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A SET OF PLANE MEASURE ZERO CONTAINING 
ALL FINITE POLYGONAL ARCS 

D. J. WARD 

1. Introduction. We say a (plane) set A contains all sets of some type 
38 if, for each B of type 38, there is a subset of A that is congruent to B. 
Recently, Besicovitch and Rado [3] and independently, Kinney [5] have 
constructed sets of plane measure zero containing all circles. In these papers 
it is pointed out that the set of all similar rectangles, some sets of confocal 
conies and other such classes of sets can be contained in sets of plane measure 
zero, but all these generalizations rely in some way on the symmetry, or 
similarity of the sets within the given type. 

In this paper we construct a set of plane measure zero containing all finite 
polygonal arcs (i.e., the one-dimensional boundaries of all polygons with a 
finite number of sides) with slightly stronger results if we restrict our attention 
to &-gons for some fixed k. One of our aims in this work was to throw more 
light on the conjecture that there is a set of plane measure zero containing 
all rectifiable curves. All that can be said, however, is that these constructions 
keep the conjecture alive. To go from polygonal arcs to rectifiable curves 
would require compactness of the containing set and this may well be too 
much to ask. 

Notation and definitions. Given a plane set E, U(E, p) is an enumerable 
set of convex sets u, each of diameter du < p containing E. AP

S(E) is the 
lower bound of Y,U(E,P) {du)s, taken over all U(E, p). The Hausdorff 
s-dimensional measure of E is given by 

AS(E) = lim Ap*(£). 
P->0 

As is an outer measure and all the sets we will deal with will be measurable 
with respect to this measure for all s. The dimension of a set E is that unique 
number t such that AS(E) = 0 for 5 > t and As(£) = oo for s < t. Al(E) 
may be zero, finite or infinite. 

If we have some class °U of point sets, u, the notation E = \JU^ u will 
refer both to the set of points in at least one u and to the set whose members 
are elements of %. Throughout this work we will assume that k is an integer 
greater than two. 
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2. Construction of the set A. We require a set A with the following 
properties: 

(PI) A is a closed subset of the real line with dim(^4) = 0; 
(P2) Given any k real numbers {at}, 1 ^ i rg k, there exists a real number t 

such that t + at € A for all i; 
(P3) If 0 ^ a{ ^ 1 for all i, then we may suppose A to be compact. 
For the existence and construction of A we appeal to [4], where this and 

many other related results are given. Indeed the authors of [4] remove the 
dependence of A on a particular integer k and, further, construct a bounded 
Fff set containing all uniformly bounded sequences of real numbers. However 
we also need a set, of dimension less than one, satisfying conditions similar 
to (P2) and (P3) but having different density properties from the sets 
constructed in [4]. For this set, the set B of the next section, the dependence 
on k seems essential and so we prefer to show the integer k in the properties 
of the set A, 

3. Construction of the set B. Let B be the set of all real numbers x, 
0 ^ x :g 1, such that 

~ x 
00 = 2 tA-u r i\n > where 0 ^ xn ^ 4k and xn ^ 3k. 

(B is "decimals" to base 4& + 1 without the digit 3k, excepting possibly as 
the final digit of a terminating "decimal".) 

LEMMA 3.1. Let {at}, 0 ^ at S 4k, i = 1, . . . , k, be k given integers. Then 
there is a non-negative integer p rg 4k — 3 such that ai7

£p,p-\-\,p-\-2 for 
all i. 

F roof. If the k numbers ai can take any of the 4& + 1 places 0 ^ at S 4k, 
then either there must be four adjacent places not containing an at or two 
sets of three adjacent places not containing an at. In other words, either 

(i) there is a pi such that at ^ pi, pi + 1, pi + 2, or, pi + 3 where 
pi + 3 g 4k 

or 
(ii) there is a p2 and pz such that at ^ p2, pi + 1, pi + 2, where 

Either of £i and p2 will satisfy the conditions of the lemma. 

Definition 3.1. We say that a, 0 < a < 1, is of length n if its representation 
in base 4& + 1 has non-zero digits in only its first n places. {Note that if a is of 
length ni, it is also of length n2for n2 > n\.) 

LEMMA 3.2. If 0 S CL% S h 0 ^ i S k, and they are all of length n, then 
there is a t > 0, also of length n, such that at + t 6 B for all i and none of 
&i + t, i = 1, • • • , k, terminate in the digits 3k — 1, 3k, or 3k + 1. 
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Proof. By induction. If n = 1, since 0 ^ at ^ | , 

a* == /ii, I 1 » 0 = «i = 2ft, and / 4ft + 1 ' " = «» = «"*» — 4ft + 1 

will satisfy the conditions of the lemma. Suppose that the lemma is true for 
some n. Suppose that ai, . . . , ak are given and of length n + 1. Write 

(« + ir 0i = at + (AU . 'ivH-i , 0 ^ a* ^ 4*, 

where â~J is of length n. By the hypothesis, there is a ? > 0 of length n such 
that a~t + ? G 2? for all i and ô^ + / does not terminate in 3ft — 1, 3ft or 
3ft + 1. By the previous lemma, there is a £ ^ 0 such that at 9e p, p + 1 or 
p + 2 and £ ^ 4ft - 3. Set 

^ — ^ + /y« L , i .n+l 
3k- (p + 1) 

(4* + 1)" 

First we note that, although 3k — (p + 1) may be negative, t is positive 
and of length n, and hence t > 0. Write 

« + a, = tf + a, H //)Z, , lV,+i 
3fc - (ft + 1) + <*< 

(4É.+ 1)" 

— t + a* + , . , . vn+i , say. 

There are three possibilities: 
(a) - 4 * ^ Mz < 0, 
(b) 0 S Mz ^ 4*, 
(c) Mz > 4ft. 
Case (a): Since p S 4ft — 3 and a* ^ 0, 

p j* 4,k — 1 + «,, 4ft + at or 4ft + 1 + at 

or 

4ft + 1 + Mi 5* 3ft - 1, 3ft or 3ft + 1. 

Case (b).0 S m ^ 4ft. Then if/** = 3ft - 1,3ft or 3ft + 1, thenar = p, p + 1 
or p + 2, a, contradiction. 

Case (c). jLtj > 4ft. Since at ^ 4ft and £ ^ 0, 

a t - p ^ 4ft + 1, 4ft + 2 or 4ft + 3, 

i.e. \xi — (4ft + 1) 3^ 3ft — 1, 3ft or 3ft + 1. Thus in each case t + at G B 
and does not terminate in 3ft — 1, 3ft or 3ft + 1. 

LEMMA 3.3. B is a compact nowhere dense set, 

log (4ft) 
dim(B) = 

log(4ft + 1) 
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and if 0 ^ at ^ §, i = 1, . . . , k, then there is a t ^ 0 such that t + at £ B 
for all i. 

Proof. B can be contained in (4k)n intervals, each of length (4k + l)~n, 
and so dim(B) = 0, where 0 is such that 

IS (« + ir "*• 
i.e. |3 = log(4£)/log(4& + 1). The complement of B is a set of open intervals 
no two of which have a common end point and so B is perfect. The previous 
lemma and the compactness of B yield the remaining requirements of this 
lemma. 

Although the sets A and B are similar in a set-theoretic sense, their measure 
properties are different. B is, in quite a strong sense, uniformly distributed 
along the interval [0, 1], whereas A is not. This property of B can best be 
expressed in terms of the density of linear sets as developed by Besicovitch 
in [1]. 

LEMMA 3.4. The Besicovitch lower two-sided density of B is positive at all its 
points. 

Proof. Let x 6 B and consider 

A*(Bn (x- 8yx + 8)) , . _ 
£or varying 8. 

o 
This expression takes its smallest values when x is near the end point of 

some complementary interval of B, I say, and when 8 is such that 
(x — §<5, x + §<5) just contains the next largest complementary interval of B 
that is adjacent to / . This is when 

8 k + 
1 ' ' 4 ^ + 1 \ 4 ^ + 1/ ' 2 4k + 

for some n. Hence 

¥ = W+i\Âk) l(4Hl)M + V - x > 0 

for some X and all sufficiently large n. Hence AP(B C\ (x — \8, x + §<5)) ^ \5~0 

for some X and all ô ^ 80 for some <50 independent of x. This uniform behaviour 
is rather more than we need for the lemma but is, in fact, the condition we 
need for the property (P5) following. 

By multiplying by a scale factor of 2ir, we can construct a compact linear 
set 6 with the following properties. 

(P4) 6 C [0, 2TT], 0 < A*(0) <œ,(3 = log(4k)/log(4k + 1). 
(P5) TTzere w o À > 0 and a 80 > 0 s#c& //m/ if 8 ^ 80 and 6 £ 6, then 

M(er\ (d - h8,d + ï8)) ^ Xô". 
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(P6) Given 0 g 0* ^ ?r (i = 1, 2, . . . , k), there is a $ ^ 0 such that 
$ + Bi C Bfor alii. 

4. A set of dimension less than two that contains all polygons with 
k sides. 

Definition 4.1. (a, r, 6) is the line, of length 2r, centre at the point a making 
an angle 6 with some fixed base line in the Euclidean plane, {a, 6) is the infinite 
line containing (a, r, 6). 

Definition 4.2. 

E\a,r) = U (a,r,6), E\a) = U (a, 6). 

Because 6 is compact, the complement of Ek(a) is a pencil of open double cones, 
through a. 

This leads to the following. 

Definition 4.3. Let (a, do — y) and (a, 0O + 7) define the boundary of the 
largest such cone. Let L = (a, 0o). 

We construct A on L. 

Definition 4.4. Ek = \JX^A Ek(x), and if I is an interval on L, we define 

E\l,r) = U E\x,r). 

THEOREM 1. Ek contains all polygons with k sides. 

Proof. We define the directions of the sides of a given &-gon as0i, 62, . . . , 6k 

(relative to some fixed base line) and rotate the &-gon until these sides are 
parallel to rays of each Ek(x). By taking k sets, Ek(xt), i = 1, . . . , k, we can 
duplicate the polygon in Ek with suitable choice of {Xi}i==ik. Such a choice is 
always possible by property (P2). 

THEOREM 2. There is a closed interval I and a positive r such that Ek(I, r) 
contains all k-gons of diameter less than one. 

Proof. Let P be such a &-gon. Let P' be a &-gon in Ek that is congruent to 
P. It is clear that one vertex of P' can be assumed to lie on L. By Definition 4.3, 
if r > cosec 7, then all points of Ek -~ Ek{R, r) are a distance greater than 
one from L. (R is the real line.) Hence P' C Ek(R, r). Similarly if 
|6 — a\ > 2 cot 7, no line of Ek(a) can meet a line of E(b) at a distance less 
than one from L, and so an upper bound can be assigned to the distances 
between points of A that are required. This in turn ((P3)) gives us a bound 
on the part of A required. We now find a bound for the dimension of Ek and 
Ek(I, r). 

LEMMA 4.1. There exists a positive number ki such that if ô ^ 80 (ÔQ as in 
(P5)), then 6 can be contained in less than kiô~& intervals, each of length 8. 
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Proof. Let Ii = (81 — J<5, 0i + <̂5), where 0i is some point in 6. Let J2 be 
(#2 — |5 , 02 + |<5), where 02 € 0, but 02 € A- Continuing this way be obtain 
a set of N intervals, {It), i = 1, . . . , N, each of length <5, with It not containing 
the midpoint of any other It, and such that 

N 

ecu ii. 

Hence %N of the J^s are disjoint, hence (by (P5)), 

i.e. iV ^ (2/\)AP(6)8-f> = k ^ . 

LEMMA 4.2. E*(x, r) can be contained in k\8~P rectangles, each of length 2r 
and width 2r8. 

Proof. Ek(x, r) can be contained in k\8~^ double cones, angle 8, radius r 
(Lemma 4.1). We may certainly suppose that the width of each cone is no 
more than 2r8. 

LEMMA 4.3. Let It be an interval on L, d{It) = 2r8 (8 ^ 80 (P5)) Then 
Ek(Iiy r) can be contained in k\8~^ rectangles each of length 2r and width 
2r8 + 2dlt. 

Proof. Let x £ It C\ A (if It C\ A is null, there is nothing to prove). Now 
each (a, r, 6) £ Ek(Iu r) can be obtained from (x, r, 6) by a translation 
through a distance of at most dit. The lemma follows from Lemma 4.2. 

LEMMA 4.4. If d(It) = 2r8, then Ek(Iu r) can be contained in 

2r&i (dOSy 
3d (J,) V 2r J 

convex sets, each of diameter ^ 5d(Ii). 

Proof. Divide each of the rectangles of Lemma 4.3 into square pieces. 

THEOREM 3. dim(£*) = dim (£*(/, r)) = l + 0 = l + log(4£)/log(4& + 1). 

Proof. Let t = 1 + /3 + a, where a is any positive number. We first show 
that A ,(E*(I ,r)) = 0. Consider A C\ I. Since A* {A O I) = 0 (PI) , given 
any e, p > 0, we can find an open covering of A Pi 7, {/<}, i = 1, . . . ,00, 
say, such that dit S p and 

(4.1) Ê (d(Ii)T < *. 

Put 

(4.2) p = 2r80 (80 as in (P5)) 
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and consider Ek(I,r) = \JT.iE*(I„r). Now, by (4.2), d(It) g 2rô0; thus 
define 5 by the equation 

(4.3) d(It) = 2rd. 

We can now apply Lemma 4.4 and let Ek(It, r) be contained in 

2rki (d(It)Y* 
3d(It)\ 2r J 

convex sets, each of diameter ^ 5d(It). Put k2 — \k\(2rY+l and we have 

A^'(Eh(Ii, r)) g h(d(Ii)r
a+0\5d(It))

t S *,(<*(/,))-0 + '> = h(d(I()T, 

Kip\E
l{I,r)) ^ *,f; (d(It))

a < he. 

Hence, since p and e are arbitary positive numbers, 

À'(£*(/, r)) = 0. 

Thus dim(EA;(7, f)) ^ 1 + /3 and since dim(E) = dim(£*(/, r)) , we have 
only to prove that dim (£*(/, r ) ) ^ l + |3. But E* D £fc(J, r) D E*(a, r) for 
any point a £ A C\ I. Now results of Besicovitch and Moran [2] show that 
dim(Efc(a, r)) ^ 1 + /?, which completes the proof. 

THEOREM 4. Le2 E = UAT=I Efc. rÂew A2E = 0, dim(E) = 2, awd E w a^ 
Eff se£ containing all finite polygonal arcs. 

Proof. We have shown in Theorem 3 that dim(Efc) = 2 — rj(k), where 
ri(k) > 0, rj(k) -» 0 as k -»oo. Hence dim(E) = 2 and A2(E) = 0. Theorem 1 
and the closure of each Ek complete the proof. 

Added in proof. It has now been shown (by Roy O. Davies {Some remarks 
on the Kakeya problem, to appear) and independently by J. M. Marstrand) 
that all polygons can be translated into a set of plane measure zero: a substantial 
improvement on my Theorem 4. However, work by them indicates that results 
similar to Theorems 1,2, and 3 are not possible if one allows only translations. 

REFERENCES 

1. A. S. Besicovitch, On linear sets of points of fractional dimension, Math. Ann. 101 (1929), 
161-193. 

2. A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London 
Math. Soc. 20 (1945), 110-120. 

3. A. S. Besicovitch and R. Rado, A plane set of measure zero containing circumferences of 
every radius, J. London Math. Soc. 4$ (1968), 717-719. 

4. R. O. Davies, J. M. Marstrand, and S. J. Taylor, On the intersections of transforms of linear 
sets, Colloq. Math. 7 (1959/60), 237-243. 

5. J . R. Kinney, A thin set of circles, Amer. Math. Monthly 75 (1968), 1077-1081. 

The University of Toronto, 
Toronto, Ontario; 
The University of Sussex, 
Brighton, England 

https://doi.org/10.4153/CJM-1970-091-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-091-4

