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Abstract. If A is a semiprime Banach algebra, soc/4, radA the socle and radical of
A, then socA HradA = (0). This elementary result enables us to prove some results
concerning algebraic ideal and algebraic elements modulo the socle of A. We also deduce
several conditions for A equivalent to the condition dim A < +°°.

Introduction. The class of semiprime Banach algebras is the class of algebras to
which one might reasonably expect some theorems on semisimple Banach algebras to
extend. However, there are results on semisimple Banach algebras that do not hold for
semiprime ones; e.g. the automatic continuity of the functional calculus in commutative
algebras fails to extend to semiprime algebras [3].

In this paper we prove some results concerning algebraic ideals and algebraic
elements modulo the socle of a semiprime Banach algebra.

Our main results may be stated as follows.
(1) The largest biideal of algebraic elements of a semiprime Banach algebra A is its

socle.
(2) If A is a semiprime Banach algebra with unit, x eA with p(x) e soc(A) for some

polynomial p, then 3w e A such that p(w) = 0 and x - w e SOC(Y4).

Result (1) extends Theorem 3.2 in [12] and it provides a characterization of the socle
of A and result (2) extends Theorem 12 in [5]. Notice that our proof of result (2) is
simpler than the proof given in [5].

We also deduce several equivalent conditions which force the algebra to be finite
dimensional.

In general notation and terminology used is as in [7]. In particular we write
S0Ci4 = {0} if the algebra A has no minimal idempotents.

All the algebras and linear spaces considered are over the complex field.

LEMMA 1. Let A be a Banach algebra with unit. If x is an algebraic element in the
radical of A, then x is nilpotent.

Proof. Since x is algebraic there exists a polynomial p such that p(x) = 0. The
polynomial p is of the form p(X) = A"̂ (A) and the polynomial q has non zero constant
term, j80 say. Then q(x)$radA and by the spectral mapping theorem o(q(x)) =
q(a{x)) = {q(0)} = {/So} =£ {0}. Hence 0 $ o(q(x)) and therefore q{x) is invertible, so that
0 = 0 . q(x)-'=xnq{x) . q(x)-l=x".

REMARK 2. An argument similar to that in the proof of Lemma 1 shows that if x is a
quasinilpotent algebraic element which lies in a proper ideal / of A then x is nilpotent.

An immediate consequence of Lemma 1 above is the following well-known result.

PROPOSITION 3. If A is a finite dimensional semiprime (Banach) algebra, then A is
semisimple.

The following gives an example of a non-radical semiprime Banach algebra A with
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EXAMPLE 1. Let F be the free algebra on two symbols u,v and let {wn} be the
standard enumeration of the words given by u, v, u2, uv, vu, v2, u3, u2v,.. . and let An

be the length of the word wn. Let A be the algebra of all infinite series x = T, anwn, where

Then A is a non-commutative semiprime radical Banach algebra ([7, pp. 254-255]).
Let Ax =A + C, the unitization of A over C ([7, Def. 1, p. 15]). It is clear that At is

semiprime since A has no divisors of zero, and A{ is not radical since (0, A) $ rad A; for
AeC — {0}. But rad A; # {0}. In fact if d is a non zero element of A then (d,0) e rad A -

EXAMPLE 2. Let F, A be as in Example 1 and B the algebra of all infinite series
* = £ anwn, where

11*11'= 2>»l<+»-
Then B is a non-commutative semisimple Banach algebra. Let D = {(a, b): a eA, b e B},
where

k.(a,b) = (ka,kb),

(a,a').(b,b') = (ab+b'a + a'b,a'b'),

for all a,a' eA, b,b'eB, AeC and

\\(a,b)\\ = \\a\\ + \\b\\'.

Then D is a non-commutative semi-prime Banach algebra which is not radical (since
(0, b) $ rad D). But rad D ± {0} since (a, 0) e rad D.

LEMMA 4. Let A be a semiprime Banach algebra with unit and let M be a biideal of
algebraic elements of A.

(i) M n rad A = {0}; in particular soc A ("1 rad A = {0}.
(ii) M is a semisimple Banach algebra.
(iii) If f is an idempotent element in M, then fAf is a finite dimensional semisimple

Banach algebra with unit f and f e soc A.
(iv) For every nonzero element m e M the principal left (right) ideal Am (mA)

contains minimal idempotents and every orthogonal set of minimal idempotents in Am
(mA) is finite.

(v) For every element meM there exists an idempotent f in soc A such that m = mf,
and f e Am.

(vi) M e soc A

Proof, (i) From Lemma 1 it follows that the biideal M D rad A is nil and from [9] (or
Corollary 5 of [7, p. 254]) it follows that Mr i r ad^ = {0}. Hence N clan rad A Let
AreMDradA Then there exists a sequence (xn) in M e Ian rad .A with xn—*x. Hence
0 = xnx —» x2 and therefore x2 = 0. This implies that M D rad A is nil and so M n rad A =
{0} as above.
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Suppose now that x e soc A and x = axex + a2e2 + . . . + anen, where eue2, • • • ,en
n

are minimal idempotents of A and ax, a2, • • • , an e A. Then xAx cz E a-,e,v4o}ey has
finite dimension by Theorem 6 (iii) of [7, p. 158]. '''~

Hence x is algebraic. Since socA is a biideal of algebraic elements of A we have
socA nrad/4 = {0}.

(ii) From Corollary 20 of [7, p. 126] and (i) above we see that rad M = M n radA =
{0}.

(iii) It is clear that {0} +fAf = fMf cz M and fMf is semisimple from BA.2.7 of [6,
p. 104]. Therefore fAf is semisimple. Now, from the spectral mapping theorem it follows
that every element of M (and therefore every element of fMf =fAf) has finite spectrum.
Kaplansky's theorem ([11]) asserts that fMf is finite dimensional and thus / e soc(M) =
M OsocA (from Theorem 7.2 of [1]).

(iv) Let m be a non-zero element in M. From (i) it follows that there exists ueA
such that um is not quasinilpotent. It is clear that the spectrum of um is finite.

We denote by B the commutative Banach algebra generated by um. Since um is
algebraic, B is a finite-dimensional algebra which is not radical and which therefore
possesses a non-zero idempotent/, from the well-known Artin-Wedderburn theory. From
(iii) / e soc A; therefore Am fl soc A =£ {0}, which implies that Am contains minimal
idempotents.

An argument analogous to that in the proof of Lemma 3.1(iv) of [12] proves that
every orthogonal set of minimal idempotents in Am (mA) is finite.

In fact, if {eu e2, • • •} is an infinite set of pairwise orthogonal minimal idempotents in
Am then we can choose a sequence (an)n&l in A and a sequence (An)n&1 in C such that

en=anm and |An|<2~". Ha,,!!"1 for each n = l , 2 . . . . Then £ knan converges to an
OO 00

element a (say) in A and am = £ knanm = E Anen. Since enam = knen or en(kn — am) =

0 for each n, we have that An — am is not invertible and therefore An e a{am) for each
n = 1,2,. . . ; this contradicts the finiteness of the spectrum o{am).

(v) Let m e M. If m = 0 we take / = 0. Suppose m =£ 0. From (iv) above there exists
a finite maximal set E = {ex, e2,. . . , en) of minimal (pairwise orthogonal) idempotents in
Am. Note that me, # 0 for some 1 < i < n. Let / = ex + e2 +... + en. It is clear that
f2=f esocA f\Am.

We claim that m = mf. For if m — mf i= 0, then the principal right ideal (m — mf)A
contains a minimal idempotent, e say. Then e = (m — mf)u for some ueA. Define
en+i = (1 — f)uem(l —/). We can now easily verify that

el+l = en+i = (1 -f)uem - (1 -f)uemfeAm +Am cz Am

and 0 = en+l. et = et. en+l for j = 1,2,. . . , n; i.e. en+l is a minimal idempotent in Am
orthogonal to all the e/s, contradicting the maximality of E.

(vi) This follows immediately from (v) above.

Now Theorem 5 below follows immediately.
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THEOREM 5. If A is a semiprime Banach algebra with unit, then the socle is the largest
biideal which lies in the algebraic elements of A.

We also obtain the following characterizations of the socle of the algebra A which
extend theorem 7.2 of [1].

COROLLARY 6. If A is a semiprime Banach algebra with unit, 2 = {x eA :dim(xAx) <
+00} and F = {x eZ:dim(xAu) < +<»Vu el.}, then socA = F = I..

Proof. Since F is a biideal of algebraic elements of A we have F c soc A <=H. Let
x e 2 and denote by (x) the biideal of A generated by x. A typical element of (x ) is of

the form y = Xx + ax+xb + E a,x6,. It is clear that dim(yAy)< +°° and therefore
i = i

( x ) c l From Theorem 5 it follows that ( x ) c s o c A Hence ScsocA and therefore
2 = soc/4. It is now obvious that F = soc A too.

An easy consequence of known results is the following theorem.
THEOREM 7. Let A be a semiprime algebra with unit. The following conditions are

equivalent:
(i) A has finite dimension,
(ii) A is algebraic,
(iii) A = soc A,
(iv) A is locally finite,
(v) every singly-generated subalgebra of A is finite dimensional.

Proof. An element x of A is algebraic if and only if it belongs to a finite dimensional
subalgebra. Hence (ii)o(v).

Now if A is semiprime and finite dimensional, then A is semisimple and finite
dimensional and therefore .A = soc A Hence (i)=>(iii). The conclusion (iii)=>(0 is a
result of Tullo [13] and the equivalence (iv) <£> (v) <=> (i) follows from the second theorem
of [10].

The equivalence (i)o(iii) has also been obtained jointly by L. Dalla and N. Katseli
by a different approach using the concept of "single" element [8].

The following is related to Proposition 2.8 of [2].

LEMMA 8. Let A be a semiprime Banach algebra with unit. If x e A, x" e soc A and
x = exe, where e = e2 eA, then there exists w eA with w = ewe, w" = 0 and x — w e soc A.

Proof We may assume that x $ soc A, for if x e soc A we take w = 0.

Case 1. o(x) = {0}. Then x is nilpotent, say xN = 0. Let m be the smallest positive
integer for which there exist y eA with x - y e soc A, y = eye and ym = 0. Since N is such
an integer, this m exists. If m *£n, then we take w =y and the result is proved. Suppose
otherwise; then m - 1 >n, and so xm~l e soc A; also ym~l e soc A. Therefore there exist
f=f2esocA with ym-l = ym-lf, feAy"1'1 and fy eAym = {0}, by Lemma 4(v). Put
w=y(l-f)e. Then w"1"1^, w = ewe, and x - w esocA, since x -y(l-f)esocA.
This contradicts the supposed minimality of m.
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Case 2. o(x) i=- {0}. Since x" e soc A and 0 e o(x) there exists a polynomial p with no
constant term such that p{x") = 0; let

p(x") = xkn(l + kxx
n + ... + km . xmn).

Put v =JC(1 + A,*" + . . . + Am . xmn). Now if e = e2eA and x = exe, then x-v esocA,
v = eve, v" e socA and vkn = 0. Therefore Case 1 applies to give an element w = ewe e A
with w" = 0, v — w e soc A and so x — w e soc A.

It is clear that Lemma 8 is true in the particular case where e is the unit of A.
We are indebted to the referee for shortening our original proof of Case 1 of

Lemma 8.

THEOREM 9. Let A be a semiprime Banach algebra with unit and let xeA with
p(x) e soc A for some polynomial p. Then there exists an element w eA with p{w) = 0 and
x — w esocA

Proof. This follows immediately from Lemma 1 of Barnes' paper [5]: our Lemma 8
says that Barnes' condition HN holds for all N with K = soc A; hypothesis (2) of Barnes'
Lemma 1 follows from the fact that the spectrum of x is finite. This concludes the proof.
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