapping computational boxes, we use niso different values to produce isosurfaces in
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the interval [|H|min, |H|max]. We then group the resulting isosurfaces into foliations (see
figure 20( f ) for two such foliations) or, more generally, families by finding the ones that
either lie entirely inside others or have an intersection volume above a certain threshold,
respectively. Subsequently, we discard the foliations or families that have a number of
members less than a fixed percentage of niso. We note that for the isosurface extraction,
we use MATLAB’s built-in function which is based on the ‘Marching cubes’ algorithm
(Lorensen & Cline 1987). Other techniques generating isosurfaces (see, e.g. the concept
of contour trees (Carr, Snoeyink & Axen 2003)) are known to produce robust structures in
a more efficient fashion and could certainly be used as viable alternatives.

We also follow Haller et al. (2016) and define the convexity deficiency of a closed
surface as the ratio of the volume between the surface and its convex hull to the volume
enclosed by the surface. Here, however, we will only discard the most non-convex surfaces.

We summarize the main steps of the computations we described previously in
Algorithm 1. In the next section, we will use this algorithm to uncover momentum
transport barriers tied to different scales in the turbulent channel flow.

Algorithm 1 Extraction of instantaneous barriers to momentum transport
Input: A snapshot of the �v field defined over a 3-D Cartesian grid. Lengths Lx, Ly and
Lz as well as number of points Nx, Ny and Nz. Different parameters niso, pb, dmax and pf .

(i) Partition the original grid into smaller, overlapping rectangular domains with
dimension Lx × Ly × Lz.

(ii) Use tri-linear interpolation to obtain the values of �v/|�v| on a grid of Nx × Ny ×
Nz points inside every domain.

(iii) Form the coefficient matrix C and obtain the eigenvector of A corresponding to its
smallest eigenvalue.

(iv) Obtain a 3-D scalar field |H| serving as an approximate first integral inside each
domain and construct niso isosurfaces out of it.

(v) Discard the surfaces that have at least one point within pb percent of either Lx, Ly or
Lz of each domain’s face boundaries, respectively. Also, discard all the surfaces that
have a convexity deficiency ratio larger than a threshold dmax.

(vi) Classify the remaining structures into foliations or families after locating the ones
that either lie entirely inside others or have an intersection volume above a certain
threshold, respectively. Keep only the foliations or families with more than pf · niso
members.

(vii) Plot the member of each foliation or family with the largest volume.

Output: Almost convex, frame-indifferent 2-D vortical barriers to momentum transport
in the velocity field v.

4.3. Results

4.3.1. Channel partition into large subdomains
To illustrate our algorithm, we use the entire computational domain of the
direct numerical simulation (DNS) described in § 4.1. First we partition it in
the following overlapping subdomains [x1i, x2i] × [y1j, y2j] × [z1k , z2k ] with x1 ∈
{−0.5, 0.5, . . . , 5.5}, x2 ∈ {1.5, 2.5, . . . , 7.5}, y1 ∈ {0, 0.5, 1}, y2 ∈ {1, 1.5, 2}, z1 ∈
{0, 1, 2}, z2 ∈ {1.5, 2.5, 3.5}, i = 1, . . . , 7, j = 1, 2, 3, k = 1, 2, 3. For each of these
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Figure 17. Instantaneous barriers to momentum transport in the 3-D turbulent channel flow, derived using the
larger partition described in § 4.3.1.

domains, we use a grid of 70 × 75 × 70 evenly spaced points on which we compute
the normalized velocity Laplacian. For the approximate first integral, we use N = 13
(or 9170 Fourier modes). This comes as a necessary trade-off between computational
time and surface accuracy after we observed that the reconstructed structures do not vary
significantly when we use N = 12 or N = 14. With it, we extract niso = 40 isosurfaces in
every domain. Of them, we discard the surfaces described in steps 5 and 6 of Algorithm 1
by employing pb = 2 %, pf = 10 % and dmax = 20 %.

The results of this computation are shown in figure 17. We observe that the entire
channel is populated by a host of different momentum transport barriers, the majority of
which have a clear quasi-streamwise direction. These structures are reminiscent of those
investigated in studies of wall-bounded flows (Robinson 1991). The structures we obtain,
however, are more evenly scattered throughout the channel, appearing not only near the
channel walls but also in the more quiescent central part. This is in stark contrast to
typical predictions from classic vortex criteria for these flows (Hunt, Wray & Moin 1988;
Chong, Perry & Cantwell 1990; Jeong & Hussain 1995). This phenomenon, i.e. structures
penetrating into and spanning the bulk flow region, has already been noted in the literature
(Haller et al. 2020; Aksamit & Haller 2022) by analysing the 2-D signatures of these
structures via diagnostic fields. Here, however, we explicitly construct these structures via
the streamsurfaces surrounding them.

4.3.2. Channel partition into small subdomains
We now employ smaller partitions of the channel, using the overlapping subdomains
[x1i, x2i] × [y1j, y2j] × [z1k , z2k ] with x1 ∈ {−0.5, 0, . . . , 6.5}, x2 ∈ {0.5, 1, . . . , 7.5}, y1 ∈
{0, 0.5, 1}, y2 ∈ {1, 1.5, 2}, z1 ∈ {0, 1, 2}, z2 ∈ {1.5, 2.5, 3.5}, i = 1, . . . , 15, j = 1, 2, 3,
k = 1, 2, 3, while keeping all the other parameters the same as in § 4.3.1.

The results for this computation are shown in figure 18. In this case, we again observe
momentum transport barriers that tend to align with the streamwise direction but in
larger numbers, when compared with figure 17. Another notable difference is that the
reconstructed structures show generally smaller scales than before. This demonstrates
that our domain partition algorithm acts as a filter of various scales. This provides a
natural way out of the occlusion quandary that besets many visualization approaches
while retaining the algorithm’s capacity to capture the smallest structures, delineated in
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Figure 18. Instantaneous barriers to momentum transport in the 3-D turbulent channel flow, derived using the
smaller partition described in § 4.3.2. The supplementary movie 2 of the supplementary material portrays the
extracted structures for the time interval [t0, t1] = [0, 0.5].
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Figure 19. Distribution of the smallest (blue) and the second smallest (red) eigenvalues of A over the
different computational domains used for the barriers surfaces presented in figure 18.

the aFTLE plots, by using finer partitions. In the next subsection, we will demonstrate
this capacity by pinpointing structures that the active diagnostics-based methods in Haller
et al. (2020) and Aksamit & Haller (2022) would likely miss. We conclude this section
with figure 19 depicting a well-formed spectral gap between the smallest and the second
smallest eigenvalue of A for all the computational boxes. Finally, we carry out an unsteady
barrier analysis for times varying over the interval [t0, t1] = [0, 0.5], as presented in the
supplementary movie 2. In it, the fact that some barrier surfaces seem to appear, then
disappear and perhaps reappear at a later time is a direct consequence of the flat convexity
deficiency threshold we allow for these surfaces (20 %) throughout the channel. We expect
this phenomenon to be resolved when the purely Lagrangian approach of Haller et al.
(2020) is combined with our algorithm in follow-up work.
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Figure 20. Two branches of a mushroom-like, objective vortex (in grey) captured by Algorithm 1 in the
3-D turbulent channel flow. The branches are superimposed on 2-D cross-sections of the aFTLE field at
x/h = 1, 1.4, 1.6, 1.9 and 2.1 in panels (a), (b), (c), (d) and (e), respectively. ( f ) A transverse cut at x/h = 1.7
revealing the foliations of structures constituting the two branches of the mushroom-like vortex.
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4.3.3. Uncovering hidden structures
We now focus on the region we highlighted in figure 16(d). The signature of a vortical
structure is evident from the aFTLE landscape and it is corroborated by the isolines of
an approximate first integral. Zooming in on the vicinity of this structure in figure 18,
however, reveals the existence of another structure (see figure 20), showing no imprint on
the aFTLE landscape.

To investigate this, we populate the neighbourhood around these two structures with 2-D
cross-sections and compute the aFTLE field for each of them. At x/h = 1 (figure 20a), we
note two mushroom-like pairs of structures, one larger and one smaller, but neither of the
two display prominent closed regions that could signal a vortex. As we move towards larger
x/h values, however, the aFTLE topography changes drastically. At x/h = 1.4 (figure 20b),
the larger structure starts to fall apart before it completely disintegrates in the following
cross-sections. In contrast, the smaller structure develops a salient closed loop, delineated
by an aFTLE ridge, which is coincident with the largest of the reconstructed surfaces. In
the next two cross-sections (figure 20c,d), the smaller of the two reconstructed surfaces
comes into play as we further observe both parts of the vortex pair following closely the
aFTLE ridges downstream. Finally, in the last cross-section (figure 20e), the vortex pair
pattern is broken up in agreement with the reconstructed vortex pair coming to a halt.

This example epitomizes two notable features of Algorithm 1. First, using finer
partitions results in the reconstruction of smaller structures consistent with the well-known
hierarchy of coherent structures in turbulence. Second, this reconstruction takes place in
an almost automated fashion with minimal reliance on user-defined parameters and with
no need to advect trajectories of the barrier equation.

5. Conclusions

We have introduced a minimization principle to find an instantaneous approximate first
integral of a given 3-D vector field. Level surfaces of this approximate first integral are
expected to provide automated approximations to vortical streamsurfaces highlighting the
instantaneous elliptic regions of the vector field. We have also proposed and tested a
numerical algorithm for solving this minimization problem by means of total least squares
and ridge regression. This algorithm has performed well on various solutions of the steady
3-D Euler equations on triply periodic and non-periodic domains. For steady velocity
fields, the parametrized family of streamsurfaces rendered by our approach approximate
elliptic (toroidal or cylindrical) LCSs without the need to advect a large number of
trajectories required by Lagrangian methods (Haller et al. 2016). We have also illustrated
on a 3-D junction flow the applicability of our algorithm for velocity fields defined as
numerical datasets produced from computational fluid dynamics simulations.

We have additionally used the described algorithm to extract objectively defined
instantaneous momentum transport barriers in a 3-D turbulent channel flow in an
almost-automated fashion. Such barriers are streamsurfaces of an incompressible barrier
equation defined by the Laplacian of the velocity field (Haller et al. 2020; Aksamit &
Haller 2022). We have extracted vortical momentum transport barriers without the need to
advect arrays of trajectories and found such barriers across multiple spatial scales.

The generality of the presented algorithm provides a fertile ground for its use in
the visualization of the important features in a number of diverse applications. A
straightforward example is the barrier equation derived by Haller et al. (2020) for the
transport of vorticity. Furthermore, the purely Lagrangian approach of Haller et al. (2020)
could be combined with our algorithm to produce LCSs for unsteady simulations. This
method, unlike the instantaneous approach used for the production of supplementary
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movie 2, will yield smoothly varying structures that are also experimentally verifiable.
Another application of our algorithm could be the visualization of the magnetic field
resulting from magnetohydrodynamic turbulence simulations (Biskamp 2003). Future
research can also apply the algorithm to direction fields like those emerging from studies
of 3-D LCSs (Oettinger & Haller 2016), to 3-D material barriers to diffusive transport
(Haller, Karrasch & Kogelbauer 2018) or to uncover LCSs acting as barriers in diverse
applications (Martínez et al. 2021). Such studies could extend the automated extraction of
2-D LCSs and transport barriers (Katsanoulis & Haller 2019; Katsanoulis et al. 2020) to
3-D flows, facilitating their integration to numerical simulation codes.

Alternative solutions to the same optimization problem for an approximate first integral
are certainly viable to investigate in future work. These could involve different basis
functions (such as Chebyshev polynomials, wavelets or radial basis functions) instead of
Fourier expansions. Techniques to mitigate the Gibbs phenomenon tied to non-periodic
domains (Gegenbauer polynomials) (Gottlieb & Shu 1997) are also feasible to consider.
Similarly, the effect of using Chebyshev nodes, instead of the uniform grids we considered
here, to reduce the impact Runge’s phenomenon has near the boundaries could be
examined.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.992.
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Appendix A. Typical flow visualization techniques

In this section, we apply classic vortex visualization methods in some of the flows for
which we have constructed approximate first integrals. First, we test two isosurface-based
criteria that are widely used in the literature to locate vortical structures, i.e. the
λ2-criterion of Jeong & Hussain (1995) and the Q-criterion of Hunt et al. (1988). Both
of them are defined from the decomposition

∇v = S + 𝞨, (A1)

where S = [∇v + (∇v)�]/2 is the rate-of-strain tensor and 𝞨 = [∇v − (∇v)�]/2 is the
vorticity tensor.
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Figure 21. λ2-criterion-based isosurfaces against Poincaré maps in the non-integrable ABC flow. The
isosurfaces correspond to (a) λ2 = −0.02 and (b) λ2 = −2.4. The Poincaré maps are computed from a grid of
20 × 20 initial conditions on the x = 0, y = 0 and z = 0 planes running up to arclength 104.

According to the λ2-criterion, vortical regions coincide with domains where

λ2(S
2 + 𝞨2) < 0 (A2)

with λ2(B) denoting the intermediate eigenvalue of the symmetric tensor B. Similarly, the
Q-criterion identifies vortical regions as those where

Q = 1
2

[
‖𝞨‖2 − ‖S‖2

]
> 0 (A3)

with ‖B‖ denoting the Frobenius norm of B.
We stress here that both of these criteria are only Galilean-invariant and, thus, depend

on the frame of reference they are used on. Of equal importance is that, according to their
definitions, they highlight vortical regions rather than surfaces. To bypass this, a specific
value is usually chosen and the resulting isosurfaces are identified as the so-called vortices.
Such a choice, however, would be justifiable, if the chosen isovalue was close to zero,
as the original definitions postulated. Unfortunately, in typical flow visualizations, these
isovalues are tuned to arbitrary values to match user expectations regarding the vortical
features.

We highlight this in figure 21 using the λ2-criterion for the non-integrable ABC flow.
Specifically, we use one value close to zero (figure 21a) and one which corresponds to
a drastically different topology for the resulting structures (figure 21b). We note that
both of these values fail to capture even a single family of invariant tori. Indeed, the
reconstructed surfaces tend to either have holes in the vicinity of the invariant tori
(figure 21a) or be misaligned with the vortex cores (figure 21b). This is in stark contrast to
the approximate-first-integral-based tori we have found in § 3.1.2.

A similar conclusion can be drawn for the flow inside the V-junction that we tested in
§ 3.4. Our approximate-first-integral algorithm correctly pinpoints the exact position of the
recirculation bubbles in this flow. In contrast, we show in figure 22 the drastically different
vortical features we obtain for different isovalues of the Q-criterion. Despite the four
recirculation bubbles that are formed downstream, the isosurfaces based on the Q-criterion
locate invariably two vortical features whose length also varies substantially for different
Q values. What is even more remarkable is that such Q-criterion-based vortical features
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(a) (b)

(c)

Figure 22. (a,b) Q-criterion-based isosurfaces against the recirculation bubbles for the flow inside
the V-junction of § 3.4 (Re = 230). The isosurfaces correspond to (a) Q = 0.02 and (b) Q = 50.
(c) Q-criterion-based isosurfaces for Q = 50 for a perturbed solution (Re = 180) where no recirculation
bubbles are formed.

persist even for similar flows with slightly different Reynolds numbers that exhibit no
fluid recirculation at all (see figure 22c). Importantly, our method finds no structure in the
same spatial domain for these Reynolds numbers and hence correctly signals the lack of a
recirculation bubble.

Finally, in figure 23(a,b), we present representative streamlines for the turbulent channel
flow of § 4 based on the barrier field �v(x), the velocity field v(x) in figure 23(c,d) and
the vorticity field ω(x) in figure 23(e, f ) at time t = 0. For all three fields, we choose the
same initial conditions, i.e. points that approximately lie on the ridge of the aFTLE field
(computed based on the �v(x) field) we identified in figure 20(c) at x/h = 1.6.

Based on these calculations, we draw the following conclusions. First, we observe the
barrier streamlines being wrapped around the approximate-first-integral-based structure
following even small protrusions on its surface like the one seen in figure 23(a). This
structure is, thus, a correct approximation to an invariant manifold of the barrier field in
agreement with the best-fit streamsurface of figure 24(a,b) as well as the aFTLE landscape
of figure 20. For longer integration dummy times (figure 24c,d), however, we observe that
this delineation of the barrier surface using streamlines quickly comes to a halt. Indeed,
the streamlines fail to capture a significant portion of the barrier surface as x/h becomes
larger, whereas for smaller x/h, they develop convoluted patterns that eventually fall apart
resulting in elongated streamsurfaces that show no imprint on the aFTLE landscape.
This constitutes the main reason why techniques aiming at the reconstruction of exact
streamsurfaces through a better seed placement are not well suited for such flows.

Second, we note that the velocity streamlines form a misaligned (with respect to the
extracted structure) tube that gives no indication of a vortical feature. Third, we remark
that the vorticity streamlines correctly outline the outer shape of the mushroom-shaped
structure imprinted on the aFTLE landscape without a detailed delineation, however, of
the two branches that constitute it.
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Figure 23. Streamlines of different vector fields emanating from points lying on the ridge of the aFTLE field
at x/h = 1.6. Different views of streamlines of the (a,b) momentum barrier field, (c,d) velocity field and (e, f )
vorticity field at t = 0.

Appendix B. Least squares for homogeneous systems

THEOREM B.1. Let C = U𝞢V∗ be the singular value decomposition of a matrix C. Let,
also, v1, . . . , vk be the last k columns of V whose corresponding singular values are equal
to the smallest singular value σ1. Then, all the linear combinations of the form

x = c1v1 + · · · + ckvk (B1)

with
c2

1 + · · · + c2
k = 1 (B2)
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Figure 24. Different views of streamlines of the momentum barrier field originating from points lying on
the ridge of the aFTLE field presented in figure 23. The integration in panels (a,b) and (c,d) corresponds to
different dummy final times s1,(a,b) and s1,(c,d) with s1,(a,b) < s1,(c,d). The best-fit streamsurfaces are depicted
in red and are compared against the approximate-first-integral-based structure in grey.

are unit-norm least-squares solutions to the homogeneous system

Cx = 0. (B3)

Proof . We want to find the solution x with |x| = 1 that minimizes |Cx| or |U𝞢V∗x|.
Because U is unitary and, thus, acts as an isometry, this is equivalent to minimizing |𝞢V∗x|
or |𝞢y| with y = V∗x. Here, V is also unitary, so |y| = 1 is equivalent to |x| = 1. Therefore
we want the unit-norm vector y that minimizes |𝞢y|, i.e. the quantity

σ 2
1 y2

1 + · · · + σ 2
n y2

n. (B4)

By the definition of SVD, we have

σ1 ≥ σ1 ⇔ σ 2
1 ≥ σ 2

1
...

σn ≥ σ1 ⇔ σ 2
n ≥ σ 2

1

⎫⎪⎬
⎪⎭ ⇔

σ 2
1 y2

1 ≥ σ 2
1 y2

1
...

σ 2
n y2

n ≥ σ 2
1 y2

n

⎫⎪⎬
⎪⎭ (B5)

and after summing up all the inequalities, we obtain

σ 2
1 y2

1 + σ 2
2 y2

2 + · · · + σ 2
n y2

n ≥
(

y2
1 + y2

2 + · · · + y2
n

)
σ 2

1 = σ 2
1 , (B6)
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with the equality holding if

yn−k+1 = yn−k+2 = · · · = yn = 0. (B7)

We then have x = Vy = y1v1 + · · · + ynvn and, thus, (B7) is equivalent to

x = c1v1 + · · · + ckvk (B8)

with c1 = y1, . . . , ck = yk and c2
1 + · · · + c2

k = 1. �

Appendix C. Solving for H after imposing the real constraint

We define a complex vector h ∈ Cn, where n represents the number of vectors k ∈ Z3 such
that |k| ≤ N and we also represent the individual entries of h as hk. Further, in conjunction
with § 2, we define a m × n matrix, where m represents the total number of grid points.
We are interested in minimizing h∗C∗Ch subject to the constraints h∗h = 1 and h−k = h∗

k.
The second constraint is not natural to solve using known optimization techniques, due to
which we will modify the above problem rearranging h as a vector in R2n.

Naively, one can construct a column vector with first n real entries of h followed by their
corresponding imaginary entries

v =
(

Re(h)
Im(h)

)
. (C1)

Similarly, one can reorganize A = C∗C and obtain

D =
[

Ar −Ai
Ai Ar

]
, (C2)

where Ar = (A + AT)/2 and Ai = (A − AT)/2i. Thus, we have vTDv = h∗Ah subject to
the constraints vTv = h∗h = 1 and Uv = 0. In our case, U is a matrix of the form

U = [
K (n×n) J(n×n)

]
n×2n (C3)

K ij =

⎧⎪⎨
⎪⎩

1 i = j, i < n/2, j < n/2
−1 i = n/2 + j, i < n/2, j < n/2
0

∣∣∣∣J ij =

⎧⎪⎨
⎪⎩

1 i = j, i < n/2, j < n/2
1 i = n/2 + j, i < n/2, j < n/2
0

(C4)

The above optimization problem has a solution by Golub (1973). We state a form of the
theorem that will be useful for us.

THEOREM C.1. Minimizing vTDv subject to vTv = 1, Uv = 0, where v ∈ R2n is
equivalent to minimizing lTEl subject to lTl = 1, where l ∈ Rn provided U is a n × 2n
matrix.
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Figure 25. Analysis of the non-integrable ABC flow using a computational grid of 1003 points and 9170
Fourier modes after constraining H to be a real scalar field. Level sets of the reconstructed first integral at
(a) z = 0, (b) y = 0 and (c) x = 0. The Poincaré map is overlaid on each section based on a uniform grid of
20 × 20 initial conditions.

Proof . Following Golub (1973), we can write

UT = QR = Q2n×2n

[
R′

n×n
0n×n

]
2n×n

, (C5)

where Q is an orthogonal matrix and R′ is an upper triangular matrix. The constraint then
reads

RTQTv = 0, (C6)

RTvQ = 0. (C7)

The vector vQ =
[

0n×1
ln×1

]
is a solution to the above constraint. Expressing the objective

function in terms of vQ, we have

vTDv = vTQQ−1D(Q−1)TQTv = vT
Q

[
(QTDQ)11 (QTDQ)12
(QTDQ)21 (QTDQ)22

]
vQ = lTEl (C8)

subject to the constraint lTl = 1 with E = (QTDQ)22. �

Using this theorem, we can see that the eigenvector of E corresponding to the minimum
eigenvalue would be the solution (since E is a symmetric matrix). The vector of interest h
can be reconstructed as follows:

h = [Q(vQ)min]1 + i[Q(vQ)min]2,Q(vQ)min =
({[Q(vQ)min]1}n×1

{[Q(vQ)min]2}n×1

)
. (C9)

The results of this solution method for the non-integrable ABC flow on three different
planes are depicted in figure 25. Again, we note the very good agreement of the
reconstructed level sets with both the Poincaré maps and the level sets of figure 3.
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Appendix D. Efficient computation of SVD for tall-skinny matrices

Let C be an m × n matrix with m � n. To make use of the tall-thin structure of this matrix,
we follow an approach similar to the one described by Schmidt (2020) and factor

Cm×n = Qm×nRn×n (D1)

using the so-called thin QR factorization of C. The SVD of R gives

C = QR = Q(UR𝞢RV T
R) = (QUR)𝞢RV T

R. (D2)

This is in turn a singular value decomposition of C because QUR is unitary as the product
of unitary matrices. To avail ourselves of this result, we can split C =

[
C1
C2

]
, followed by

Ci = QiRi (i = 1, 2) and, thus, we obtain

C =
[

Q1 0
0 Q2

] [
R1
R2

]
. (D3)

This is not yet a QR factorization of C as the right factor is not upper triangular. We then
perform another thin QR factorization on

[
R1
R2

]
and obtain

C =
[

Q1 0
0 Q2

]
QR, (D4)

which is a QR factorization of C. Based on that, we can partition the original computation
domain into smaller sub-domains, compute the Ri matrices for each of them, combine
these to produce the final R matrix as in (D4) and, finally, run SVD on this n × n matrix.
This procedure is readily parallelizable.

For the purposes of our computation described in § 3.1.2, we used 10 cores on the Euler
cluster of ETH Zurich and within each core, we chose 5 more partitions. This resulted in
approximately the same memory footprint as for the solution of the eigenvalue problem.
If the memory is not enough, the number of partitions can be increased with a subsequent
increase in the computational time.

Appendix E. A different solution to the optimization problem

Let us assume that we start by fixing the Fourier coefficient of particular modes. To avoid
inducing unnecessary inhomogeneity to our solution, we are going to set Ĥk = 1 for k =
(1, 0, 0), k = (0, 1, 0), k = (0, 0, 1). Similarly, we impose Ĥ−k = Ĥ∗

k = 1. We further
denote by

K = {k|k ∈ Z
3 ∧ |k| ≤ N ∧ k /=(1, 0, 0) ∧ k /=(−1, 0, 0) ∧ k /=(0, 1, 0)

∧k /=(0,−1, 0) ∧ k /=(0, 0, 1) ∧ k /=(0, 0,−1)} (E1)

the set of the remaining Fourier modes. Then, the invariance condition reads

Ch = b, (E2)

where Cij = exp(ikj · xi)kj · vi, h = {Ĥk|k ∈ Z3 ∧ k ∈ K} and b = [b1 b2 · · · bl
· · · bm]T with

bl = −2i
(
sin xvx + sin yvy + sin zvz

)
. (E3)

Essentially, what we have attained here is to transform the homogeneous system of
equations to an inhomogeneous one for which we can now use ordinary least squares or
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Figure 26. Analysis of the non-integrable ABC flow using a computational grid of 603 points and 9170 Fourier
modes. Level sets of the reconstructed first integral at (a,d) z = 0, (b,e) y = 0 and (c, f ) x = 0. Panels (a–c)
are constructed using ordinary least squares, whereas panels (d–f ) are generated using ridge regression. The
Poincaré map is overlaid on each section based on a uniform grid of 20 × 20 initial conditions.

ridge regression. The ridge-regression solution is given as

ĥ = V
(
𝞢�𝞢 + λI

)−1
𝞢�U∗b, (E4)

whereas for λ = 0, we obtain the ordinary least-squares solution. This expression shows
that the trick we employed in the homogeneous case with the QR decomposition cannot
be applied here given that the solution depends on the explicit construction of U . We are,
therefore, limited with regard to the maximum size of the computational grid we can use
before we run into memory issues.

Nonetheless, in figure 26, we provide the two solutions for the non-integrable ABC
flow using 60 points per direction and the same number of Fourier modes as before.
For the ridge regression, we used cross-validation and kept the solution with the smallest
least-squares error out of the solutions generated for λ ∈ {1, 10−1, 10−2, 10−3, 10−4}. The
results appear to be inferior to the homogeneous-system-based solutions suggesting that
this approach is recommended only for numerical datasets defined over smaller grids.
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HALLER, G. & MEZIĆ, I. 1998 Reduction of three-dimensional, volume-preserving flows with symmetry.

Nonlinearity 11 (2), 319–339.
HENON, M. 1966 Sur la topologie des lignes de courant dans un cas particulier. C. R. Acad. Sci. Paris A 262,

312–314.
HILL, M.J.M. 1894 On a spherical vortex. Phil. Trans. R. Soc. A 185, 213–245.
HOLMES, P. 1984 Some remarks on chaotic particle paths in time-periodic, three-dimensional swirling flows.

Contemp. Maths 28, 393–404.
HULTQUIST, J.P.M. 1992 Constructing stream surfaces in steady 3D vector fields. In Proceedings

Visualization ’92, pp. 171–178. IEE Computer Society Press.
HUNT, J.C.R., WRAY, A. & MOIN, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center

for turbulence research report CTR-S88, pp. 193–208.
JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
KATSANOULIS, S., FARAZMAND, M., SERRA, M. & HALLER, G. 2020 Vortex boundaries as barriers to

diffusive vorticity transport in two-dimensional flows. Phys. Rev. Fluids 5 (2), 024701.
KATSANOULIS, S. & HALLER, G. 2019 BarrierTool Manual. Retrieved from https://github.com/LCSETH.
KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds

number. J. Fluid Mech. 177, 133–166.
LLIBRE, J. & VALLS, C. 2012 A note on the first integrals of the ABC system. J. Math. Phys. 53 (2), 023505.
LORENSEN, W.E. & CLINE, H.E. 1987 Marching cubes: a high resolution 3d surface construction algorithm.

SIGGRAPH 21 (4), 163–169.
MARTÍNEZ, L., et al. 2021 Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nat. Commun.

12, 5937.
MARTINEZ–ESTURO, J., SCHULZE, M., RÖSSL, C. & THEISEL, H. 2013 Global selection of stream surfaces.

Comput. Graph. Forum (Proc. Eurograph.) 32 (2), 113–122.
OETTINGER, D., AULT, J.T., STONE, H.A. & HALLER, G. 2018 Invisible anchors trap particles in branching

junctions. Phys. Rev. Lett. 121 (5), 054502.
OETTINGER, D., BLAZEVSKI, D. & HALLER, G. 2016 Global variational approach to elliptic transport

barriers in three dimensions. Chaos 26 (3), 033114.
OETTINGER, D. & HALLER, G. 2016 An autonomous dynamical system captures all lcss in three-dimensional

unsteady flows. Chaos 26 (10), 103111.

954 A28-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/LCSETH
https://doi.org/10.1017/jfm.2022.992


Approximate streamsurfaces for flow visualization

PÖSCHEL, J. 1982 Integrability of Hamiltonian systems on cantor sets. Commun. Pure Appl. Maths 35,
653–696.

PEIKERT, R. & SADLO, F. 2007 Visualization methods for vortex rings and vortex breakdown bubbles.
In Proceedings of the 9th Joint Eurographics/IEEE VGTC conference on Visualization (ed. K. Museth,
T. Moeller & A. Ynnerman), pp. 211–218. The Eurographics Association.

PEIKERT, R. & SADLO, F. 2009 Topologically relevant stream surfaces for flow visualization. In Proceedings
of the 25th Spring Conference on Computer Graphics, pp. 35–42. Association for Computing Machinery.

PENG, N. & YANG, Y. 2018 Effects of the Mach number on the evolution of vortex-surface fields in
compressible Taylor–Green flows. Phys. Rev. Fluids 3 (1), 013401.

PULLIN, D.I. & YANG, Y. 2014 Whither vortex tubes? Fluid Dyn. Res. 46 (6), 061418.
ROBINSON, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1),

601–639.
SADLO, F. & PEIKERT, R. 2007 Efficient visualization of Lagrangian coherent structures by filtered AMR

ridge extraction. IEEE Trans. Vis. Comput. Graph. 13 (6), 1456–1463.
SCHMIDT, D. 2020 A survey of Singular Value Decomposition methods for distributed tall/skinny data. In 2020

IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA),
pp. 27–34. IEEE.

SCHULZE, M., MARTINEZ-ESTURO, J., GÜNTHER, T., RÓSSL, C., SEIDEL, H.-P., WEINKAUF, T. &
THEISEL, H. 2014 Sets of globally optimal stream surfaces for flow visualization. Comput. Graph. Forum
(Proc. EuroVis) 33 (3), 1–10.

SHIN, S., AULT, J. & STONE, H. 2015 Flow-driven rapid vesicle fusion via vortex trapping. Langmuir 31
(26), 7178–7182.

SOTIROPOULOS, F., VENTIKOS, Y. & LACKEY, T. 2001 Chaotic advection in three-dimensional stationary
vortex-breakdown bubbles: Šil’nikov’s chaos and the devil’s staircase. J. Fluid Mech. 444, 257–297.

VAN WIJK, J.J. 1993 Implicit stream surfaces. In Proceedings Visualization’93, pp. 245–252. IEEE.
VIGOLO, D., RADL, S. & STONE, H.A. 2014 Unexpected trapping of particles at a T junction. Proc. Natl

Acad. Sci. 111 (13), 4770–4775.
WELLER, H.G., TABOR, G., JASAK, H. & FUREBY, C. 1998 A tensorial approach to computational

continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620–631.
XIONG, S. & YANG, Y. 2017 The boundary-constraint method for constructing vortex-surface fields.

J. Comput. Phys. 339, 31–45.
XIONG, S. & YANG, Y. 2019 Identifying the tangle of vortex tubes in homogeneous isotropic turbulence.

J. Fluid Mech. 874, 952–978.
YANG, Y. & PULLIN, D.I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and

Kida–Pelz initial conditions. J. Fluid Mech. 661, 446–481.
YANG, Y. & PULLIN, D.I. 2011 Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz

flows. J. Fluid Mech. 685, 146–164.
ZHAO, Y., YANG, Y. & CHEN, S. 2016a Evolution of material surfaces in the temporal transition in channel

flow. J. Fluid Mech. 793, 840–876.
ZHAO, Y., YANG, Y. & CHEN, S. 2016b Vortex reconnection in the late transition in channel flow. J. Fluid

Mech. 802, R4.
ZHOU, J., ADRIAN, R.J., BALACHANDAR, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent

packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.
ZIGLIN, S.L. 1988 Splitting of the separatrices and the nonexistence of first integrals in systems of differential

equations of Hamiltonian type with two degrees of freedom. Maths USSR-Izvestiya 31 (2), 407.
ZIGLIN, S.L. 1998 On the absence of a real-analytic first integral for ABC flow when A = B. Chaos 8 (1),

272–273.

954 A28-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.992

	1 Introduction
	2 Set-up of the minimization scheme and reconstruction algorithm
	3 Approximate first integrals for explicit solutions of the Euler equations
	3.1 ABC flow
	3.1.1 Integrable case
	3.1.2 Non-integrable case

	3.2 Further analytic solution to the Euler equations
	3.3 Hill's spherical vortex
	3.4 Flow inside a V-junction

	4 Momentum transport barriers in a turbulent channel flow
	4.1 Numerical dataset
	4.2 Momentum barrier extraction
	4.3 Results
	4.3.1 Channel partition into large subdomains
	4.3.2 Channel partition into small subdomains
	4.3.3 Uncovering hidden structures


	5 Conclusions
	A Appendix A. Typical flow visualization techniques
	B Appendix B. Least squares for homogeneous systems
	C Appendix C. Solving for H after imposing the real constraint
	D Appendix D. Efficient computation of SVD for tall-skinny matrices
	E Appendix E. A different solution to the optimization problem
	References

