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SYMMETRIZABLE, ^ - , AND WEAKLY FIRST 
COUNTABLE SPACES 

R. M. STEPHENSON, JR. 

A number of results are given concerning the character and cardinality of 
symmetrizable and related spaces. An example is given of a symmetrizable 
Hausdorff space containing a point that is not a regular G$, and a proof is given 
that if a point p of a symmetrizable Hausdorff space has a neighborhood base of 
cardinality Xi, then p is a G5. It is shown that for each cardinal number m 
there exists a locally compact, pseudocompact, Hausdorff J^-space X with 
\X\ ^ m. Several questions of A. V. Arhangel'skii and E. Michael are partially 
answered. 

In [6] Peter W. Harley, III and I introduced and studied a family of spaces, 
called ^-spaces (defined below). A number of topologists have found the 
family JF~ to be of interest since J^ contains: all symmetrizable spaces; the 
Sorgenfrey line; the Michael line; Alexandrov's double interval; and the top 
and bottom of the lexicographically ordered square. Some of the properties of Ĵ ~ 
derived in [6] are these. An J^space is (a) Lindelof if it is Ki-compact, and (b) 
hereditarily Lindelof if each of its discrete subspaces is countable. A compact 
Hausdorff ^"-space is first .countable (and hence is a neighborhoods-space). 
A neighborhood J^-space is hereditarily Lindelof if and only if it is hereditarily 
separable. A Hausdorff S-space X is symmetrizable if and only if X X 
{0, 1, 1/2, 1/3, . . .} is an J^-space. If X is a symmetrizable space in which 
every point is a regular G§, then X is locally compact if and only if for every 
symmetrizable Hausdorff space Y, the product space X X Fis symmetrizable. 
One has the implications 

semimetrizable => symmetrizable 

neighborhood # " => ^ 

1 1 
first countable => weakly first countable 
Fréchet => sequential 

and for Hausdorff Fréchet spaces, 

symmetrizable =» semimetrizable 

ÏF => neighborhood ^ 

1 1 
weakly first countable => first countable 
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In this paper I would like to consider some questions concerning these 
concepts. 

Definitions. Following A. V. Arhangel'skii [1], a space X will be called 
weakly first countable if there exists a mapping B : N X X ->&(X), where 
3P (X) denotes the power set of X, such that 

(i) for each n G N and x G X} B(n + 1, x) C B(n, x), and {x} = 
H \B(i,x) : i G N}; and 

(ii) a subset F of X is open if and only if for each v G V there exists n with 
£(» ,») C F. 

A space X is called an espace if there exists such a mapping 5 which also 
satisfies 

(iii) for each closed set F and point x G F there exists i G N so that for every 
point y £ B(i, x)\{x}, there exists K N with {x, y) <ZB(k, F) = 
U {B(k,f):fe F}. 

In this case B is said to be an J^"-system for X. 

A space X is said to be symmetrizable if there exists a mapping d : X X X —> 
[0, oo ) such that: 

(a) for all x, y G X, d(x, y) = d(;y, x) ; 
(b) for all x, y G X, d(x, y) = 0 if and only if x = y\ and 
(c) for each set F C X, F is closed if and only if for every point x G F, 

0 < d(x, F) = inf {d(x,f) :f G F}. The mapping d is said to be a symmetric 
forX. 

It can be shown that a space X is symmetrizable if and only if X has an 
J^-system B satisfying: 

(iii)' for each closed set F and point x G F there exists k with x G -S(&, F). 

If 5 is an ^"-system for X (d is a symmetric for X) , and if x G interior of 
^(w, x) ({y : d(x, ;y) < l/n\) for each ?z G N and x G X, then X is said to be 
a neighborhood espace (semimetrizable space), and 5 (d) is called a neighbor­
hood ^-system (semimetric) for the space X. 

Although the J^-system condition (iii) and the symmetric condition (iii)' 
are formally similar, the family of all ^ -spaces is quite different from the 
family of all symmetrizable spaces, since, for example, the Michael line, the 
Sorgenfrey line, Alexandrov's double interval, and the top and bottom of the 
lexicographically ordered square are all neighborhoods-spaces none of which 
is symmetrizable. For a detailed discussion of differences and similarities be­
tween the two families, see [6], 

Let us now consider some questions concerning these spaces. 

QUESTION 1. (E. Michael) Is every point of a symmetrizable Hausdorff space 
aGs? 

In [3], D. Bonnett partially answered this question by constructing an in­
volved example of a symmetrizable but non-Hausdorff space in which one 
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point fails to be a G5. Last year Peter W. Harley, III [6] gave a more simple 
example of a non-Hausdorff, symmetrizable space in which no point is a Gi. 

As far as I know, Michael's question has not yet been answered. Perhaps 
one reason no one has succeeded (in obtaining a negative answer) is given by 
the following result. It shows that one cannot produce a symmetrizable 
Hausdorff space which contains a non-G5 point by adding one point to a first 
countable symmetrizable space. 

LEMMA 2. Let X be a symmetrizable Hausdorff space, and let p be a point of X. 
If the space X\{p} is perfect, then p must be a Gô in X (and hence X must be 
perfect). 

Proof. Let d be a symmetric for X, and for each n G N let Fn = (X\{p\) C\ 
CI {y : d(p, y) < l/n). Then each Fn is a closed subset of the perfect space 
X\{p}, so there is a sequence {Umn : w G N} of open subsets of X\[p} with 
Fn = 0 I Umn > m G N}. Now define Vmn = {p} U Umm and note that for 
each point x G Vmn there exists e > 0 with \y : d(x, y) < é\ C FTOn. Thus 
each Vmn is an open subset of X, and so {£} C Pi {Vmn • m, n 6 N} C Pi 
{CI {y : d(p, y) < 1/w} : w G N} C H { F : V is an open neighborhood of 
p in X} = {p}, which shows that p is a G5. 

Using the next lemma, however, one can prove that there does exist a sym­
metrizable Hausdorff space containing a point that is not a regular G5. (A 
point p of a space X is called a regular G5 if there exists a sequence { Fn : n G N} 
of neighborhoods of p such that {p\ = C] {CI Fn : n G N}.) 

Recall that a topological space is called feebly compact if every locally finite 
system of open sets is finite. (It is known that every countably compact space 
is feebly compact, and every normal feebly compact TVspace is countably 
compact.) 

LEMMA 3. Let X be a topological space containing a dense feebly compact sub-
space Y. Then no point of X\ Y is a regular GsinX. 

Proof. If p Ç X\Y and { Vn : n Ç N} is a descending sequence of open 
neighborhoods of p with {p) = H {CI Vn : n G N}, then {(FW\C1 Vn+i) C\ 
X : n G N} is an infinite locally finite family of open subsets of X. 

LEMMA 4. Let Y be a regular symmetrizable space containing a countably 
infinite closed discrete subset C indexed in a one-to-one way as [xn : n G N}. 
Let d be any symmetric for F, and let X = Y \J {p}, where p G Y. Denote by 
d* the function determined by the rule 

(d(x} y) if x, y G Y 

1 

if x 

d*(y,x)=d*(x,y)-'* if* = P°>»ày<ï Y\C 
\l/n if x = p and y 
(0 if 
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Topologize X so that it has d* as a symmetric, that is, call a subset V of X open 
if and only if for each point v G V there exists e > 0 with {x : d* (x, v) < e) C V. 

Then X is a symmetrizable Hausdorff space containing Y as a dense sub space. 

The proof is straightforward. 

EXAMPLE 5. Let Y be the Isbell-Mrowka space \p in [5, 51]. Specifically, 
le t^# be a maximal infinite family of infinite subsets of N such that the inter­
section of any two members is finite, and denote by {pM : M G-^} a set of 
distinct points not in N. Let Y = N U \pM : M G <y$), topologized as follows: 
each point of N is isolated ; and a neighborhood of a point pM is any set con­
taining pM and all but finitely many members of M. It is known (and not 
difficult to prove) that Fis feebly compact, regular, and symmetrizable but not 
countably compact, so we may let d be any symmetric for Y and C any 
countably infinite subset of \pM : M G-^} and take X to be the space pro­
duced by applying Lemma 4 to Y, d, and C. Then it follows from Lemmas 2, 3, 
and 4 that the space X is a feebly compact symmetrizable Hausdorff space in 
which the point p is a G s but not a regular Gi. 

The space X in Example 5 is also of interest for another reason. Let W 
denote the set {0} \J N U \m + 1/n : m, n G N}, topologized so that it has 
as a symmetric the mapping p: W X W —» [0, co) determined by the rule 

0 if x = y 
\x — y\ if xy 9e 0 and x 9e y 

ry*,yj -Fvy,*J - y if x = 0 , 3; ^ 0, and ^ ^ N 
\l/y if x = 0 and y G N. 

In [6, Lemma 6.11] we obtained the following result. 

LEMMA 6. Let X be a symmetrizable space in which each point is a regular G*. 
Then the following are equivalent. 

(a) X is first countable. 
(b) W cannot be embedded homeomorphically in X as a closed subset. 

The space X in Example 5 can be used to show that the regular G$ require­
ment in Lemma 6 is necessary. 

EXAMPLE 7. Let X be the symmetrizable Hausdorff space in Example 5. Then X 
fails to be first countable, but the space W cannot be embedded homeomorphically 
in X as a closed subset. 

Proof. If h : W —> X is an embedding, it is easy to see that h(0) = p, 
h(n) Ç C for all but finitely many n G N, and for each m G N, there exists 
M ^<Jé with him + 1/n) G M for all but finitely many n G N. Next, by 
induction one can find an infinite subset I of N with 0 7^ Ï\I C X\h(W) 
and / C h(W). Thus h{W) is not a closed subset of X. 
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The next two theorems show that for a large number of cases, Michael's 
question does have an affirmative answer. 

A space is called ^-compact if every uncountable subset has a limit point. 

LEMMA 8. Let Y be an Ki compact, weakly first countable space which contains 
at most one non-isolated point. Then Y is countable. 

Proof. It follows easily from condition (ii) of the definition of weakly first 
countable that the space Y must actually be first countable. Thus every point 
of Y is a GSJ and so if Y were uncountable, then it would have an uncountable 
closed discrete subset. 

THEOREM 9. Let X be a Hausdorff ^-compact & -space. Then every point of 
X is a regular G«. 

Proof. Let p Ç X and Y = X\{p}. In order to prove that p is a regular G5, 
it suffices to prove that F is a Lindlof space. Since Y is an J^"-space [6, Theorem 
2.9], and every Ni-compact J^-space is Lindelôf [6, Theorem 3.3], it will be 
enough to prove that Y is Xi-compact. 

Suppose that there exists an infinite subset J of Y which fails to have a limit 
point in Y. Then J, like any closed subset of an J^-space, is also an J^-space 
[6, Theorem 2.9], and, except for p, each point of I = I KJ \p\ is isolated, so 
by Lemma 8, / must be countable. Therefore, Y is Ki-compact. 

THEOREM 10. Let X be a symmetrizable Hausdorff space, and let m be an infinite 
cardinal number and p be a point of X such that p has a neighborhood base of 
cardinality ^ m+. Then {p} is an intersection of m or fewer open sets. 

Proof. Let us suppose that { Va : a < m+) is a neighborhood base for p but 
{p\ is not an intersection of m or fewer open sets. 

Let b be an ordinal number < m+, and assume that we have chosen points 
{xa : a < b) and open sets {Wa : a < b) such that for each d < b, xd Ç Wd P 
( ^ { Va : a g d}), and p Q CI Wdl and for any a < d, xd (? Wa. Then we can 
select a point x in the nonempty set (X\{p}) Pi ( P { Va : a ^ b}) Pi (O 
{X\C1 Wa : a < b}) and define xb = x. Next, choose an open set W with 
xb e W and p ? CI W, and set Wb = W. Then for each d ^ b, xd£ Wdn 
(Pi { Va : a ^ d}), and p $ CI Wd, and for any a < d, xd £ Wa. 

Thus by transfinite induction there exist points {xa : a < m+} and open sets 
{Wa : a < m+} such that the sequence {xa : a < m+} converges to p, and for 
all a < d < ra+, xa Ç Wa and xd g Wa. Let 5 be a symmetric for X. Passing 
to subsequences and appealing to the regularity of the cardinal number m+, 
one can find an integer k and sequences {ya : a < m+} of points and {Ta : a < 
m+\ of open sets such that: {ya : a < m+] converges to p; for all a < d < m+, 
ya Ç r a and yd ? Ta; and for each a < m+, {z : s(ya, z) < 1/k] C Ta. 

Since 5 is a symmetric for X, and since the set Y = \ya : a < m+} is not 
closed (it has p as a limit point), there must exist a point # such that q $ Y and 
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s(q, Y) = 0. From the equation s (g, F) = 0 it follows that g G U {Ta: a < rn+), 
for otherwise we would have s(q, Y) ^ 1/k. 

Denote by c the smallest ordinal for which g Ç Tc. Then for every d < c, 
q d. Td and hence s(q, yd) ^ 1/k. Because Tc is open and q € Tc, there is a 
number / > 0 with {z : s(q, z) < t\ C TV Thus for every d > c, s(q, yd) è *. 
Let e = min {1/fe, /, s(q, yc)}- Then s(g, Y) ^ e > 0, which is a contradiction. 

COROLLARY 11. Let X be a separable symmetrizable Hausdorff space in which 
each point has a neighborhood base consisting of regular open sets. If c = Ki, 
then every point of X is a Gs. 

Proof. Let D be a countable dense subset of X, and let 3? = 
{ V : V = Int (CI V)\, i.e., let S% be the family of all regular open subsets of X. 
Since the mapping i : 8% —>£P(D) given by i(V) = VC\ D is known to be 
one-to-one, each point of X has a neighborhood base of cardinality S Ki, and 
so Theorem 10 may be applied. 

Let us now turn to some other related problems. 

QUESTION 12. (A. V. Arhangel'skii [1, p. 129]) Is every weakly first countable 
compact Hausdorff space first countable! 

QUESTION 13. (A. V. Arhangel'skii [1, p. 129]) Does every weakly first count­
able compact Hausdorff space have cardinality ^ c? 

Of course, an affirmative answer to Question 12 would provide an affirmative 
answer to Question 13 by [2]. More generally, an immediate consequence of 
[2, Theorem 2] is the following partial answer to Question 13. 

THEOREM 14. (A. V. Arhangel'skii) If X is a sequential compact Hausdorff 
space in which each point is an intersection of c or fewer open sets, then \X\ ^ c. 

Another special case is covered by the next result. 

THEOREM 15. Let X be a weakly first countable, completely normal, countably 
compact Hausdorff space. Then X is first countable. 

Proof. Suppose that X fails to be first countable. Then it cannot be a 
Fréchet space, so there must exist a point p Ç X and a set A C X such that 
p Ç Â but no sequence in A converges to p. 

Let B = Â\{p}. Then A is a dense subset of B and every infinite subset of A 
has a limit point in B, so B is (easily seen to be) feebly compact. On the other 
hand, because Â is a sequential space and B is not a closed subset of Â, there 
must exist a sequence in B which converges to p. Thus B is not countably 
compact but is feebly compact, whereas every normal feebly compact 7\-space 
is countably compact. 

Other special cases for which Questions 12 and 13 have affirmative answers 
are all those compact Hausdorff weakly first countable spaces which are 
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symmetrizable (they are metrizable by [1, p. 126]) or are ^ -spaces (they are 
first countable by [6, Theorem 3.14]). 

Since a space providing a negative answer to Question 13 would have to be 
sequential but not Fréchet, it is natural to ask if there even exists a compact 
Hausdorff sequential but not Fréchet space which is of cardinality > c. In 
[4, Example 7.1] S. P. Franklin noted that the Alexandroff one-point compacti-
fication \[/* of the space \[/ (which has cardinality S c) is sequential but not 
Fréchet. One also has other such examples. 

EXAMPLE 16. Let m be an uncountable cardinal number, let^#w be a maxi­
mal family of countably infinite subsets of m such that the intersection of any 
two members is finite. Denote by {pM : M G Jtm\ a set of distinct points not 
in m, and let Xm = m U \pM : M G <Jtm), topologized as follows: each point 
of m is isolated; and a neighborhood of a point pM is any set containing pM 

and all but finitely many points of M. Then one can prove the following. The 
space Xm is a Hausdorff, feebly compact, locally compact, neighborhood J^-space 
such that \Xm\ ^ m. Furthermore, the Alexandroff one-point compactification 
Xm* of Xm is sequential but not Fréchet. 

By Lemma 8, none of the closed subspaces [pM '• M G ^m\* is weakly first 
countable, so none of the spaces Xm* is weakly first countable. By Theorem 17, 
no Xm is symmetrizable. 

THEOREM 17. Let X be a feebly compact symmetrizable space. Then the set I of 
isolated points of X is countable. 

Proof. If / is uncountable, let d be a symmetric for X and note that for 
some integer k there is an uncountable subset Y oî I such that for each y G Y, 
{y} = {z : d(z, y) < l/k}. By the feeble compactness of X, the set Y cannot 
be closed. Thus there is a. point x G X\Y with d(x, Y) = 0, in contradiction 
of the fact that for any point t of X, there is at most one y G Y with d(t, y) < 
l/k. 

COROLLARY 18. Let X be a symmetrizable space, and let D be a subset of X 
such that every infinite subset of D has a limit point in X. Then every discrete 
sub space of D is countable, and if X is semimetrizable, then D is separable. 

Proof. If I is a discrete subspace of D, then I is also the set of isolated points 
for the feebly compact symmetrizable space / . 

For the last statement, let d be a semimetric for X, and for each positive 
integer n let Dn be a maximal subset of D with d(x, y) ^ \/n for all x, y G T)n 

with x 7^ y. Then U \T>n : n G N} is a countable dense subset of D. 

QUESTION 19. Is every feebly compact symmetrizable space separable! 

In [3] Bonnett answered a question of Michael by giving an example of a 
symmetrizable Hausdorff space that is not perfect. He also raised the next 
problem. 
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QUESTION 20. (D. Bonnett [3]) Is every regular symmetrizable space perfect! 

Peter W. Harley, III has pointed out that the following partial answer to 
Question 20 is an immediate consequence of Theorems 2, 3, and 4 of [7]. 

THEOREM 21. (Peter W. Harley, III) If 2X l > c then every separable normal 
symmetrizable space is hereditarily Lindelbf {and hence perfect). 

We will conclude by giving a result which shows that the converse of 
Theorem 10 is not true. As far as the author knows, an example has not been 
given previously of a weakly first countable Hausdorff space in which there is 
a point p which has no neighborhood base of cardinality ^ c. 

THEOREM 22. Let m be an infinite cardinal number. Then there exists a para-
compact, zero-dimensional symmetrizable space X in which there is a G s point p 
such that every neighborhood base for p has cardinality > m. 

Proof. Let T = {0} VJ {1/n : n £ N} and Y = m X T. Choose a point 
p $ F and set X = F U {p}. 

Let {Bn : n G N} be a descending sequence of subsets of m X {0} such that 
Pi {Bn : n G N} = 0 and each set Bt\Bi+1, i G N, has cardinality m. Define 
d : X X X —> [0, oo ) as follows: for any x, y G X, 

A) if x = y 
\\/{n + 1) if x = p and y G Bn\Bn+1 

d(x, y) = d(y, x) = ( 1 if x = p and y G Y\Bi 
j l if x = (a, s), y = (b, t) and a ^ b 
\\s — t\ if x = (a, s) and y = (a, t) for some a G m. 

Topologize X so that it has d as a symmetric. Then it is easy to see that p is 
a GÔ and X is paracompact, zero-dimensional, and symmetrizable. 

Let i^ be a family of open neighborhoods of p with 0 < \V\ ^ m. We will 
prove that there exists a neighborhood W oî p which contains no member of ^ . 

For each n G N, let ^ n - { F G ^ : V D {x : d(x, p) < 1/n}}, and if 
^ n y£ 0, then index its members as { Vna : (a, 0) G Bn\Bn+i}, where repetitions 
are permitted. Choose an integer k such that each ^n, n è; k, is nonempty. 
For each integer n ^ k and each a £ m with (a, 0) G Bn\Bn+i, find the largest 
integer i with (a, 1/i) g Fwa, and let Sa = {(a, x) G F : |x| < l / ( i + 1)} ; 
if no such i exists then let Sa = {a} X (7\{1}). Then the set W = {p} W 
(U {-Sa • (a, 0) G Bn\Bn+i, n ^ &}) is a neighborhood of £ which contains no 
member of ^ . 
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