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Boundary-layer instability on a highly swept fin
on a cone at Mach 6
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The growth and characteristics of linear, oblique instabilities on a highly swept fin on a
straight cone in Mach 6 flow are examined. Large streamwise pressure gradients cause
doubly inflected cross-flow profiles and reversed flow near the wall, which necessitates
using the harmonic linearized Navier–Stokes equations. The cross-flow instability is
responsible for the most-amplified disturbances, however, not all disturbances show
typical cross-flow characteristics. Distinct differences in perturbation structure are shown
between small (∼3–5 mm) and large (∼10 mm) wavelength disturbances at the unit
Reynolds number Re′ = 11 × 106 m−1. As a result, amplification measurements based
solely on wall quantities bias a most-amplified disturbance assessment towards larger
wavelengths and lower frequencies than would otherwise be determined by an off-wall
total-energy approach. A spatial-amplification energy-budget analysis demonstrates
(i) that wall-normal Reynolds-flux terms dictate the local growth rate, despite other
terms having a locally larger magnitude and (ii) that the Reynolds-stress terms are
responsible for large-wavelength disturbances propagating closer to the wall compared
with small-wavelength disturbances. Additionally, the effect of free-stream unit Reynolds
number and small yaw angles on the perturbation amplification and energy budget is
considered. At a higher Reynolds number (Re′ = 22 × 106 m−1), the most-amplified
wavelength shrinks. Perturbations do not behave self-similarly in the thinner boundary
layer, and the shift in most-amplified wavelength is due to decreased dissipation relative
to the lower-Reynolds-number case. Small yaw angles produce a streamwise shift in
the boundary layer and disturbance amplification. The yaw results quantify a potential
uncertainty source in experiments and flight.
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1. Introduction

Hypersonic flow over a swept control surface can experience a large cross-flow velocity
component in the boundary layer and therefore be susceptible to the cross-flow instability.
This can lead to transition from a laminar to a turbulent boundary layer. Understanding
and modelling the physical mechanisms leading to this transition is desirable for multiple
reasons. The results lead to smaller, more manageable uncertainties in flow properties,
and advances in technologies for assessment, design and control. Regarding control,
delaying transition can reduce the total heat flux and drag on the surface, while promoting
turbulence may prevent boundary-layer separation on movable control surfaces. Any
attempt at flow control depends on understanding the relevant instability mechanisms
and what affects them, and is generally most efficient when one capitalizes on the most
unstable disturbances present. However, making meaningful predictions on instability
characteristics in complex flows and further untangling the driving mechanisms become
both more important and more challenging.

Often, flow over realistic vehicles features large velocity components in three
dimensions. In these flows, throughout the incompressible to hypersonic speed regimes,
the cross-flow instability can play an important role in the transition process. The
cross-flow instability is caused by the generalized inflection point formed by the cross-flow
velocity component (Saric, Reed & White 2003). Typically, researchers distinguish
between stationary (zero frequency) and travelling cross-flow disturbances, as each type
is receptive to different external triggers such as surface roughness and free-stream noise,
respectively (Bippes 1999). Consequently, stationary and travelling waves are expected
to dominate in quiet and noisy flows, respectively, although both waves can coexist (e.g.
Borg, Kimmel & Stanfield 2015; Craig & Saric 2016). A possible path to transition is
as follows: external disturbances induce perturbations in the flow through the receptivity
process, which then can grow exponentially (prior to nonlinear interactions) if the initial
perturbation amplitude is small enough. In flight environments, stationary cross-flow
disturbances grow until a large, stationary vortex develops and nonlinear effects cause the
vortex to saturate (e.g. Haynes & Reed 2000). Multiple types of high-frequency secondary
instabilities with large growth rates can develop in the highly inflectional modified base
flow and will eventually cause the flow to break down to turbulence (Kohama, Saric &
Hoos 1991; Malik, Li & Chang 1994; Koch et al. 2000; White & Saric 2005). Recent
studies on hypersonic cross-flow instability (Craig & Saric 2016; Moyes et al. 2017;
Xu et al. 2019) demonstrate the many similarities between low- and high-speed cases,
and indicate that the lessons learned at low speeds can help inform current hypersonic
cross-flow research.

In recent hypersonic boundary-layer-stability test campaigns on complex geometries,
experiments and computations demonstrate that multiple instability mechanisms can be
active at once. Often, researchers attempt to divide the flow into certain regions where
possible instability mechanisms can be narrowed down to one or two likely candidates. For
example, the HIFiRE-5 tests on an elliptic cone show attachment line instabilities, second
(or ‘Mack’) modes, and shear-layer modes in addition to the stationary and travelling
cross-flow modes (Borg et al. 2015; Juliano, Borg & Schneider 2015; Paredes et al. 2016).
The shear modes are generally confined to the mushroom structure along the semi-minor
axis, Mack-mode instabilities are found along the semi-major axis and cross-flow modes
and oblique Mack modes are found between these regions. Similar instabilities are relevant
on the HyTRV vehicle, and segments of the geometry are studied separately to try and
isolate the dominant instabilities (Chen et al. 2022a). In some low-speed cases, such as
on a natural-laminar-flow airfoil or similar modelled cases, regions of favourable and
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Boundary-layer instability on a fin

adverse pressure gradients can support both the cross-flow and first-mode instabilities
(e.g. Wassermann & Kloker 2005). The dominance of one instability over another during
transition in this case requires an analysis that considers nonlinear effects, however, the
possible nonlinear scenarios chosen for examination can be guided by linear stability
theory, where characteristics of the underlying laminar base flow can provide a first guess
on possible instabilities and their regions of influence. Therefore, it is useful to understand
what general characteristics of the flow result in specific instabilities.

Unfortunately, identifying instability mechanisms that neatly align with canonical
examples is becoming more difficult. Several studies demonstrate how the influence of
Mach number exacerbates this issue. For example, Liu (2022) showed that the unstable
frequency and wavenumber regions representing the cross-flow and first-mode instabilities
in Falkner–Skan–Cooke flow are distinct at incompressible speeds, but can no longer be
distinguished at Mach 4.5. Similarly, Özgen & Kırcalı (2008) calculate neutral stability
curves for flat-plate boundary layers up to Mach 10, and show how the unstable regions
belonging to the first and second modes merge into one indistinguishable neutral curve at
Mach 10. In more complex boundary layers, such as flow modified by a saturated stationary
cross-flow vortex, it can be difficult to distinguish between proper secondary instabilities
and modulated travelling cross-flow or Mack modes (e.g. Li et al. 2016; Moyes et al. 2017;
Edelman & Schneider 2018). In these cases, rather than attempting to classify instabilities
as a well-known type, one way to better understand possible transition scenarios is to
identify key mechanisms driving the growth. This provides critical insight into why
particular disturbances become most amplified. In non-self-similar boundary layers,
dominant mechanisms can be complicated by changes in the streamwise or spanwise
directions. For example, research on cross-flow over a forward-facing step identified
novel mechanisms that impact the instability growth rates on a local scale (Eppink 2020;
Rius-Vidales & Kotsonis 2021). In shock–boundary-layer interactions (SBLIs), Niessen
et al. (2023) used an energy analysis to show how the large streamwise gradients resulting
from the SBLI can result in significant stabilizing or destabilizing effects, depending on
the disturbance location relative to the SBLI. These studies illustrate how in-depth analysis
of physical mechanisms provide important insight when studying instabilities in complex
flows.

One flow that has drawn recent interest in the hypersonic community is flow over a
slender, straight cone with a single, highly swept fin (usually swept between 70 and 75◦),
where the fin is intended to model a hypersonic control surface. Initial direct numerical
simulations of Mach 6 flow over this geometry revealed two large, stationary vortices,
one each on the cone and fin surface, and an unusually large cross-flow velocity near
the fin leading edge (Knutson, Gs & Candler 2018). The researchers suggest that the
cross-flow instability may be dominant on the fin due to the high cross-flow velocity,
but this was not further investigated. Multiple wind-tunnel experiments followed which
focused on the cone vortex, which is the first feature to exhibit transition (see Turbeville
2021). A few experiments in this campaign examined the fin, but did not observe evidence
of transition (near the leading edge or otherwise). Accompanying computations using the
linear parabolized stability equations (LPSE) indicated that, in the Reynolds-number range
examined, the cross-flow instability on the fin was insignificant compared with the second
mode (Mullen et al. 2019). A second set of experiments, conducted in the Air Force’s Mach
6 Ludwieg Tube, focused on identifying transition near the leading edge (Middlebrooks
et al. 2022). Using surface heat-flux measurements, heat-flux striations and a transition
front were identified at the highest unit Reynolds number tested (Re′ = 22 × 106 m−1).
The striations were approximately aligned with the free-stream direction, and wavelet
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analysis revealed a characteristic wavelength of approximately 10 mm near the transition
front.

The flow between the transition front and the fin leading edge is subject to very large
cross-flow velocities, strong pressure gradients perpendicular to the leading edge and,
at the end of the domain examined, a large stationary vortex. These factors result in
a complex flow where the instability mechanisms are not immediately clear. In order
to understand how disturbances evolve in the complex flow on the fin, we will use the
harmonic linearized Navier–Stokes (HLNS) equations to model disturbances. Section 2
will describe the methods used to generate the base flow and set up the HLNS problem.
The disturbances will be characterized and the dominant wavelengths and frequencies
identified in § 3. A spatial-growth energy-budget analysis will be formulated in § 4 to
provide insight into perturbation-energy mechanisms, and dominant contributors to energy
production and destruction will be identified. Finally, the effect of Reynolds number (§ 5)
and small yaw angles (§ 6) will be explored to provide insight into a few of the parameters
governing the flow. Section 7 summarizes important results.

2. Methods

The growth of linear perturbations on the fin are modelled using the linearized
Navier–Stokes equations formulated for a calorically perfect gas. Perturbations of interest
(q′) are assumed to be small (of O(ε)), therefore the instantaneous flow (Q) can be
described as

Q(xi, t) = Q(xi)+ εq′(xi, t). (2.1)

Terms which consist solely of steady-state base-flow variables (Q) automatically satisfy
the steady Navier–Stokes equations and are eliminated from the system. For a linear
analysis, it is assumed that O(ε2) and higher-order terms are small and can be neglected.
To solve the resulting linear system of equations for the unknown perturbation variables,
a steady-state, laminar base flow is first generated, then the stability equations are solved.
The methods used to generate the steady-state base flows are reviewed first, followed by
the linear stability methods.

2.1. Geometry and laminar base flow
The geometry used in this work is based off of the model used in experiments by
Middlebrooks et al. (2022). The body is a straight cone with a half-angle of 7◦ and
a circular nose tip with a radius of 5.323 mm. Starting at X = 0.127 m (measured
axially from the fictional sharp nose tip), there is a single fin swept at 70◦ with respect
to the vertical Y axis (see figure 1). The leading edge of the fin is circular with a
radius of 3.175 mm measured in the direction perpendicular to the leading edge. Due
to experimental requirements concerning the structural integrity of the wind-tunnel
model, the fin thickness increases beginning at 32 mm from the leading edge of the
fin, measured perpendicular to the leading edge. The thickness changes from 6.35 to
9.525 mm. Additionally, beginning at X = 0.391 m, the fin is truncated to be a constant
63.5 mm above the cone surface. This truncation leads to a sharp corner on the wind-tunnel
model, which is modified in the computational model with a fillet to add a rounded edge
with the same radius as the leading edge. This is done to improve the computational grid.
For more details on the wind-tunnel model, see Middlebrooks et al. (2021).

Free-stream conditions are derived from the wind-tunnel conditions for the experiments
run in the Air Force Academy’s Mach 6 Ludwieg Tube. Two unit Reynolds numbers are
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Stability domain

Y

XZ

Figure 1. Fin-cone geometry and global coordinate system. Here, X, Y and Z are global coordinates measured
from the fictional sharp tip of the cone at the symmetry plane. The stability domain is included to demonstrate
its leading-edge-orthogonal orientation.

Re′ [m−1] ρ∞ [kg m−3] T∞ [K] M∞ Twall [K]

11 × 106 0.0462 58.59 6.0 300
22 × 106 0.0926 58.77 6.0 300

Table 1. Simulation free-stream and wall conditions.

considered, Re′ = 11 × 106 m−1 and 22 × 106 m−1. The free-stream and wall conditions
used are presented in table 1. The incidence angle of the cone is set to zero in all but
one of the computed base-flow solutions. In the one exception, a small yaw angle of
0.5◦ is imposed by deflecting the free-stream velocity vector in the +Z direction. In all
cases, Stokes’ hypothesis (the second coefficient of viscosity λ = −2μ/3) is assumed.
Sutherland’s law is used to calculate viscosity (μ)

μ = μref

(
T

Tref

)3/2 Tref + Sref

T + Sref
, (2.2)

with Sref = 110.556 K, Tref = 273.111 K, and μref = 1.716 × 10−5 kg (m s)−1.
Additionally, a constant Prandtl number (Pr) of 0.72 is assumed. The working fluid is
air with a gas constant (R) of 287 J (kg K)−1.

A structured mesh is generated using grid software provided by Pointwise. NASA’s
Data-Parallel Line Relaxation (DPLR) code is used to obtain the steady base-flow
solutions (Wright, Candler & Bose 1998). In the cases with zero-incidence angle, the
simulation costs are reduced by splitting the simulations into two parts. First, flow over
the cone (excluding the fin) is modelled as axisymmetric. This grid uses 501 points
in the streamwise direction and 351 points in the wall-normal direction. A second
three-dimensional domain (beginning ∼16 mm upstream of the fin) overlaps with the
axisymmetric domain and models half of the fin cone. The overlap is chosen to minimize
any error from assuming an axisymmetric flow too close to the fin root, as well as to
avoid interpolating too close to the outlet in the axisymmetric solution. (See Peck et al.
2022b for a detailed error analysis of this method.) The geometric symmetry line is used
to reduce computational costs in the three-dimensional, zero-incidence-angle simulations.
These three-dimensional grids use 785 streamwise, 606 wall-normal and 726 azimuthal
grid points. The fin alone uses 354 grid points in the azimuthal direction. The convergence
of the base flows was demonstrated in Middlebrooks et al. (2022) by examining the
sensitivity of LPSE results to the base-flow grid density. In the one non-zero-yaw case, the
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y ξ

η

sf,mṼn

½ lf

x⊥

Figure 2. Stability domain coordinate system and wall-forcing variable definition. The solid line is the fin,
the dashed line is the symmetry plane.

entire cone is simulated at once. The free-stream conditions are enforced at the upstream,
outer boundaries of the simulation. The wall is modelled as isothermal (Twall = 300 K,
resulting in a mildly cooled wall, Twall/T0 ∼ 62.5 %) and enforces no slip on the velocities.
The outlet uses extrapolation conditions.

2.2. Harmonic linearized Navier–Stokes equations
For the stability analysis in this paper, the fin is analysed similarly to an infinite
wing. The stability plane is oriented perpendicular to the leading edge and spanwise
gradients are neglected. Analysis in Middlebrooks et al. (2022) demonstrates this is an
acceptable assumption because the spanwise pressure gradient (banded between −0.5
and 0.5 kPa m−1) is small compared with the streamwise pressure gradient (which has
a maximum favourable gradient of ∼1050 kPa m−1, and remains at least an order of
magnitude larger than the spanwise gradient throughout the streamwise domain). Further
evidence is provided in Middlebrooks et al. (2022) by comparing the LPSE results
computed at 12 different spanwise stations. Results were qualitatively similar in all cases
and quantitatively similar in stations 5–12 (the current HLNS domain is equivalent to
the LPSE station 6). Finally, neglecting the spanwise gradients is justified a posteriori
through the observation of a quasi-spanwise-uniform transition front in experiments
by Middlebrooks et al. (2022). This indicates that disturbances grow in the direction
perpendicular to the leading edge; growth parallel to the leading edge can be neglected.
These observations justify neglecting spanwise derivatives of the base-flow variables and,
in turn, this allows imposing a purely oscillatory perturbation in the spanwise direction and
time. Lastly, we are specifically interested in perturbations that emerge as a consequence of
forcing at the wall. These assumptions are most generally captured by the HLNS equations
(see Guo, Malik & Chang 1997; Malik, Lin & Sengupta 1999). We enforce that the
perturbation takes the form

q′(ξ, η, ζ, t) = q̃(ξ, η) exp[i(βζ − ωt)], (2.3)

where (ξ, η) are defined in figure 2 and ζ completes the system. Note that in this case, ζ
points upstream, i.e. it has a component in the −X direction. The constants β (spanwise
wavenumber) and ω (angular frequency) are real and prescribed for the problem.

Equation (2.3) is substituted into the linearized Navier–Stokes equations. The resulting
equations are expressed in matrix form as an operator on a state vector q̃:

q̃ = [ũ, ṽ, w̃, T̃, ρ̃]T. (2.4)
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Boundary-layer instability on a fin

The individual terms are grouped together in the following way to facilitate simple
parameter sweeps through (β, ω):

(A + βB + ωC + β2D)︸ ︷︷ ︸
M

q̃ = f . (2.5)

The vector f is a prescribed forcing function at the wall. The matrices A–D contain
basic-state variables and derivatives, as well as discretized derivative operators acting on
q̃. The matrix M is inverted using MUMPS (MUltifrontal Massively Parallel sparse direct
Solver) to solve for q̃ (Amestoy et al. 2001, 2019). The in-house HLNS code is verified in
Peck, Groot & Reed (2022a).

The stability grids are built in Pointwise. The symmetry plane and fin surface mark
where ξ = 0 and η = 0, respectively. The free-stream boundary is cropped to remove
the shock from the stability domain. The disturbances examined in this paper propagate
through the boundary layer and do not interact with the shock, which justifies removing it
from the stability domain. The streamwise extent ends prior to the change in fin thickness
seen in figure 1. This encompasses the transition front observed at the experiment’s highest
unit Reynolds number. The grid has 701 points in the streamwise direction and 586
points in the wall-normal direction. Sixth-order finite differences are used to approximate
streamwise and wall-normal derivatives. Details on grid convergence and other numerical
studies are presented in Appendix A.

Boundary conditions are prescribed within M and f . The perturbation velocities at
the wall are set to zero (excluding inside the forcing region, labelled lf in figure 2,
where ũ and ṽ are non-zero to enforce the required normal velocity, ṽn). The temperature
perturbation at the wall is always constrained to zero, also for stationary perturbations.
This is justified due to the short wind-tunnel run time in the experiments from which
the present conditions were derived. The density perturbation is solved for at the wall
using a compatibility condition based on the continuity equation. Symmetry is enforced
at the symmetry plane. To avoid spurious reflections, the free stream and outlet use a
combination of non-reflecting boundary conditions (see Thompson 1987; Jiang et al. 1999)
and a buffer (similar to Meitz & Fasel 2000). Appendix A details the buffer method and
demonstrates independence from buffer effects. No special consideration is given to the
effect of shocks, as the stability domain is always constrained below any shocks.

Wall suction/blowing is used to excite boundary-layer perturbations, as multiple studies
have demonstrated that hypersonic boundary layers are very receptive to it (e.g. Fedorov &
Khokhlov 2002). In order to excite disturbances with similar characteristics to those seen
in experiments, a sinusoidal forcing function is applied to the wall-normal velocity shape
function. The function is

ṽn =
[

sin
(

2πsf

lf

)
− i cos

(
2πsf

lf

)](
4(sf )(sf + 2sf ,m − lf )

l2f

)3

, (2.6)

where lf is the prescribed streamwise extent of the forcing function and sf (the surface
distance inside the forcing region) is constrained from 0 to lf ; sf ,m denotes the middle of
the forcing function, measured as a surface distance starting from the symmetry plane.
The forcing wave function, specifying the frequency and spanwise wavenumber of the
prescribed forcing, matches the assumed frequency and spanwise wavenumber of the
solution. Here, sf ,m is fixed at 5 mm unless otherwise noted. Varying both β and lf
changes the angle between the simulation plane and the axis of the forcing ‘streaks’.
Unless otherwise noted, simulations fix the axis of the forcing streaks to −70◦, which
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Stability domain

5.5
4.5
3.5
2.5
1.5
0.5

yM

x z x⊥ = 25 mm

Figure 3. Mach contours (cropped above M = 4.5 for visibility) at Re′ = 11 × 106 m−1. The stability
domain is included for reference, along with a line marking x⊥ = 25 mm.

approximately aligns the forcing with the direction of the free-stream flow. As a result, lf
is made dependent on β

lf = 2π

β tan(70◦)
. (2.7)

This study focuses on −70◦ forcing so that the simulations excite cross-flow-like
disturbances in particular. Some experimentation indicated this forcing configuration is
suitable for that purpose.

3. Stability analysis

This section presents the stability characteristics of disturbances at Re′ = 11 × 106 m−1.
The laminar base flow is briefly reviewed. The presence of the fin disrupts the
axisymmetric flow on the cone surface and produces a shock at the fin root. The pressure
gradients produced by the fin are large enough to induce multiple vortices: one on the
surface of the cone, moving outboard as the flow moves downstream, another on the fin
moving away from the surface of the cone, and a third in the corner formed by the fin
and cone. These vortices are highlighted in the Mach contours shown in figure 3. The fin
vortex moves away from the surface of the cone as the flow moves downstream. This paper
focuses on disturbance growth in the region between the leading edge and the start of the
fin vortex.

The stability frame is oriented perpendicular to the leading edge, as in an infinite swept
wing analysis. One plane of data is taken where the origin of the new (x⊥, y) system (see
figure 2) corresponds to (XG, YG, ZG) = (0.291, 0.089, 0). The base-flow velocities are
rotated to align with the new coordinate system. The new ‘streamwise’ and ‘spanwise’
components (i.e. components perpendicular and parallel to the leading edge, respectively)
are identified with a subscript ⊥ to disambiguate from other coordinate systems used in
this paper. After rotating the data to the stability plane, the largest component of base-flow
velocity is W⊥, which is shown in figure 4. An additional effect of the rotation is that parts
of the flow near the wall now contain reversed flow (U⊥ < 0; these regions’ boundaries
are outlined in white in figure 4). Any potential elliptical effects caused by the ‘upstream’
flow will be captured by HLNS.

Forcing is applied for a range of wavelengths in the range λ‖ ∈ [3, 15] mm, where λ‖ =
2π/β is the spanwise wavelength, i.e. in the direction parallel to the leading edge. The
wavelength parameter space is broken in increments of 0.25 mm between 3 and 7 mm
and increments of 1 mm above 7 mm. The boundary layer is receptive to the applied wall
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Figure 4. Boundary-layer thickness (a) and contours of W⊥ (b) for Re′ = 11 × 106 m−1. The white line
indicates regions where U⊥ is negative. The contours are equally spaced between 0 and −875 m s−1.

forcing and regular, wave-like disturbances grow downstream. The disturbance growth is
quantified using the Chu-energy description, described in Hanifi, Schmid & Henningson
(1996)

E =
∫

q̃HCq̃ dy, (3.1)

where q̃ is defined in (2.4), H indicates Hermitian transpose and

C = diag

(
ρ, ρ, ρ,

ρ

γ (γ − 1)M2T
,

T
γM2ρ

)
. (3.2)

Here, M is the Mach number (based on U⊥) and γ is the ratio of specific heats (γ = 1.4).
The amplification factor, or N-factor (NE), uses the maximum energy within the forcing
region, Emax,f , as a reference for the growth within the domain

NE = 1
2

ln
E

Emax,f
. (3.3)

Figure 5(a) shows the N-factors for several wavelengths. All wavelengths within the
range examined are amplified. The most-amplified wavelength is 5 mm, with NE =
3.47 at x⊥ = 25 mm. This is relatively low (∼ 32x amplification of initial amplitudes),
suggesting that nonlinear effects may not be important except in scenarios with large
initial disturbances. The 5 mm wave becomes locally the most-amplified by x⊥ = 18 mm.
Between x⊥ = 6 and 18 mm, the 5 mm amplification is nearly equal to the 4.5 mm
wave. Smaller wavelengths appear to only be unstable near the leading edge, while large
wavelengths grow over the entire domain, but less so than the 5 mm case.

The parameter space is broadened to include unsteady disturbances. Simulations are run
in 5 kHz and 1 mm increments. Due to the coordinate system, where z⊥ points upstream,
the most unstable quadrant is [+ω,−β] (or, equivalently, [−ω,+β]), however, plot labels
are given as ( f , λ‖) with any signs removed for clarity, where f = ω/(2π) is the cyclic
frequency. Figure 5(b) shows NE for the entire space at x⊥ = 25 mm. The most-amplified
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Figure 5. The N-factors (based on Chu energy) for disturbances at Re′ = 11 × 106 m−1. Panel (a) shows the
N-factor along the entire domain for stationary disturbances only (solid lines). Dashed lines use a modified
N-factor definition (see § 4). Panel (b) shows the N-factor measured at x⊥ = 22 mm for all disturbances.

disturbance is the 5 mm wave at 75 kHz with an N-factor of 4.99. The highly amplified
region is centred around 4–6 mm and 50–100 kHz. As the wavelength increases, the
most-amplified frequency decreases. Note the frequency space for each wavelength is
limited to capturing only the frequency with the largest NE. Increasing the frequency much
further past this point was found to be subject to buffer effects.

To better characterize the disturbances, the inviscid streamline frame is defined
(important quantities are shown in figure 6). The boundary-layer edge is quantified using
total enthalpy, h,

h = cpT + 1
2 |U |2. (3.4)

When h/h0 (h0 is the free-stream total enthalpy) reaches an overshoot value of 100.1 %
for the first time, moving from the free stream towards the wall, the boundary-layer edge
(δ100.1 %, shown in figure 4) is marked. At this location, the inviscid free-stream direction,
φ, is quantified

φ = tan−1 W⊥
U⊥

. (3.5)

Above the flat portion of the fin, φ varies slightly between −71◦ and −74◦. With the
inviscid free-stream direction quantified, the base-flow profiles can be rotated in the
direction of the inviscid streamline. In this coordinate system, Us is aligned with the
inviscid streamline and Wcf is the cross-flow component.

The disturbance structure for the most-amplified stationary disturbance is shown in
figure 7 using the real part of the temperature disturbance, R(T̃). The disturbance tends
to remain in a shear layer between the top edge of the boundary layer (indicated with the
solid line off of the wall) and the location where Wcf = 0 (dashed line). This shear layer
rises with the growing boundary layer and lifts the disturbance away from the wall and
reversed-flow region (dash-dotted line). Smaller wavelengths tend to be more concentrated
in this layer and large wavelengths have a structure that stretches outside of this shear layer
and deeper into the boundary layer. This idea will be returned to in later sections.

Figure 7 demonstrates that the disturbance has a wave-like structure. Although HLNS
does not enforce a streamwise wavelength, it may be extracted by interpolating some
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Boundary-layer instability on a fin
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Figure 6. A side view of the fin (flow is from left to right) defining the angles between the stability frame
(x⊥, z‖) and inviscid streamline (φ), and the angle between the stability frame and cross-flow wave vector (ψ).
Both φ and ψ , as drawn, are negative.
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Figure 7. Disturbance ( f = 0 kHz, λ‖ = 5 mm) visualized using R(T̃)/max |T̃|. Lines mark the
boundary-layer edge (solid), reversed flow (dash-dotted) and Wcf = 0 (dashed).

quantity (we chose ρ̃) along the sonic line, which nearly aligns with the local maximum
in the perturbation shape functions. The distance between the zeros of R(ρ̃) is marked as
half a streamwise wavelength and the conversion to αr (where the subscript r indicates the
real part) is made. The wave angle, ψ , of the disturbance is then quantified, along with the
phase speed, 	c

ψ = tan−1 β

αr
, (3.6)

	c = ω

α2
r + β2 (αr, 0, β). (3.7)

The wave angle and phase-speed magnitude are shown in figure 8 for several
wavelengths. In all cases, both quantities are practically constant across the streamwise
extent of the domain. Presented results are thus averaged over the domain to provide
a single data point for each ( f , λ‖) pair. For the stationary disturbances, ψ is nearly
constant and at ∼90◦ offset from the inviscid streamline direction, φ, for all wavelengths
examined (recall φ ∼ −70◦). In a few cases, the cross-flow vortex axis crosses over the
inviscid streamline as the flow moves downstream (e.g. the stationary 10 mm wave). At
higher frequencies, the wave angle is more dependent on the disturbance wavelength.
For all wavelengths, as the frequency increases the wave vector gradually rotates towards
the inviscid streamline direction. As the wavelength increases, this rotation begins
at lower frequencies. Additionally, the phase speed increases more rapidly at smaller
frequencies for larger wavelengths. The most unstable travelling disturbance (λ‖ = 5 mm,
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Figure 8. Disturbance characteristics averaged over the streamwise domain at Re′ = 11 × 106 m−1. The
most-amplified wave is indicated with a diamond marker. In (a), the range of the inviscid streamline angle
is marked with black dashed lines. (a) Wave angle and (b) phase speed.

f = 75 kHz) has a wave angle of −149◦ and a phase speed of 192 m s−1, or approximately
0.21U∞, where U∞ is the free-stream velocity (∼920 m s−1). The phase speed of the
most-amplified wave is very close to the maximum cross-flow velocity measured in the
domain (∼200 m s−1); this is expected in light of the approximate alignment of the wave
vector with the direction of the cross-flow velocity component.

3.1. Effect of forcing location and angle
A brief study of the effect of forcing location, sf ,m, and angle (directly affecting lf )
is performed. First, several forcing locations are chosen ranging between sf ,m = 3 and
11 mm. Note that when forcing at sf ,m = 11 mm, the entire forcing region overlaps with
the backflow region. The forcing location’s effect on disturbances is only examined for
stationary perturbations.

Representative N-factors are shown in figure 9(a). In order to infer that the same mode
is excited regardless of the forcing location, the slope of the lines is examined. For the
10 mm wave, the slope of the lines appears to be approximately equal regardless of
the forcing location. This indicates that the same mode is excited in all cases by the
wall-forcing function. For smaller wavelengths, the growth rate appears equal only for
the upstream forcing locations. When forcing at sf ,m = 9 or 11 mm, the 3.5 mm mode
discussed in the above sections is not excited by the wall forcing. There is practically no
growth downstream of the forcing location. The 5 mm mode is still unstable when forced
at sf ,m = 9 or 11 mm, but is less amplified than the 10 mm wave.

These trends follow the observations made in the previous section. The
small-wavelength disturbances, when excited, have a strong signature in the shear layer
above the sonic line. While the shear layer, which has the length scale necessary to
support small wavelength disturbances, exists in all streamwise locations, downstream of
the leading edge the shear layer is apparently too far from the wall to be strongly affected by
wall forcing. Conversely, the 10 mm wave occupies a larger extent of the boundary layer
and is not too separated from the wall to be immune to wall forcing. This demonstrates
that the streamwise region of receptivity to wall forcing is extensive for large-wavelength
disturbances. Smaller-wavelength disturbances must be excited around the leading edge.
An adjoint analysis could fully define the optimal receptivity locations for the different
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Figure 9. The N-factors (based on Chu energy) for stationary disturbances at Re′ = 11 × 106 m−1 while
varying the forcing function parameters sf ,m and lf . In (a), different colours and line styles indicate different
spanwise wavelengths and forcing locations, respectively. The vertical dotted line marks the start of the
reversed-flow region. In (b), different colours indicate different forcing angles, φf , related to the streamwise
forcing length, lf . Asterisks on the lines denote the extent of the forcing region. All forcing regions in this case
are aligned at the start of the forcing region.

disturbances, however, this is beyond the scope of the present study. Finally, the lack of
growth for small-wavelength disturbances in the cases of downstream forcing suggests
there is either no secondary unstable mode in the spectrum that would exist closer to the
wall, or, if one does exist, it is not at all receptive to the wall forcing used in this study.

The second study considers the effect of changing the forcing angle, which is related
to the streamwise length of the forcing region, lf , based on a fixed spanwise wavelength.
Specifically, we examine the effect of ‘first-mode-like’ forcing, where the forcing wave
angle is designed to be approximately ±60◦ with respect to the inviscid streamline. To
achieve this, the angle in (2.7) is changed to 40◦ and 80◦, respectively. We test this forcing
on the most unstable travelling wave for these conditions, which is the 5 mm wave at
75 kHz, with the expectation that this wavelength and frequency would be in the range of
an unstable first mode if it exists. The results from this study are shown in figure 9(b). The
orange and purple lines, measuring the response from attempting to force a first mode,
match very well with the growth rate recovered from forcing cross-flow-like disturbances
(the black line). The forcing angle therefore does not appear to have a large effect on the
results presented.

3.2. Amplification based on wall quantities
Large-wavelength disturbances were previously noted to stretch outside of the shear layer,
that is located between the boundary-layer edge and where Wcf = 0, and propagate
towards the wall. This raises the question of to what extent the reversed-flow region
influences the perturbation. To help answer this qualitatively, the disturbance structure
for several stationary wavelengths is shown in figure 10, this time with levels of R(T̃)
on a log scale to highlight features within the reversed-flow region. It is apparent
that small-wavelength disturbances are attenuated in the reversed-flow region, but it
more readily supports large-wavelength disturbances. These results are qualitatively
similar to a study investigating three-dimensional disturbances passing through a laminar
separation bubble at incompressible speeds (see figure 21 in Hosseinverdi & Fasel 2016).
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Figure 10. Disturbances ( f = 0 kHz) visualized using R(T̃)/max |T̃| on a logarithmically spaced scale
(10−4–100) (colour contours). Lines mark the boundary-layer edge (solid), reversed flow (dash-dotted) and
Wcf = 0 (dashed). Panels show (a) λ‖ = 3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.

It is reasonable to suspect the reversed-flow region may produce upstream travelling
disturbances. Recall the above measured phase speeds measured along the sonic line,
which always resides above the reversed-flow region and could miss any upstream
perturbations that reside in the reversed flow. With this in mind, the phase lead/lag of
the disturbances was carefully examined in the reversed-flow region to look for possible
negative phase speeds in the x⊥ direction, but none were found. The log scale used in
figure 10 also highlights free-stream waves emitted from the boundary layer due to the
forcing. These emissions represent a small ejection of energy from the boundary layer
into the free stream, rather than all of the energy from the forcing being directed into the
boundary layer.

The increased presence of the large-wavelength structures near the wall raises additional
questions on how any wind-tunnel measurements based solely on wall quantities may
be biased. To help answer this question, additional amplification factors are defined
based purely on wall quantities and inspired by experimental measurement techniques.
Specifically, the wall heat flux and pressure are quantified and their ‘amplification’ (Nqw
and Npw , respectively) is measured in reference to the maximum value inside the forcing
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Figure 11. The N-factors for disturbances at Re′ = 11 × 106 m−1. (a) Shows the N-factor based on wall heat
flux (Nqw ) along the entire domain for stationary disturbances only. (b) Shows the N-factor based on wall
pressure (Npw ) measured at x⊥ = 25 mm for all disturbances. (a) f = 0 kHz, (b) x⊥ = 22 mm.

region, similar to NE. The perturbed wall heat flux is derived using

q′
w = (κ∇T · n̂)′ = dκ

dT
T ′(∇T · n̂)+ κ(∇T ′ · n̂), (3.8)

where n̂ = (n̂x⊥, n̂y, 0) is the outward unit normal with respect to the wall. The
perturbation ansatz is substituted and the expression simplified using the boundary
condition T̃w = 0

q̃w = κ

(
∂T̃
∂x⊥

∣∣∣∣∣
w

n̂x⊥ + ∂T̃
∂y

∣∣∣∣∣
w

n̂y

)
. (3.9)

The n̂x⊥ term is necessary to include the curved leading edge. The wall pressure, p̃w, is
derived from the non-dimensional equation of state

γM2P = ρT, (3.10)

p̃w = P

(
ρ̃w

ρ
+ T̃w

T

)
= Tρ̃w

γM2 , (3.11)

where the final expression for p̃w follows from again enforcing T̃w = 0 for all cases.
The value of Nqw is only examined for stationary disturbances and is shown in

figure 11(a). All wavelengths exhibit a reduction in Nqw immediately downstream of the
forcing location. This follows from the perturbation lifting up off the wall with the growing
boundary layer. However, the drop off is most extreme for the small wavelengths. The
largest wavelength shows a small increase in Nqw within the recirculation region which
is explained by the behaviour of the T̃ structures pointed out in figure 10. Basing a
‘most-amplified’ judgement on Nqw values results in a much larger estimate of 15 mm,
which is 10 mm larger than the NE most-amplified disturbance. Note that, because the
N-factors are negative due to amplitude decay, 15 mm is technically the least-damped
disturbance. However, these disturbances are still referred to as ‘most amplified’ to retain
consistent terminology with the total-energy N-factor.

A similar trend is seen in Npw , measured for all travelling disturbances and shown in
figure 11(b). Based on wall quantities, very different frequencies are found to be most
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amplified vs the measurement using the Chu norm. The most-amplified wavelengths
of unsteady disturbances are between 9 and 12 mm, and have a lower-frequency band
of 35–55 kHz, vs the previously quoted 75 kHz based on the Chu norm. Note that the
perturbation wall pressure occasionally drops to zero in very localized regions. The
exact spot where the pressure becomes zero depends on the disturbance wavelength and
frequency. Due to this zero point, the N-factor in figure 11(b) appears to have two peaks.
However, these two peaks would become one smoothly defined region if the probe is
shifted slightly, so we do not interpret distinct behaviour between these two peaks. Using
heat flux and wall pressure as two alternative measurements of perturbation amplification
presents evidence of a significant bias towards large wavelengths and low frequencies when
only collecting flow information at the wall. This is due to the rapidly growing boundary
layer drawing the disturbances away from the wall.

3.3. Discussion on perturbation classification
Thus far, we have refrained from categorizing the simulated disturbances as the result
of a particular type of instability. If we combine the highly swept fin, large cross-flow
velocities in the base flow, and some key disturbance characteristics (such as wave angles
that are nearly perpendicular to the inviscid streamline), this study appears at first glance
to be on the traditional cross-flow instability. However, other characteristics of this case
defy traditional expectations for cross-flow instability behaviour, and we believe this
warrants further discussion before firmly classifying the disturbances. The various pieces
of evidence for and against cross-flow are discussed here.

To aid in the present discussion, some base-flow profiles are examined in figure 12.
All profiles have been rotated into the inviscid streamline frame. The largest cross-flow
component is found at x⊥ = 3.175 mm, where the fin first transitions from the circular
leading edge to the flat side of the plate. The value of Wcf ,max at this location is
∼200 m s−1, or ∼ 0.22U∞. This is an extremely large cross-flow velocity relative to other
examples in the literature that investigate cross-flow. While not often directly reported,
examples include Liu (2022), who studies a series of Falkner–Skan–Cooke boundary
layers with a maximum cross-flow velocity of 8 % in Mach 4.5 flow, and Chen et al.
(2022b), who report the maximum cross-flow velocity as ∼7.5 % in their case studying
high-enthalpy boundary layers in Mach 16 flow over a swept parabola. As an extreme case,
Mack (1984) gives an incompressible example where cross-flow instability occurs when
the cross-flow velocity is as small as 0.7 % of U∞. These examples raise expectations that
the present case must surely feature the cross-flow instability.

Due to the complex underlying base flow, the traditional cross-flow profiles like the
one observed in figure 12(a) only exist for a short streamwise distance. The remaining
figures illustrate how the profiles develop qualitative changes farther downstream. First, the
thickening boundary layer causes the maximum in cross-flow velocity to move away from
the wall. Additionally, by x⊥ = 8 mm, the adverse pressure gradient in the x⊥ direction
causes a secondary cross-flow lobe to appear in the opposite direction. This secondary
lobe continues to grow as the flow moves away from the leading edge, and eventually the
secondary cross-flow has a larger peak velocity than the first lobe, which continues to exist
high in the boundary layer.

This is a similar situation to the low-speed case examined by Wassermann & Kloker
(2005), where a changeover from favourable to adverse pressure gradients also caused
S-shaped cross-flow velocity profiles. In that case, linear stability theory results indicated
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Figure 12. Rotated base-flow profiles at Re′ = 11 × 106 m−1. Shown are the streamwise (black) and
cross-flow (red) velocities. The cross-flow velocities are doubled to improve visibility. Panels show (a)
x⊥ = 3.175 mm, (b) x⊥ = 8 mm, (c) x⊥ = 12.5 mm and (d) x⊥ = 17.5 mm.

that, in the adverse pressure gradient region, the range of unstable cross-flow wavenumbers
and cross-flow growth rates were reduced (compared with within the favourable pressure
gradient region), and first-mode instabilities became more strongly amplified instead.
Based on the forcing parameter study presented in § 3.1, the present case does not seem
to produce first-mode instabilities. However, based on the incompressible results shown
by Wassermann & Kloker (2005), one might still expect to see a significant impact on the
growth rate of a cross-flow mode due to the changeover in pressure gradients. This does
not seem to be the case when considering the N-factors shown in figure 5(a). A possible
interpretation is that the upper cross-flow lobe isolates the disturbances from the effect
of the pressure gradient changeover. Rather, the pressure gradient changeover effects are
more dominant over the behaviour of disturbances closer to the wall. This view will be
examined more through an energy budget lens presented in the next section.

The S-shaped boundary-layer profiles towards the end of the streamwise domain
therefore cast some doubt on calling the disturbances shown in the previous sections ‘true
cross-flow instabilities’. The secondary cross-flow lobe represents a significant departure
from the classic cross-flow profile with a single maximum in cross-flow velocity, and
indeed, the base-flow cross-flow velocity becomes dominant closer to the wall where
the (most-amplified) instabilities appear highly damped. However, the large cross-flow
velocity near the leading edge and the fact that the (most-amplified) disturbances are highly
destabilized in the region in the range x⊥ = 5–10 mm, where the original cross-flow lobe
is dominant, suggest that the most-amplified disturbances may originate as a result of the
cross-flow instability. The driving mechanisms of the disturbance evolution downstream,
as well as the behaviour of the large-wavelength disturbances, is less clear from an analysis
of base-flow profiles alone.

One might propose separating the disturbances shown in the present paper into
two categories based on the underlying instability. The first category concerns the
small wavelengths (encompassing the most-amplified disturbances), which appear well
categorized as unstable due to the cross-flow instability. These wavelengths are most
unstable (see the N-factor slopes in figure 5a) in the region of flow where the classic
cross-flow profile dominates, their wave angle and phase speed align well with other
cross-flow examples in the literature, and the disturbance signature stays confined to the
shear layer in the vicinity of the first maximum in cross-flow velocity. A second, currently
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unlabelled category is reserved for the large wavelengths, which become appreciably
unstable near x⊥ = 8 mm. These disturbances arise after the classic cross-flow profile has
disappeared, and have a large enough extent through the boundary layer to be influenced
by both cross-flow lobes. They are distinguished by their stronger wall signature.

It is difficult to declare an exact wavelength where the two groups could be considered
without overlap, given the smooth variation between wavelengths. This is similar to the
study presented by Liu (2022) where, even in simplistic Falkner–Skan–Cooke flow, cases
arose where no clear distinction could be made between the first mode and cross-flow
instabilities. It is also possible that both instabilities, the cross-flow instability and the
currently unidentified ‘large-wavelength’ instability, could coexist at all wavelengths,
and one instability is simply dominant over the other for different wavelengths. For
now, we simply recognize the distinct characteristics that seem to dominate the small-
and large-wavelength groups and caution against assuming cross-flow-like behaviour for
the entire wavelength band. Finally, we note that we consider the underlying cause of
instability to be separate from the driving mechanisms for growth, which are examined
using an energy-budget analysis in the following section.

4. Energy analysis

The results presented so far raise a few questions. First, why is the 5 mm wave linearly
most amplified according to the Chu-energy measurement? What physical processes are
responsible for the growth, and why are other wavelengths not equally amplified? Next, a
clear distinction is observed near the wall for small and large wavelengths. Why do large
wavelengths propagate deeper into the boundary layer and why do small wavelengths
remain confined to the shear layer? A related question is on why the temperature
perturbation is able to grow inside the reversed-flow region for the large wavelengths only?
Finally, what is the dominant mechanism providing energy to the perturbations, and does
that line up with expectations for the cross-flow instability? To answer these questions, an
energy budget is formulated for the spatial HLNS equations.

The goal of this section is to identify individual terms in the governing equations
that are responsible for the disturbance growth; this will enable discovering the physical
mechanisms that yield the amplification of perturbation energy. For now, we will restrict
our definition of growth to one based on the Chu-energy norm. The N-factor definition is
slightly modified to include an extra factor of U⊥. This is done so that the terms that appear
in the upcoming growth definition (∂NU/∂x) exactly match terms that can be formed using
the conservation equations. The N-factor is now defined as

NU = 1
2

ln
∫

q̃H(U⊥C)q̃ dy, (4.1)

where q and C were previously defined in (2.4) and (3.2), respectively. The additional
U⊥ factor premultiplying C produces only minor changes in the N-factor (see the dashed
lines in figure 5a). The most-amplified wavelength remains unchanged. The quantity is
no longer an energy, but, given the similar behaviour, it allows establishing the physical
mechanisms underlying the perturbation amplification in space. To form the local growth
rate, the x-derivative of the modified N-factor is expanded. The terms on the right-hand
side are grouped into contributions from the perturbations (weighted according to Chu’s
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Figure 13. Local growth rate, ∂NU/∂x (NU,x in label). The colour contour shows the quantity in (4.2) prior
to integrating in y. Red and blue colours indicate positive and negative contributions, respectively. Lines mark
the boundary-layer edge (solid), reversed flow (dotted) and Wcf ,y = 0 (dash-dotted). The line plot is the local
growth rate after integrating the contour field (black), and the reconstructed growth rate (red). Panels show
(a) λ‖ = 3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.

energy norm) and contributions from the spatial change in the base flow

∂NU
∂x

= 1/2∫
q̃H(U⊥C)q̃ dy

∫ ⎛
⎜⎜⎝2q̃HU⊥C

∂ q̃
∂x︸ ︷︷ ︸

Budget terms

+ q̃H ∂(U⊥C)
∂x

q̃︸ ︷︷ ︸
Base-flow terms

⎞
⎟⎟⎠ dy. (4.2)

The terms labelled as ‘budget terms’ in the above equation can be formed independently
from each conservation equation. To do this, each equation is multiplied by the
complex conjugate of the corresponding primitive variable, and base-flow variables are
premultiplied in the equations as needed to match the necessary Chu-energy-norm terms.
The budget terms are found in the advection terms on the left-hand side of all equations.
All other terms are moved to the right-hand side. Finally, the budget terms in the
growth-rate equations are replaced by their corresponding conservation equation, resulting
in an expression that can be used to isolate the contribution of individual terms to the
growth rate. Additional details on the derivation are given in Appendix B.

4.1. Dominant productive and destructive terms
First, the spatial distribution of the growth rate, ∂NŪ/∂x, is examined. The colour contours
in figure 13 show the integrand of (4.2), and highlight the main regions where energy
is produced (red) or destroyed (blue). All colour contours across the different panels
are shown on the same scale. In order to produce a net positive growth rate in the
streamwise direction at a given x⊥-position, the y-integral over the red contours beats
the y-integral over the blue ones. As the wavelength is increased, we observe that the
production and destruction decrease in magnitude. After integrating in y, however, this
trend largely disappears and we see that the growth rate has similar magnitudes for the
various wavelengths. The 5 mm case appears to be the most-amplified case due to a
sustained growth for x⊥ > 15 mm and a large production around x⊥ = 5 mm.

Important individual terms may now be identified. Terms on the right-hand side of the
growth-rate equation (including the base-flow terms) are constructed and probed for their
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maximum value. The top ∼25–30 terms are added together in an attempt to reproduce the
trends seen in the growth rate. Next, these top terms are grouped based on their tendency
to produce or destroy energy, as well as based on the associated physical process (e.g.
advection, dissipation, etc.). This helps further eliminate terms with no bearing on the
overall trends; for example, terms that make up the pressure-work contribution could be
large individually, but when summed, the terms had no contribution to the perturbation
energy (by design of the Chu norm) – their character is rather to redistribute energy across
the velocity components.

After reducing the list of terms, the growth rate appears to be well represented by only
14 terms from the equations, plus the base-flow contribution. The reconstructed ∂NU/∂x
is shown in red in the line plots in figure 13. The retained productive terms consist
of generalized Reynolds-stress terms (Ru), Reynolds-heat-flux terms (RT ) and mass-flux
terms (Rρ). The destructive terms consist of dissipation terms (Du from x-momentum and
DT from the energy equation). The terms are

Ru = −Us,xũ∗
s (ρ̃U⊥ + ρũ)− Us,yũ∗

s (ρ̃V + ρṽ), (4.3)

RT = −cvTx
T̃∗

Ec T
(ρ̃U⊥ + ρũ)− cvTy

T̃∗

Ec T
(ρ̃V + ρṽ), (4.4)

Rρ = − T
ργM2ρyṽρ̃

∗, (4.5)

Du = μ

Re
(ũs,yy + ũs,xx)ũ∗

s , (4.6)

DT = 1
Ec Pr Re

T̃∗

T
(κT̃xx + κT̃yy + 2κTTyT̃y), (4.7)

where Ec is the Eckert number. The subscripts x or y indicate a derivative with respect to
the x⊥ or y directions. Recall the subscript ⊥ on the base-flow terms indicates components
that are aligned with the stability frame, perpendicular to the leading edge (i.e. U⊥ is the
base-flow velocity in the direction perpendicular to the leading edge of the fin). Some
terms, denoted with a subscript s or cf , have been rotated a second time to point in the
inviscid streamline direction, φ. Velocity terms are only rotated when a grouping allows
the rotation to be made without leaving behind factors of φ. For example

U⊥ũ︸︷︷︸
x-mom

+ W⊥w̃︸ ︷︷ ︸
z-mom

= Usũs + Wcf w̃cf . (4.8)

This rotation will allow further interpretation on the physical processes at work.
The individual contribution of the productive and destructive terms is shown in

figure 14. First, the Reynolds-flux terms are examined. The most productive terms are
the ρ̃U⊥ terms (solid lines in the top row of panels), which are attached to x-derivatives
of the base flow. For all wavelengths, these are large near the leading edge, dip down,
then become large again near the downstream end of the domain. This highlights the
importance of the x-derivatives. The ρ̃V contributions from both Ru and RT (dashed blue
and red lines) are negative; in fact, they closely resemble the ρ̃U⊥ contribution for Ru and
RT , but with opposite signs. With the density-fluctuation terms approximately cancelled
out, the remaining leading terms are the ρṽ terms associated with the wall-normal
derivatives of base-flow quantities (specifically, Us,y, Ty and ρy). The shape of these terms
closely resembles the trends seen in the line graphs of ∂NU/∂x shown in figure 13. The
peak in production near the leading edge is captured, along with the reduced production
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Figure 14. The real part (R) of productive (top row) and destructive (bottom row) terms from the energy
budgets. Terms are shown from the x-momentum (blue), energy (red) and continuity (black) equations. Line
styles are matched between similar terms. The production terms include: ρ̃U⊥ (solid), ρ̃V (dashed) and ρṽ
(dash-dotted) (ρyṽ for the contribution from Rρ ). The destructive terms include: ũyy and T̃yy (solid), ũxx and
T̃xx (dashed) and TyT̃y (dotted). Panels show (a) λ‖ = 3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.

for large wavelengths. These results indicate that, despite not being the largest single
contributor, the wall-normal derivatives dictate the trends that lead to singling out the
5 mm wavelength as the most-amplified disturbance. It was brought to our attention by a
reviewer that the inflection point in the streamwise velocity component lies close to the
inflection point in the cross-flow velocity component; thereby, the cross-flow inflection
point may control the amplification indirectly.

The dissipation terms are examined next, which are usually destructive. The observation
from figure 13 on the weaker dissipative forces for larger-wavelength disturbances
is quantified in figure 14, with a large reduction observed in terms associated with
y-derivatives. This is expected as the smaller scales associated with the small wavelengths
would induce more dissipation. For the 3.5 and 5 mm cases, the x-derivatives appear to
make a substantial contribution downstream where their magnitude is nearly equal to the
y-derivative terms (particularly, ũxx and ũyy). The heat-flux term, TyT̃y, is smaller but still
necessary to include when reconstructing the spatial-growth rate. However, it does not
appear to provide additional insight into the observed trends.

Taken together, figures 13 and 14 demonstrate that the 5 mm wavelength is the most
amplified because of a complex balance struck between the productive and destructive
terms. The small wavelengths have a larger productive push from the Reynolds-flux terms,
but this is outperformed by the destruction stemming from the heat conduction and
dissipation terms. Therefore, the small wavelengths experience a smaller amplification.
While the destructive terms for the large wavelengths have smaller magnitudes, there is not
enough production to result in significant accumulated growth, particularly upstream near
the leading edge. This region appears to provide the largest contribution to the integrated
N-factor.

Returning to the production terms, the spatial distribution of the terms is examined
to understand what terms control the propagation of the perturbation deeper into the
boundary layer. Figure 15 shows the two terms responsible: ρũ∗

s (Us,xũ + Us,yṽ). The
ρṽ terms were previously identified as the determining factor for the most-amplified
wavelength, while ρũ had little to no influence on the trends in ∂NU/∂x, merely the
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Figure 15. The real part of (i) ρũ∗Us,xũ and (ii) ρũ∗Us,yṽ, responsible for the stretching of the larger
perturbations across the boundary-layer height. The real part of (iii) −cvρ(T̃∗Ec T)(Txũ + Tyṽ), largely
confined to the shear layer. The real part of (iv) −ρWcf ,yṽw̃∗

cf , magnified 20× in amplitude to make visible. In
panels (i-c), (ii-c) and (iv-c), a grey line is overlaid on the lowest positive colour contour to improve visibility.
In each plot, lines mark the boundary-layer edge (solid), reversed flow (dotted) and Wcf ,y = 0 (dash-dotted).
Panels show (a) λ‖ = 3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.

magnitude. However, both terms contribute to the disturbance propagating close to the wall
for large wavelengths. Figures 15(i-c) and 15(ii-c) shown the slightly different spreading
behaviour of each term. The value of Us,xũ shifts lower in the boundary layer, i.e. below
the dash-dotted line representing the lower bound of the shear layer in figure 15 and Us,yṽ
develops two bands, one remaining in the shear layer and the other developing below the
shear layer. Interestingly, the ‘twin’ terms from RT (figure 15, row iii) do not contribute to
the spreading behaviour. The signature for those terms stays confined to the narrow shear
layer.

It should be noted that in the above analysis, no significant contribution from any
cross-flow-related term appeared. The peak production from the dominant Reynolds-flux
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terms does occur near the leading edge, where base-flow profiles depict typical cross-flow
profiles. However, the identified terms are associated with gradients of the streamwise
velocity Us (and temperature gradients). This suggests that, while a large cross-flow
velocity, and the associated generalized inflection points, may be necessary for instability
to occur, they themselves do not produce significant perturbation energy. This is in
agreement with a similar energy-budget analysis, performed using LPSE calculations, for
the cross-flow instability on a hypersonic yawed cone (Patel et al. 2022). The authors
indicate that the contribution from the Reynolds stress energy production term related to
the wall-normal gradient of the cross-flow velocity is very small compared with the terms
that dominantly drive the growth rate, i.e. the Reynolds-heat-flux energy production term
and the Reynolds-stress energy production term related to the wall-normal gradient of the
streamwise velocity.

Despite their small amplitude, the behaviour of one cross-flow term is examined
to support claims made in the discussion on perturbation classification regarding the
disturbance growth (or lack thereof) while S-shaped cross-flow base-flow profiles are
developing due to the pressure gradient changeover from favourable to adverse. The term
examined is

Rw = −ρWcf ,yṽw̃∗
cf , (4.9)

shown in figure 15 (row iv) with the amplitude magnified 20x to make the colour
contours visible compared with the other, more dominant, production terms. This term,
containing the wall-normal derivative of the base-flow cross-flow profile, is used to study
the production of disturbance energy in the different cross-flow lobes. The dash-dotted
line (where Wcf ,y = 0) represents each cross-flow maximum in the S-shaped profile. The
majority of energy production comes from above the maximum in cross-flow velocity in
the first cross-flow maximum that appears (that moves away from the wall as the flow
moves downstream). The production decreases for all wavelengths as the flow moves
downstream, which we might expect from cross-flow gradient reduction (visible in the
base-flow profiles shown in figure 12). Below the upper cross-flow velocity maximum,
there is a slight energy contribution where the sign depends on the disturbance wavelength.
For smaller wavelengths, Rw tends to be mostly productive in this region, then quickly
dies out. This is in line with the expected behaviour of cross-flow disturbances in the
presence of a changeover in pressure gradient. However, the location of this changeover
in production still lies within the first cross-flow lobe, not the secondary one near the
wall as expected. (Note that, for all wavelengths, there is no visible energy contribution
from the lower cross-flow lobe.) Additionally, Rw for the large wavelength is destructive
in this region, then becomes very slightly productive (the lower productive contour level
is outlined in grey to improve visibility). This behaviour is opposite that expected for
the cross-flow-like disturbances, and further demonstrates a distinct behaviour for the
large-wavelength disturbances.

4.2. Wall heat-flux analysis
The above analysis provides some understanding on why large-wavelength disturbances
spread from the shear layer deeper towards the wall. However, it is difficult to apply this
insight directly to the Nqw amplification measurement, as that stems from the behaviour
of ∂T̃/∂y at the wall. To better understand the trends in Nqw , the energy equation is taken
and evaluated at the wall. Wall boundary conditions (Dirichlet zero on all terms except
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Figure 16. Contributors to the wall heat flux (black line) as derived from the energy equation evaluated at the
wall for stationary perturbations at Re′ = 11 × 106 m−1. Each panel represents two wavelengths. The primary
wavelength uses coloured lines and the secondary wavelength uses dashed grey lines and is listed in parenthesis.
The vertical dotted line marks the start of the reversed-flow region.

ρ and ρ̃, and isothermal on T) reduce the energy equation down to five terms, which are
rearranged to solve for T̃yy as a proxy for the heat flux

κ

Ec Pr
T̃yy = −2μUs,yũs,y − 8

3
μVyṽy − 2μWs,yw̃s,y − 2κT

Ec Pr
TyT̃y. (4.10)

The velocity terms have again been rotated to align with the inviscid streamline.
The magnitude of the individual terms is shown in figure 16. The quantities are

normalized to isolate the size of the wall heat flux relative to the amplitude of T̃ and
enable a comparison between wavelengths. The contribution from Vyṽy and TyT̃y is
negligible and therefore omitted from the plots. The value of T̃yy is large near the leading
edge, and decays further downstream, mirroring the behaviour seen in Nqw . For the large
wavelengths, T̃yy does not decay to zero near the end of the domain, instead remaining
finite and nearly constant for the last 5 mm. For all wavelengths, the frictional heating
term associated with the streamwise velocity Us dominates the behaviour of T̃yy near the
leading edge. This is in line with what was observed in the total-energy analysis – the
wall-normal derivatives of the streamwise velocity dominate the amplification behaviour.
For the smallest wavelengths, there is a slight contribution from the cross-flow term
in the range x⊥ = 7–10 mm, but it quickly diminishes downstream. As the wavelength
increases, the Wcf ,yw̃cf ,y term becomes more significant and sustained downstream. This
reflects the increased presence of the disturbance within the reversed-flow region for large
wavelengths.

987 A13-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.299


Boundary-layer instability on a fin

It is interesting that a near-wall analysis does reveal an important contribution
(in some large-wavelength cases) from cross-flow-related terms, in contrast to the
total-energy-budget analysis that examined the entire flow. It is important to note
that comparing the cross-flow effect at the wall and far away from the wall
necessitates regarding different terms, i.e. the viscous heating term (2μWcf ,yw̃cf ,y) and
the advection-driven Reynolds-stress term (ρw̃∗

cf ṽWcf ,y), respectively. Therefore, the
influence of cross-flow has a different nature and cannot be directly compared.

Nevertheless, we suspect that viscous effects near the wall remove a dominant flow
direction in the reversed-flow region, whereas the free-stream (and therefore streamwise)
flow-advection effects dominate the shear layer. Accordingly, we expect the cross-flow
velocity component to support a large wall-normal gradient near the wall as compared
with the shear layer. This is supported by figure 12, which shows that that Wcf ,y decays
in the neighbourhood of the shear layer for x⊥ = 8 mm, while maintaining its magnitude
near the wall.

5. Effect of free-stream unit Reynolds number

The free-stream unit Reynolds number is now increased to Re′ = 22 × 106 m−1. At these
free-stream conditions, experiments performed in the Air Force Academy Mach 6 Ludwieg
Tube documented thermal striations on the fin surface indicative of transition to turbulence
(Middlebrooks et al. 2022). The present laminar simulations indicate the overall base-flow
structure remains the same. However, the boundary-layer thickness shrinks as expected
due to the increased Reynolds number, and the stationary vortices in the laminar base
flow develop additional rollovers. In the stability frame of reference, the reversed-flow
region persists and moves slightly in the streamwise direction. It begins at x⊥ = 6 mm,
slightly farther upstream compared with the reversed flow in the lower-Reynolds-number
case which began at 8 mm.

5.1. Comparison with experiment
In the experimental results for Re′ = 22 × 106 m−1, transition is observed between 10
and 15 mm from the leading edge. This implies the presence of nonlinear effects and this
should be accounted for at least downstream of x⊥ = 10 mm when attempting to compare
our data. At 3 mm from the leading edge, the experimental wavelet analysis shows a
response in the range of 1.5–5 mm spanwise wavelength. At 8 mm, those wavelengths are
still active, but a dominant band from 10 to 12 mm spanwise wavelength is now present
(Middlebrooks et al. 2022).

The N-factors, as calculated for stationary disturbances, are shown in figure 17.
According to the Chu-energy definition the most-amplified wavelength decreases to
3.5 mm at this Reynolds number. Additionally, the majority of the stationary disturbances
are more amplified compared with the lower-Reynolds-number case, as the most-amplified
wavelength reaches an N of 4.75 by x⊥ = 22 mm (NE,max = 3.47 for stationary
perturbations at Re′ = 11 × 106 m−1). The large wavelengths do not show a large change
in amplification. NE for the 10 mm wave, for example, only increases from 2.4 to 2.7 at
x⊥ = 22 mm. An alternative amplification measurement, again based on surface heat flux,
continues to show a bias towards larger wavelengths. In this case, the 10 mm wave becomes
more amplified than the 7 mm wave around x⊥ = 15 mm downstream; the 3.5 mm wave
is never the most-amplified disturbance according to this measurement.

We believe the smaller wavelengths present in experimental results are in agreement
with the smaller wavelengths predicted by our HLNS analysis at Re′ = 22 × 106 m−1.
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Figure 17. The N-factors for stationary disturbances at Re′ = 22 × 106 m−1 based on Chu energy (a) and
surface heat flux (b).

The theoretical prediction due to HLNS indicates that 3.5 mm is the most-amplified
wavelength from x⊥ = 5 mm onward according to the Chu-energy norm. This fits with
the range of 1.5–5 mm reported by experiments measured at x⊥ = 3 and 8 mm. The
experimental results at Re′ = 22 × 106 m−1 indicate that 10–12 mm wavelengths are the
most dominant instability when transition occurs (around 10–15 mm downstream of the
leading edge). Our N-factor results according to the Chu-energy norm do indicate that the
10 mm wavelength is unstable. However, it is not close to being most amplified. When we
switch our metric to a wall-based measurement (N-factor according to heat flux) to better
match experimental methods, our results indicate that larger wavelengths are in fact more
dominant closer to the wall, consistent with what the experiment would measure. The
specific 10 mm wavelength is more dominant compared with smaller wavelengths in this
metric, however, it does not become the most-amplified wavelength until x⊥ = 15 mm,
which is downstream of the transition location measured in experiments. The actual
wavelengths observed in experiments could be a result of receptivity or nonlinear effects
not accounted for in the present linear analysis. However, the switchover from smaller
wavelengths dominant upstream to larger wavelengths measured at the wall downstream
we believe is captured by our linear results demonstrating how smaller wavelengths are
lifted further from the wall by the shear layer.

Turning to the HLNS N-factor calculations for unsteady disturbances, similar trends
are observed as for the stationary disturbances and are shown in figure 18. Overall, the
disturbances are more amplified at this higher Reynolds number. The band of disturbances
with N > 6 stretches between 3 and 5 mm and 90 to 150 kHz, with smaller wavelengths
becoming more amplified at higher frequencies compared with the Re′ = 11 × 106 m−1

case. The most-amplified disturbance based on the Chu-energy norm (shown in figure 18a)
is λ‖ = 3.5 mm at 110 kHz. This wave reaches a maximum N-factor of 6.54, which
is larger than the maximum N-factor of 4.99 for the previously most-amplified wave
(5 mm, 75 kHz) at Re′ = 11 × 106 m−1. These measurements are again compared with
amplification factors computed based on wall-pressure signatures, shown in figure 18(b).
With this definition, the most-amplified disturbance band shifts to larger wavelengths
and lower frequencies. A broad band of ‘most-amplified’ wavelengths is present in
this measurement compared with the Chu-energy results. Disturbances between 4.5 mm
(∼85 kHz) and 11 mm (∼25 kHz) appear nearly equally amplified according to the
wall-pressure amplification measurement. This reinforces how determining the dominant
waves becomes challenging when only using information at the wall.
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Figure 18. The N-factors for travelling disturbances at Re′ = 22 × 106 m−1 based on Chu energy (a) and
surface pressure (b). Measurements made at x⊥ = 22 mm.
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Figure 19. Comparing the real part of the main productive (top row, ρ̄ṽ) and destructive (bottom row, ũyy and
T̃yy) terms from the energy budgets between Re′ = 22 × 106 m−1 (coloured lines) and Re′ = 11 × 106 m−1

(grey lines). Terms from the x-momentum (blue), energy (red) and continuity (black) equations are shown.
Grey lines use the same line style of the matching coloured line to identify particular terms. Panels show
(a) λ‖ = 3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.

5.2. Energy analysis: wavelength selection
The Chu-energy-budget analysis is repeated for this case. We find the same terms are
dominant as for Re′ = 11 × 106 m−1, therefore we focus on how the dominant terms
change for the Re′ = 22 × 106 m−1 case. The main productive and destructive terms (the
wall-normal Reynolds-flux and dissipation terms) are shown in figure 19 and compared
between the two Reynolds numbers. First, the 3.5 mm case is examined to understand
how it overtakes the 5 mm case as most amplified. All three productive terms show an
increased contribution to the growth rate across the streamwise domain. However, in the
5 mm case, only the region near the leading edge features an increase in production in
all the terms examined. Comparing the destructive terms, the 3.5 and 5 mm cases both
have decreased destruction due to the T̃yy term. In the 3.5 mm case, the T̃yy destruction at
Re′ = 22 × 106 m−1 is nearly half that corresponding to the lower Reynolds number.

The large decrease in destruction for the 3.5 mm wave is somewhat counterintuitive. The
increase in Reynolds number leads to a thinner boundary layer, so it is natural to expect
the smaller scales would lead to an increase in dissipation. To understand these results,
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Figure 20. Disturbance ( f = 0 kHz, λ‖ = 3.5 mm) visualized using R(T̃)/max |T̃| scaled to 1 near x⊥ =
16 mm. Lines mark the boundary-layer edge (solid), reversed flow (dash-dotted) and Wcf = 0 (dashed). Panels
show (a) Re′ = 11 × 106 m−1 and (b) Re′ = 22 × 106 m−1.

the 3.5 mm wave is shown in figure 20 using R(T̃) scaled to 1 around x⊥ = 16 (so to
better visualize the following discussion). This figure demonstrates the perturbation does
not behave in a self-similar way as the Reynolds number increases. Rather, the 3.5 mm
wave redistributes (vertically stretches) to better fit the shear layer that exists between
the boundary-layer edge and Wcf = 0. The stretched disturbance signature leads to the
decrease in T̃yy.

For the lower-Reynolds-number case, an optimum balance between productive and
destructive terms determined the selection of the most-amplified wavelength. Wavelengths
smaller than the one that is most-amplified were shown to have high production, but
also large destruction which prevented the overall amplification of small wavelengths
from being competitive. At this higher Reynolds number (and, correspondingly, within
the thinner boundary layer) the relevant scales have become smaller and therefore can
support the smaller wavelengths. Besides the slight increase of production terms, this is
primarily attributed to the destructive terms no longer overwhelming the production for the
3.5 mm case. Consequently, the N-factor increases enough to become the most-amplified
wavelength. Conversely, only slight changes are present in the 10 mm wavelength
production and destruction. The change in length scales caused by the increased Reynolds
number is insignificant compared with the large-wavelength scale, rendering the 10 mm
wave nearly unaffected by the Reynolds-number change.

6. Sensitivity to yaw

Thus far, all fin-cone studies have been restricted to a zero-degree angle of attack and
yaw. The effect of small yaw angles is relevant when considering off-nominal cases in
flight experiments, as well as possible sources for disagreement between experiments
and companion computations. There are multiple sources for uncertainty in yaw; control
adjustments during flight could cause small yaw angles, and possible contributors in
experiments include the physical set-up of the model and possible flow angularity in
wind tunnels. The limits on the yaw angles studied here were informed by reports on
flow angularity in various supersonic wind tunnels, which tended to range from ±0.2
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Figure 21. Change in Chu-energy amplification due to small yaw angles. Included in the plot are calculations
from the nominal case (solid lines), leeward side (dashed) and windward side (dash-dotted). Simulations use
Re′ = 11 × 106 m−1.

to 0.5◦ (e.g. Jackson, Corlett & Monta 1981; Vallabh & Skews 2017). For this reason,
one fully three-dimensional simulation is conducted with 0.5◦ yaw introduced for Re′ =
11 × 106 m−1.

Both the windward and leeward sides of the three-dimensional simulation are examined,
where the global location of the stability plane relative to the model is the same as the
zero-incidence cases. Steady wall forcing is applied and the effect of yaw on stationary
disturbances is quantified. The results are shown in figure 21. There are only small
changes in the overall amplification of the disturbances, i.e. the perturbations are relatively
insensitive to the small yaw angles applied. The most-amplified wavelength does not
change within the chosen wavelength sampling (0.25 mm steps in λ‖). The dominant effect
near the leading edge is a streamwise shift in the N-factors which is more pronounced for
smaller wavelengths.

The wall-normal Reynolds-flux terms, previously shown to match the trends in the
growth rate, are examined near the leading edge in figure 22. Again, the dominant effect is
an apparent shift in where the major energy production occurs. On the windward side, the
wall-normal term is activated further upstream compared with the leeward side. This is
in agreement with trends observed in prominent base-flow features, e.g. the reversed-flow
region begins approximately 0.6 mm further upstream in the windward case (x⊥ = 7.7 mm
vs 8.3 mm in the leeward case).

The base-flow profiles corresponding to the region examined in the energy analysis are
shown in figure 23. The cross-flow profiles are interesting because the leeward side is
seen to have a slightly larger cross-flow velocity near the leading edge. This suggests the
leeward side should support a stronger cross-flow instability, as the cross-flow instability
has been shown to correlate with Wcf (or Mcf , as in Chen et al. 2022b). However, the shifts
shown in the energy budget and the movement of the reversed-flow region suggest that it
is more appropriate in this case to view the leeward cross-flow profiles as lagging behind
the windward profiles in the streamwise direction, rather than being truly larger.

This simulation yields insight beyond the effect on fin leading-edge instabilities by
providing the first quantification of yaw effects on base-flow behaviour over the entire
finned cone. Two key areas are shown in figure 24, where the original Mach contour lines
from the zero-degree yaw case are overlaid on the yawed simulation colour contours. The
flow on the fin near the leading edge is not visibly affected by the yaw. This agrees with
the previous results showing only small changes in the N-factor. Some movement in the
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Figure 22. Comparing the real part of the dominant productive terms from the energy budgets between the
leeward side (coloured lines) and the windward side (grey lines). The blue, red and black lines correspond
to terms taken from x-momentum, and energy and continuity equations, respectively. Panels show (a) λ‖ =
3.5 mm, (b) λ‖ = 5 mm and (c) λ‖ = 10 mm.
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Figure 23. Comparing rotated base-flow profiles near the leading edge between the leeward (dashed) and
windward (dash-dotted) sides at Re′ = 11 × 106 m−1. Shown are the streamwise (black) and cross-flow (red)
velocities. The cross-flow velocities are doubled to improve visibility. Panels show (a) x⊥ = 3.5 mm, (b) x⊥ =
5 mm and (c) x⊥ = 8 mm.
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Figure 24. Change in base-flow vortices due to small yaw angles at X = 0.35 m. Simulations at Re′ = 11 ×
106 m−1. The zero-degree yaw case is represented by Mach contour lines (black) overlaid on the colour contours
of the 0.5◦ yaw case. Images focus on (a) flow on the fin, and (b) flow on the cone surface.
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fin vortex position is observed; the vortex is located higher on the fin in the windward
case compared with the leeward case. The most prominent change is seen in the location
of the outboard cone vortex on both sides of the cone. At the streamwise station shown
(X = 0.35 m), each vortex is shifted a distance nearly equal to the width of the cone
vortex (∼ 7◦). While difficult to quantify, the overall shape of the vortex does not appear
to be substantially altered. Further studies should examine the effect, if any, of the yaw
angle on perturbation growth inside the cone vortex. These results do suggest that the
cone-vortex location is highly sensitive: slight yaw angles will greatly enhance uncertainty
in its location.

7. Conclusions

The growth of oblique disturbances on a highly swept fin was examined using HLNS. The
flow is assumed to be spanwise infinite, but possible elliptic effects due to reversed flow in
the leading-edge-perpendicular frame are accounted for by allowing a general disturbance
in the streamwise direction. Wall blowing and suction (both steady and unsteady) applied
near the leading edge produced wave-like disturbances which were localized away from
the wall. Disturbance amplification, wave angles and phase speeds were quantified.
Additionally, a spatial energy-budget analysis was formulated to understand the physical
processes determining the most-amplified wavelength and the behaviour of the disturbance
structure, particularly near the wall.

One major finding regarding the disturbance behaviour was on how small-wavelength
disturbances (including the most-amplified disturbances) tend to remain confined within
a narrow region of the boundary layer, correlating with the shear layer between the
boundary-layer edge and where the cross-flow velocity Wcf = 0. As the disturbance
wavelength increases, the perturbation structure propagates deeper into the boundary
layer, including the reversed-flow region. This motivated alternate amplification definitions
based on wall quantities, which, when compared with an amplification definition based on
total energy, showed a consistent bias towards larger wavelengths and lower frequencies.

The spatial energy budget formulated for HLNS revealed that, despite not being
the largest contributor to the perturbation growth, the wall-normal Reynolds-flux terms
dictated the growth-rate trends, with those related to heat flux being most dominant.
Other large contributors included terms associated with both x- and y-derivatives of the
streamwise velocity component. No cross-flow terms had large magnitudes compared
with terms associated with the streamwise flow. Additionally, Reynolds-stress terms were
identified as controlling the localization of small wavelengths in the shear layer, and large
wavelengths throughout the boundary layer. This behaviour directly leads to the bias in
amplification based on wall quantities.

Finally, the effect of Reynolds number and small yaw angles was examined. The
higher-Reynolds-number case corresponds to experimental conditions that produced
transition on the surface of the fin (Middlebrooks et al. 2022). The most-amplified
wavelength predicted by HLNS (according to the Chu-energy norm) did correspond with
measured wavelengths near the leading edge. However, the experimentally measured
wavelength at transition was much larger than that predicted by HLNS. However,
when also considering amplification based on wall quantities, HLNS calculations
do provide at least a partial explanation for the experimentally observed switchover
from smaller wavelengths dominant upstream to larger wavelengths measured near
transition. The energy analysis revealed that the larger amplification for small wavelengths
(compared with the lower-Reynolds-number case) was primarily driven by a decrease in
dissipation. In order to reduce wall-normal derivatives, the small-wavelength perturbations

987 A13-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.299


M.M. Peck, K.J. Groot and H.L. Reed

redistributed in the boundary layer, resulting in a structure that overlapped the shear
layer more effectively. When considering the effect of yaw, we found that any changes
in amplification were slight, indicating that the disturbances are not overly sensitive to
small changes in yaw. In fact, the dominant effect was a streamwise shift that resulted
in the windward side becoming more amplified farther upstream. The energy analysis in
both parameter variations continues to reinforce that the wall-normal Reynolds-flux terms
related to the inviscid-streamwise velocity and temperature of the base flow are the major
driver of the most-amplified trends, rather than any cross-flow-related terms.

The instability of flow over the fin to wall blowing and suction has been thoroughly
examined, and the linear dynamics of the resulting oblique perturbations characterized and
analysed through a spatial energy analysis. These results provide a better understanding of
the underlying mechanisms driving perturbation growth. This is particularly important
given the complex boundary layer that exists on the fin, which calls for general stability
analysis tools such as HLNS. Thus far, the perturbation dynamics has only been examined
in a linear analysis. While this may be acceptable for the scenarios examined in this
paper due to the small N-factors, cases that produce significant amplification would
warrant further nonlinear investigations. Additionally, the importance of boundary-layer
receptivity to both surface roughness and free-stream noise in disturbance selection and
eventual transition scenarios cannot be overlooked, and should be the study of future
investigations.
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Appendix A. Numerical convergence

The HLNS method exhibits a large sensitivity to grid resolution and boundary conditions
due to the inherent elliptic nature of the problem. Results from the Re′ = 22 × 106 m−1

solution are examined on three different grids to ensure accuracy in the presented results.
The baseline grid has 701 points in the streamwise direction and 586 points in the
wall-normal direction. One grid increases the streamwise resolution to 1050 points, and
one grid increases the wall-normal resolution to 879 points. All solutions used sixth-order
finite-difference stencils and the same buffer parameters.

Convergence of the stability problem vs grid resolution is shown in figure 25.
Amplification (assessed via the energy norm (3.1)) is computed for two steady disturbances
with spanwise wavelengths of 2 and 12 mm. Results are only shown where no buffer
is applied. The results are nearly indistinguishable. The largest error is present in the
smallest-wavelength case, where there is a discrepancy of 0.012 units in NE at x⊥ =
25 mm. Based on these results, the coarse grid resolution is deemed sufficient for this
study.
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Figure 25. Stability grid convergence results for stationary disturbances at Re′ = 22 × 106 m−1. The red line
is λ‖ = 2 mm, and the black line is λ‖ = 10 mm. The different symbols and line styles represent the different
grid resolutions.

Buffer zones are used at the outlet and free stream to damp outgoing waves and prevent
non-physical reflections from affecting the results. The buffer function at the outlet is

B = σ

(
sin
(

π

2
ξ − ξB

ξmax − ξB

))p

, for ξ > ξB, (A1)

B = 0 otherwise. (A2)

The amplitude σ , power p and location of the buffer ξB are variable. In the free stream, the
same function is used with η replacing ξ , and a unique ηB, σ and p may be specified. The
buffer is added to the equations as

(M + BI∗)q̃ = f , (A3)

where I∗ is a special identity function distributing the buffer function equally across the
components in q̃ in (2.4) within the buffer regions. The buffer does not ever intersect
with the region where the forcing function is applied. Numerical experiments shown in
this section verified the independence of the presented results to the buffer location and
amplitude.

Buffer effects at both the free stream and outlet are examined by comparing disturbance
energy across simulations with different buffer parameters. The start of the buffer location
is tested at 85 %, 90 % and 95 % of the domain length (and applied until the end of the
domain), and the buffer amplitude is varied as 25, 50 and 100. The free-stream buffer has
no effect on the disturbance energy. The outlet buffer effects are more complicated and
depend on the disturbance wavelength and frequency. For this reason a small parameter
sweep is conducted to understand the buffer effect. For the high-Reynolds-number case,
λ‖ = 3.5, 5, 8 and 12 mm were studied. The frequencies studied per spanwise wavelength
were localized around the frequency with the maximum disturbance energy. Results are
presented only for limited frequencies in the λ‖ = 3.5 and 8 mm cases as these are
representative of the results seen across the entire parameter study.

Figure 26 shows the effect of the outlet buffer on disturbance energy for the λ⊥ =
3.5 mm disturbance. As intended, the effects are localized near the outlet. The larger
buffer amplitude σ results in a sharper decline in energy when the buffer is activated.
Moving the location of the buffer region generally moves the region of decay backwards,
however, this becomes more unpredictable as the disturbance frequency becomes large.
Figure 26(c) shows a case where this is true, as the xb = 90 % case deviates from the
behaviour observed for the 85 % and 95 % cases. Still, figure 26 provides confidence in
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Figure 26. Disturbance energy for λ⊥ = 3.5 mm with varying buffer parameters.
Panels show (a) f = 100 kHz, (b) 120 kHz and (c) 140 kHz.
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Figure 27. Disturbance energy for λ⊥ = 8 mm with varying buffer parameters. Panels show (a) f = 40 kHz,
(b) 50 kHz and (c) 60 kHz.

claiming the buffer effects are largely localized, and unimportant for results examined
upstream of x⊥ = 25 mm.

Figure 26 indicates that the influence of the buffer propagates further upstream as
the disturbance frequency is increased. The frequency where these effects become more
important becomes smaller as the disturbance spanwise wavelength is increased. Generally
speaking, the peak frequency is captured before the buffer effects become too large to
meaningfully measure the disturbance in the domain of interest. Figure 27 provides one
counter example where the buffer effects are felt far upstream at a frequency lower than
the peak frequency. In figure 27(a), when the buffer is applied only after xb = 95 %, there
is a large change in the measured disturbance energy up to x⊥ = 20 mm. There is much
better agreement between the xb = 85 and 90 % cases.

After closely examining multiple similar results, the buffer parameters are fixed at xb =
90 % and σ = 50. Results are also limited x⊥ = 22 mm to be certain no buffer effects
pollute the presented data. This does not hinder the objective of this paper, as x⊥ = 23 mm
approximately aligns with where the fin vortex begins for the high Reynolds cases. As we
are interested in disturbance evolution much prior to this point, there is no need to take
data further down the domain.
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Appendix B. Spatial energy-budget formulation

The spatial energy-budget formulation is presented here in more detail. The driving goal
is to explain what terms are responsible for the behaviour of the spatial-growth rate,
and therefore the N-factor. With this in mind, we begin by expanding the expression for
disturbance amplification (4.1)

NU = 1
2

ln
∫

U⊥

(
ρ(|ũ|2 + |ṽ|2 + |w̃|2)+ ρ

γ (γ − 1)M2T
|T̃|2 + T

γM2ρ
|ρ̃|2

)
dy. (B1)

We are interested in spatial growth, therefore the x-derivative of this expression is taken
(displayed in shortened form in (4.2)). Note that both the base-flow and perturbation
variables are functions of space, which results in the ‘base-flow terms’ appearing in the
growth rate (4.2). To make further manipulations clear, here we expand the bracketed
‘budget terms’ expression

ρU⊥ũ∗ũx + ρU⊥ṽ∗ṽx + ρU⊥w̃∗w̃x + ρU⊥
γ (γ − 1)M2T

T̃∗T̃x + T U⊥
γM2ρ

ρ̃∗ρ̃x. (B2)

A subscript indicates a derivative with respect to the indicated direction, and a star
indicates the complex conjugate.

Next, we would like to replace the above terms with the conservation equations to allow
examination of individual terms representing specific physical processes. As an example,
consider the continuity equation written for HLNS, which reads

Dρ̃
Dt

= −iωρ̃ + ρ̃xU⊥ + ρ̃yV + iβρ̃W⊥

= −iβρw̃ − ρṽy − ρyṽ − ρ̃Vy − ρũx − ρxũ − ρ̃U⊥x. (B3)

Note that the underlined term in the continuity equation is similar to the underlined term in
the budget equation. Importantly, there is a factor of U⊥ that already exists in the continuity
equation (and in all the conservation equations). We cannot divide out that term, as the
resulting expression would become undefined in regions of the flow where U⊥ = 0 (e.g.
the edges of the reversed flow region and at the wall). This motivated the modified N-factor
definition.

The continuity equation is multiplied by ρ̃∗ and the corresponding Chu normalization
factor (T/γM2ρ). The underlined terms in the ‘budget terms’ and in the conservation
equation now match. All remaining terms in the conservation equation are moved to the
right-hand side of the equation and substituted for the underlined term in the budget
equation. This process is repeated with all of the conservation equations and results in
a lengthy description of perturbation growth that may be used to identify single terms
which dominate disturbance trends.
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