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Abstract

We prove two results about the width of words in SLn(Z). The first is that, for every
n > 3, there is a constant C(n) such that the width of any word in SLn(Z) is less than
C(n). The second result is that, for any word w, if n is big enough, the width of w in
SLn(Z) is at most 87.

1. Introduction

A word is an element in a free group. Given a word w = w(x1, . . . , xd) ∈ Fd and a group Γ, we
have the word map w : Γd → Γ defined by substitution. The set of w-values is the set

w(Γ) := {w(g1, . . . , gd), w(g1, . . . , gd)
−1 | gi ∈ Γ}.

Sets of word values in many families of groups have been extensively studied. See the book [Seg09]
and the references therein for results on free and hyperbolic groups, nilpotent groups, p-adic
analytic groups, and general finite groups (the last part is the main ingredient in the proof by
Nikolov and Segal of Serre’s conjecture that any finite-index subgroup in a finitely generated
pro-finite group is open). We briefly describe some of the results that are relevant to this work.

Sets of word values in algebraic groups are large. Borel proved in [Bor83] that if w is a
non-trivial word and G is a connected simple algebraic group defined over an algebraically closed
field k, then w(G(k)) contains a Zariski open dense set. For Lie groups, the situation is more
complicated. For example, Thom [Tho13, Corollary 1.2] and Lindenstrauss (unpublished) proved
that sets of word values in the unitary group Un can have arbitrarily small radii. Nevertheless,
Borel’s theorem implies that, for any semisimple Lie group G and any non-trivial word w, the set
of word values w(G) contains an open ball. It follows that, if G is compact, there is a constant C
(depending on G and w) such that any element of G is a product of at most C word values. For
arithmetic groups, sets of word values are very mysterious, even for simple words. For example,
for every n > 3, the question whether every element of SLn(Z) is a commutator is wide open. We
do, however, know that the set of commutators in SLn(Z) is quite large: Dennis and Vasserstein
proved in [DV88] that every element in SLn(Z) is a product of at most six commutators if n is
large enough.

A remarkable theorem of Larsen and Shalev [LS09] says that a stronger statement holds for
finite simple groups: for every non-trivial word w, if Γ is a large enough finite simple group, then
every element of Γ is a product of two word values.

Our first result generalizes the theorem of Dennis and Vasserstein in a form similar to the
theorem of Larsen and Shalev.
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Theorem 1.1. There is a constant C with the following property: for any word w, there is
nw such that, for all n > nw, every element of SLn(Z) is a product of at most C elements of
w(SLn(Z)). In fact, C can be taken to be equal to 87.

In general, we cannot expect the subgroup generated by w(SLn(Z)) to be equal to SLn(Z).
We define the width of w in SLn(Z) to be the minimum of the numbers C such that any element
of 〈w(SLn(Z))〉 is a product of at most C elements of w(SLn(Z)). If no such number exists, we
say that the width of w is infinite.

Our next theorem provides uniform bounds for width, for a fixed n.

Theorem 1.2. For any n > 3 there is an integer C = C(n) such that, for any word w, the width
of w in SLn(Z) is less than C.

Remark 1.3. Theorems 1.1 and 1.2 are optimal in the following sense: for every C there are
infinitely many pairs (n,w) such that the width of w in SLn(Z) is greater than C. This easily
follows from [Lub14, Theorem 1].

We do, however, have the following result which is uniform in n and w.

Theorem 1.4. There is a constant C such that, for every any non-trivial word w, there is
d = d(w) ∈ Z such that for every n > 3, every element of the d-congruence subgroup SLn(Z; d) is
a product of at most C elements of w(SLn(Z)). If n is large enough, C can be taken to be equal
to 80.

Remark 1.5. Let O be the ring of integers in a number field, let S be a finite set of primes of
O, and let OS denote the localization of O by S. The proofs below also show similar bounds for
SLn(OS), but the bounds obtained by these proofs depend on OS . While we do not know whether
widths of words in SLn(OS) are bounded uniformly in OS , [MRS18, Corollary 4.6] gives some
indication that this is indeed the case. In another direction, we do not even know whether words
in other higher-rank non-uniform lattices (especially non-split) have finite width. We exclude
lattices of rank 1 from the discussion since these include free groups and hyperbolic groups for
which the the width of every non-trivial word is infinite; see [MN14].

Remark 1.6. Let Γ be an irreducible arithmetic lattice in a higher-rank semisimple group G, and
assume that there exist a compact semisimple Lie group K and a dense embedding π : Γ ↪→ K
(this implies that Γ is cocompcat in G). By the result of Thomas and Lindenstrauss mentioned
above, there are words w ∈ F2 such that π(w(Γ)) is contained in an arbitrarily small neighborhood
of the identity. It follows that the width of w can be arbitrarily large. This means that the analog
of Theorem 1.2 fails for Γ. Noting that the image under π of any finite-index subgroup of Γ is
dense, we get that Theorem 1.4 also fails. We do not know whether every word has finite width
in higher-rank cocompact lattices, nor whether the analog of Theorems 1.1 holds for the class of
cocompact lattices.

We briefly sketch the proofs of the main theorems. For n > 2 and q ∈ Z, denote by Un(Z; q)
the subgroup of all unipotent upper triangular matrices in SLn(Z) whose off-diagonal entries are
divisible by q. Denote similarly Ln(Z; q), replacing upper triangular by lower triangular. Finally,
for a groupG, a subsetX ⊂G, and a natural number n, we denoteXn = {x1 · · ·xn | xi ∈X∪{1}}.

The main step is to prove the following theorem.
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Theorem 1.7. There is a constant C such that, for any n> 3 and any q ∈ Z, (Un(Z; q)Ln(Z; q))C

is a finite-index subgroup of SLn(Z).

Theorem 1.7 is proved by induction on n in § 2. The case n = 3 is essentially due to Carter,
Keller, and Paige (see [Wit07] for an exposition of the proof). The argument for the induction
step follows Dennis and Vaserstein [DV88].

Given Theorem 1.7, we deduce Theorem 1.4 without the explicit bound on C in § 3. A short
argument implies that w(SL3(Z))2 contains an elementary matrix. Using various embeddings
of SL3(Z) into SLn(Z), we show that w(SLn(Z))C

′
contains Un(Z; q) and Ln(Z; q) for some C

and q. Theorems 1.1 and 1.2 follow from Theorem 1.4, a p-adic open mapping theorem, and the
Larsen–Shalev theorem [LS09].

2. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. We start by setting up the notation and recalling some
facts.

Definition 2.1. Let A be a commutative ring with unit, let I be an ideal in A, and let n > 2
be an integer.

(1) SLn(A; I) is the subgroup of SLn(A) consisting of the matrices which are congruent to
the identity matrix modulo the ideal I. The subgroup SLn(A; I) is called the I-congruence
subgroup of SLn(A).

(2) Un(A; I) is the subgroup of SLn(A; I) consisting of unipotent upper triangular matrices.

(3) Ln(A; I) is the subgroup of SLn(A; I) consisting of unipotent lower triangular matrices.

(4) In the case where A = Z and I = qZ we sometimes write SLn(Z; q), Un(Z; q) and Ln(Z; q)
instead of SLn(Z; I), Un(Z; I) and Ln(Z; I).

Definition 2.2. Let A be a commutative ring with a unit, let I be an ideal in A, and let n > 2
be an integer.

(1) For x ∈ A and 1 6 i 6= j 6 n, let ei,j(x) denote the n × n matrix with ones along the
diagonal, x as (i, j)th entry, and zero in all other entries.

(2) Denote by E(n,A; I) the subgroup generated by the elementary matrices ei,j(x), for x ∈ I.
We will write E(n,A) instead of E(n,A;A).

(3) Denote by E/(n,A; I) the normal subgroup of E(n,A) generated by E(n,A; I).

(4) In the case where A = Z and I = qZ we sometimes write E(n,Z; q) and E/(n,Z; q) instead
of E(n,Z; I) and E/(n,Z; I).

The following result is [Tit76, Proposition 2].

Proposition 2.3 (Tits). If A is a commutative ring, I is an ideal of A, and n > 3, then
E/(n,A; I2) ⊆ 〈Un(A; I) ∪ Ln(A; I)〉.

The following theorem is proved in [Wit07].

Theorem 2.4 (Carter, Keller, and Paige). There is a first-order statement ϕ in the language of
rings with the following properties:
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(1) ϕ holds in Z;

(2) if A is a ring satisfying ϕ and I is an ideal of A, then [SLn(A; I) : E/(n,A; I)] 6 2 · 8!.

Remark 2.5. Theorem 2.4 is proved in [Wit07]. More precisely, if we take ϕ to be the conjunction
of the conditions SR1 1

2
, Gen(2 · 8!, 1), Exp(2 · 8!, 2) (see [Wit07, Definitions 2.10, 3.2, 3.6]), then

[Wit07, Lemma 2.13, Corollary 3.5, Theorem 3.9] imply that Z satisfies ϕ and (2) is [Wit07,
Theorem 3.12].

Corollary 2.6. There is a constant C = C(n) such that the following holds: for any q ∈ N+,
there are g1, . . . , g2·8! ∈ SLn(Z; q2) such that SLn(A; q2) is contained in the union of the
translations by g1, . . . , g2·8! of the set (Un(Z; q)Ln(Z; q))C .

Proof. Let A is a ring which is elementarily equivalent to Z (i.e. satisfies the same first-order
sentences as Z) and let I be an ideal of A. Proposition 2.3 and Theorem 2.4 imply that

[SLn(A; I2) : SLn(A; I2) ∩ 〈Un(A; I)Ln(A; I)〉] 6 2 · 8!. (1)

Assume the corollary is false. Then, for every k ∈ N, there are qk ∈ N+ and matrices gk,1, . . . ,
gk,2·8!+1 ∈ SLn(Z; q2k) such that (gk,i)

−1gk,j /∈ (Un(Z; qk)Ln(Z; qk))
k if i 6= j.

Choose a non-principal ultrafilter U on N, and let A be the ultrapower of Z over U . Then A is
elementarily equivalent to Z and SLn(A) is isomorphic to the ultrapower of SLn(Z) over U . Let I
be the ideal ofA represented by

∏
k qkZ, and for every 1 6 i6 k, let gi ∈ SLn(A; I2) be the element

represented by (gk,i)k. Then g1, . . . , g2·8!+1 belong to different cosets of 〈Un(A; I)Ln(A; I)〉,
contradicting (1). 2

The following two technical lemmas will be needed in the proof of Proposition 2.9 below.

Lemma 2.7. Let G be a group, and let X ⊂ G be a symmetric set such that there are d translates
of X that cover G. Then X4d+2 is a group.

Proof. Denote Y = X2. Then 1 ∈ Y and there are d translates of Y that cover G. Since 1 ∈ Y ,
Y k ⊆ Y k+1 for every k. It is enough to show that Y k = Y k+1 for some k 6 2d+ 1. Suppose that
G =

⋃d
i=1 giY for some g1, . . . , gd ∈ G. We can assume that g1 = 1. For every k, if Y k 6= Y k+1,

choose h ∈ Y k+1rY k. By assumption, there is i such that h ∈ giY . Then gi ∈ Y k+2 but gi /∈ Y k.
By induction we see that if Y 2k−1 6= Y 2k for some 1 6 k, then Y 2k+1 contains at least k distinct
gi. This implies that Y 2d+1 = Y 2d+2. 2

Lemma 2.8. Let K ⊆ H ⊆ G be groups such that [H : K] < ∞. Let X ⊆ G be a symmetric
subset. Assume that HX = G and that K ⊆ X. Then X4[H:K] is a subgroup.

Proof. Since 1 ∈K ⊆X, the sets (XnK∩H)⊆H are non-decreasing. Hence, there is n6 4[H :K]
− 3 such that

XnK ∩H = Xn+1K ∩H = Xn+2K ∩H = Xn+3K ∩H = Xn+4K ∩H.

Since HX = G, we have Xn+3 ⊆ (Xn+4 ∩H)X. Thus,

Xn+3 ⊆ (Xn+4 ∩H)X ⊆ (Xn+4K ∩H)X ⊆ (XnK ∩H)X ⊆ Xn+2,

so Xn+2 is a group. 2
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Proposition 2.9. There is a constant D = D(n) such that, for any q ∈ N+, the set
(Un(Z; q)Ln(Z; q))D is a group, and, therefore, equal to 〈Un(Z; q)Ln(Z; q)〉.

Proof. For any k, the set (Ln(Z; q)Un(Z; q))k+1 contains the symmetric subset (Ln(Z; q)
Un(Z; q))k ∪ (Un(Z; q)Ln(Z; q))k. Corollary 2.6 and Lemma 2.7 imply that there is a constant D′

such that (Ln(Z; q)Un(Z; q))D
′

contains a subgroup S(I) of SLn(Z; q2) of index at most 2 · 8!.
Note that SLn(Z, q)/SLn(Z, q2) is abelian so SLn(Z, q2)Ln(Z; q)Un(Z; q) is a subgroup of

SLn(Z). The desired result follows by applying Lemma 2.8 to K = S(I), H = SLn(Z; q2),
G = SLn(Z, q2)Ln(Z; q)Un(Z; q), and X = (Ln(Z; q)Un(Z; q))D

′ ∪ (Un(Z; q)Ln(Z : q))D
′ ⊆

(Ln(Z; q)Un(Z; q))D
′+1. 2

In order to prove Theorem 1.7 we have to show that the constant D(n) in Proposition 2.9 can
be made independent of n. The following technical generalization of Proposition 2.3 is needed.

Lemma 2.10. Let n > 3 and let I be an ideal in a commutative ring A. Then E/(n+ 1;A, I2) is
contained in the subgroup

K(I) := 〈ei,j(a) | 1 6 i 6= j 6 n+ 1, {i, j} 6= {1, n+ 1}, a ∈ I〉.

Proof. We follow the proof of [Tit76, Proposition 2.3].
Let 1 6 i 6= j 6 n+ 1, 1 6 r 6= s 6 n+ 1, and a, b ∈ A. Recall the following relations:

er,s(b)ei,j(a)er,s(b)
−1 = ei,j(a)ei,s(−ab) if j = r and i 6= s,

er,s(b)ei,j(a)er,s(b)
−1 = ei,j(a)er,j(ab) if j 6= r and i = s,

er,s(b)ei,j(a)er,s(b)
−1 = ei,j(a) if j 6= r and i 6= s.

(2)

For every 1 6 i 6= j 6 n + 1, denote Fi,j(I
2) := 〈ei,j(a), ej,i(a) | a ∈ I2〉. Let F /i,j(I

2) be the

minimal normal subgroup of Fi,j := Fi,j(A) which contains Fi,j(I
2). Define F /(I2) := 〈F /i,j(I2) |

1 6 i 6= j 6 n + 1〉. Equation (2) implies that for every 1 6 i 6= j 6 n + 1 and every a ∈ A,
ei,j(a)F /(I2)ei,j(a)−1 = F /(I2). Thus F /(I2) is a normal subgroup of E(n+ 1, A) containing all
ei,j(a), a ∈ I2, so it must be equal to E/(n + 1, A, I2). Thus, in order to finish the proof it is
enough to show that for every 1 6 i < j 6 n+ 1, F /i,j(I

2) ⊆ K(I).
Let E+(n,A; I) and E−(n,A; I) be the images of E(n,A, I) in SLn+1(A) under the

embeddingsM 7→
(
M 0
0 1

)
andM 7→

(
1 0
0 M

)
. By applying Proposition 2.3 with respect to E+(n,A; I)

and E−(n,A; I), we see that K(I) contains F /i,j(I
2) for every 1 6 i < j 6 n + 1 such that

(i, j) 6= (1, n+ 1).
Equation (2) implies that K(I) in normalized by e1,n+1(a) and en+1,1(a) for every a ∈ R. For

every a, b ∈ I, e1,n+1(ab) = [e1,2(a), e2,n+1(−b)] ∈ K(I) and en+1,1(ab) = [en+1,2(a), e2,1(−b)] ∈
K(I). Thus, F /1,n+1(I

2) 6 K(I). 2

The next lemma is the key ingredient in the proof of Theorem 1.7.

Lemma 2.11. Let n > 3 and q ∈ N+ and assume that (Un(Z; q)Ln(Z; q))D = 〈Un(Z; q)Ln(Z; q)〉.
Then for every m > n, (Um(Z; q)Lm(Z; q))D = 〈Um(Z; q)Lm(Z; q)〉.

Proof. The proof follows [DV88, proof of Lemma 7] and is by induction on m. The base case
m = n is clear. It remains to show that if the claim is true for some m > 3 then it is also true
for m+ 1.
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Let T := (Um+1(Z; q)Lm+1(Z; q))D and H = {g ∈ SLm+1(Z) | gT = T}. Since H is a group,
it is enough to prove that H contains both Um+1(Z; q) (which is clear) and Lm+1(Z; q).

We embed Lm(Z; q) and Um(Z; q) in SLm+1(Z; q) by the embedding M 7→
(
M 0
0 1

)
. We denote

the abelian group 〈ei,m+1(a) | 1 6 i6m, a ∈ qZ〉 by Cm+1(Z; q) and the abelian group 〈em+1,i(q) |
1 6 i 6 m, a ∈ qZ〉 by Rm+1(Z; q). We have that Um+1(Z; q) = Um(Z; q) n Cm(Z; q), that
Lm+1(Z; q) = Lm(Z; q)nRm(Z; q), and that Um(Z; q) and Lm(Z; q) each normalize both Cm(Z; q)
and Rm(Z; q). The induction hypothesis implies that

Lm(Z : q)(Um+1(Z : q)Lm+1(Z; q))D

= Lm(Z : q)(Um(Z : q)Cm(Z : q)Lm(Z : q)Rm(Z : q))D

= Lm(Z : q)(Um(Z : q)Lm(Z : q))D · (Cm(Z : q)Rm(Z : q))D

= (Um(Z : q)Lm(Z : q))D · (Cm(Z : q)Rm(Z : q))D

= (Um(Z : q)Cm(Z : q)Lm(Z : q)Rm(Z : q))D

= (Um+1(Z : q)Lm+1(Z : q))D.

Hence, Lm(Z : q) ⊆ H, that is, for every 1 6 i < j 6 m and a ∈ I, we have ej,i(a) ∈ H. Arguing
similarly using the embedding M 7→

(
1 0
0 M

)
, we get that ej,i(a) ∈ H, for every 2 6 i < j 6 m+ 1

and a ∈ I. It remains to show that for every a ∈ I, em+1,1(a) ∈ H.
The main theorem of [Men65] says that E/(n,Z, k) = SLn(Z, k) for every k ∈ N+. Thus,

Lemma 2.10 implies that SLm+1(Z; q2) = E/(m+1,Z; q2) ⊆ H. Since SLm+1(Z; q)/SLm+1(Z; q2)
is abelian, em+1,1(a)Um+1(Z : q)em+1,1(a)−1 ⊆ SLm+1(Z; q2) · Um+1(Z : q), for every a ∈ I. It
follows that, for every a ∈ I,

em+1,1(a)(Um+1(Z : q)Lm+1(Z : q))D

= em+1,1(a)Um+1(Z : q)em+1,1(a)−1em+1,1(a)Lm+1(Z : q)(Um+1(Z : q)Lm+1(Z : q))D−1

⊆ SLm+1(Z; q2) · Um+1(Z : q)Lm+1(Z : q)(Um+1(Z : q)Lm+1(Z : q))D−1

= (Um+1(Z : q)Lm+1(Z : q))D.

In particular, for every a ∈ I, em+1,1(a) ∈ H. Hence, Lm+1(Z : q) ⊆ H as desired. 2

Proof of Theorem 1.7. Proposition 2.9 implies that there is a constant C = D(3) such that
(U3(Z; q)L3(Z; q))C = 〈U3(Z; q)L3(Z; q)〉. Lemma 2.11 implies that (Un(Z; q)Ln(Z; q))C =
〈Un(Z; q)Ln(Z; q)〉 for every n > 3. Proposition 2.3 implies that (Un(Z; q)Ln(Z; q))C contains
the congruence subgroup SLn(Z; q2) and this subgroup has a finite index in SL(n,Z). 2

3. Proof of Theorem 1.4 without an explicit bound

We will need the following lemma, which we state without a proof.

Lemma 3.1. All upper-triangular matrices g ∈ Un(Z; q) such that gi,i+1 = q, for all i, are
conjugate.

Proof of Theorem 1.4 without an explicit bound. Identify SL2(Z) with its image in SL3(Z) under
the embeddingM 7→

(
M 0
0 1

)
. Since SL2(Z) contains a non-abelian free group there exists±I2 6= g ∈

w(SL2(Z)). There exists h ∈ 〈e1,3(1), e2,3(1)〉 such that [g, h] = g−1h−1gh is a non-trivial element
and this element is conjugate to e1,3(q) for some positive q ∈ N. For the chosen g and h, we have
[g, h]n = [g, hn] ∈ w(SL3(Z))2. Since w(SL3(Z))2 is a normal subset, 〈e1,3(q)〉 ⊆ w(SL3(Z))2. We
will show that the statement of Theorem 1.4 holds with respect to d = q2.
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We claim that for any integers a1, . . . , an−1, there is g ∈ w(SLn(Z))8 ∩Un(Z; q) such that for
every i, gi,i+1 = qai. Using two different embeddings of the group SL3(Z)× · · · × SL3(Z) (bn/3c
times) into SLn(Z) as block-diagonal matrices, we get that there is a matrix g1 ∈ w(SLn(Z))4 ∩
Un(Z; q) such that g1i,i+1 = qai if i ≡ 1 (mod 3) and g1i,i+1 = 0 otherwise. Using one embedding
of the group SL3(Z) × · · · × SL3(Z) (bn/3c times) into SLn(Z) as block-diagonal matrices, we
get that there is a matrix g2 ∈ w(SLn(Z))2 ∩ Un(Z; q) such that g2i,i+1 = qai if i ≡ 2 (mod 3)

and g2i,i+1 = 0 otherwise. Similarly, there is g3 ∈ w(SLn(Z))2 ∩ Un(Z; q) such that g3i,i+1 = qai if

i ≡ 3 (mod 3) and g3i,i+1 = 0 otherwise. The matrix g = g0g1g2 ∈ w(SLn(Z))8 ∩Un(Z; q) satisfies
gi,i+1 = qai. The proof of the claim in now complete.

It follows from Lemma 3.1 that w(SLn(Z))8 contains all elements g ∈ Un(Z; q) such that
gi,i+1 = q for every i.

Next, we claim that Un(Z; q) ⊆ w(SLn(Z))16. Indeed, let h ∈ Un(Z; q). There is an element
f ∈ w(SLn(Z))8 ∩ Un(Z; q) such that for every i, fi,i+1 = q − hi,i+1. Then hf ∈ Un(Z; q) and,
for every i, (fh)i,i+1 = q, so fh ∈ w(SLn(Z))8. Since w(SLn(Z))8 is symmetric, it follows that
h ∈ w(SLn(Z))16. Similarly, Ln(Z; q) ⊆ w(SLn(Z))16.

By Theorem 1.7, there is a constant C (independent of q) such that

〈Un(Z; q)Un(Z; q)〉 = (Un(Z; q)Un(Z; q))C ⊆ w(SLn(Z))32C .

Propositon 2.3 implies that SLn(Z, q2) 6 〈Un(Z; q)Un(Z; q)〉. 2

4. Proof of Theorems 1.2 and 1.1

In order to deduce Theorems 1.1 and 1.2 from Theorem 1.4, we need to study word values in
SLn(Z/qZ) uniformly in q. Equivalently, we need to study word values in SLn(Ẑ) where Ẑ is
the pro-finite completion of Z. We will use a version of the open mapping theorem which is well
known, but for which we were unable to find a reference.

For a ∈ Znp , denote ‖a‖ = max{|ai|p}, where |a|p is the p-adic valuation of a. The function
d(a, b) = ‖a − b‖ is a metric on Znp . Let X ⊂ AnZp

be an affine Zp-scheme, that is, the zero

locus of a collection of polynomials in Zp[x1, . . . , xn]. We denote the set of solutions of X with
coordinates in Zp by X(Zp). The restriction of d to X(Zp) is a metric on X(Zp).1 Let Zp[X] be
the ring of regular functions on X (the restrictions of polynomials with Zp coefficients to X).
For f ∈ Zp[X], we define valp(f) = max{k | f ∈ pkZp[X]}. More generally, if f : X → Y is a
map of affine Zp-schemes, we define valp(f) as the minimum of the valuations of its coordinates.
Note that if val(f) > k, then d(f(a), f(b)) 6 p−kd(a, b), for every a, b ∈ X(Zp).

Recall that X is called smooth at a ∈ X(Zp) if there are ψ1, . . . , ψc ∈ Zp[x1, . . . , xn] such
that X is the common zero locus of ψi and the reductions of ∇ψi(a) modulo p are linearly
independent. In this case n− c is called the dimension of X at a.

Lemma 4.1. Let X ⊆ AnZp
be a Zp-scheme and a ∈ X(Zp). Assume that X is smooth in a. Then

there is a subset S ⊂ {1, . . . , n} such that the coordinate projection π : Znp → ZSp satisfies the
following statements:

(1) the restriction of π to X(Zp)∩B(a, p−1) is one-to-one, where B(a, p−1) is the closed ball of
radius p−1 around a;

(2) π(TaX(Zp)) = ZSp .

1 This metric is independent of the affine embedding, but we will not use this fact.
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Proof. Let ψi be as in the definition of smoothness. After permutation of the indices, we can
assume that the c× c matrix

(∂ψi

∂xj
(a)
)

is invertible over Zp. For any f ∈ Zp[x1, . . . , xn] and any

a, b ∈ Znp with 0 < d(a, b) < 1, we have |f(a) − f(b) − 〈∇f(a), a − b〉| 6 ‖a − b‖2 < ‖a − b‖. If
a, b ∈ X(Zp) and d(a, b) < 1, we have ψi(a) = ψi(b) = 0, so |〈∇ψi(a), a − b〉| < ‖a − b‖. If, in
addition, π(a) = π(b), write a− b = (v, 0), where v ∈ pZcp and then∥∥∥∥(∂ψi∂xj

(a)

)
v

∥∥∥∥ = max{|〈∇ψi(a), a− b〉|} < ‖v‖.

Since invertible matrices do not decrease norm, this is a contradiction. This completes the proof
of statement (1). Denoting S := {c+1, . . . , n}, statement (2) readily follows form the assumption
that

(∂ψi

∂xj
(a)
)

is invertible. 2

Lemma 4.2. Let X,Y be affine Zp-schemes. Let f : X → Y be a morphism, let a ∈ X(Zp), and
let k > 0 be an integer. Suppose that the following statements hold:

(1) valp(f) > k;

(2) df(a)(TaX(Zp)) ⊇ pkTf(a)Y (Zp);
(3) X is smooth at a and Y is smooth at f(a).

Then f(X(Zp)) contains the closed ball of radius p−k−1 around f(a).

Proof. We first reduce the claim to the case where X is an affine space. Suppose that X ⊂ An is
d-dimensional. By smoothness, it is given as the zero locus of ϕ1, . . . , ϕn−d ∈ Zp[x1, . . . , xn] such
that the reductions modulo p of ∇ϕi(a) are linearly independent. Consider the map F : An →

Y × An−d given by x 7→ (f(x), pkϕ1(x), . . . , pkϕn−d(x)). Then F satisfies the conditions of the
lemma. If the claim holds for F , then it holds for f .

Next, we reduce the claim to the case where X and Y are affine spaces. Indeed, let e be
the dimension of Y at f(a). Item (1) of Lemma 4.1 allows us to assume that the coordinate
projection π : Y → Ae is one-to-one on B(f(a), p−1). Item (2) of Lemma 4.1 implies that the
function π ◦ f satisfies the conditions of the lemma, and the claim for π ◦ f implies the claim
for f .

Finally, we prove the claim in the case X = An and Y = Am. We can assume that a = 0 and
f(a) = 0. Since the coefficients of f are in Zp, we have that df(a′)(Znp ) ⊇ pkZmp , for any a′ ∈ pZnp .

Let b ∈ pk+1Zmp . We will construct a sequence a` ∈ pZnp such that ‖f(a`) − b‖ < p−k−`. Taking
a limit point of the a`, we get that b ∈ f(Znp ).

The sequence a` is defined by recursion starting from a0 = 0. Given a`, the assumptions
imply that there is ε ∈ p`+1Znp such that df(a`)(ε) = b− f(a`). We have

‖f(a` + ε)− b‖ = ‖f(a` + ε)− f(a`)− df(a`)(ε) + df(a`)(ε) + f(a`)− b‖
= ‖f(a` + ε)− f(a`)− df(a`)(ε)‖ 6 p−k‖ε‖2 < p−k−`−1,

since the function x 7→ f(a` + x)− f(a`)− df(a`)(x) is a polynomial without constant or linear
term and its coefficients are divisible by pk. 2

Definition 4.3. For elements g, h ∈ SLn, let Φg,h : SLn×SLn → SLn be the map ΦR
g,h(x, y) =

gxhy.

Lemma 4.4. Let n > 3 and assume that a, b ∈ SLn(Fq) generate SLn(Fp) where Fq is a finite
field of order q. Then the differential of Φa,b at (1, 1) is onto.
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Proof. After identifying Tab SLn = ab+ absln and sln, the differential of Φa,b is (X,Y ) 7→ (X −
Xa)b + (Y − Y b). Let ϕ ∈ Mn(Fq)∗ and assume it vanishes on the image of dΦa,b. Then there

is A ∈ Mn(Fq) such that ϕ(X) = tr(AX). For every Y ∈ sln(Fp), ϕ(Y − Y b) = 0, so tr(Y ·
(Ab

−1 − A)) = tr(A(Y − Y b)) = 0. Thus, Ab
−1 − A is a scalar. Similarly, using the assumption

that ϕ((X −Xa)b) = 0, we get that (Ab
−1

)a
−1 −Ab−1

is a scalar. Using the fact that Ab
−1 −A is

a scalar, we get that Aa
−1 −A is also a scalar. The set X = {g ∈ SLn(Fq) | Ag −A is a scalar} is

closed under multiplication. Since a−1, b−1 ∈ X, we get X = SLn(Fq). Since SLn(Fp) is perfect

and the function g 7→ Ag − A is a homomorphism between SLn(Fq) and Fq Id, we get that this

homomorphism must be trivial. Hence, A commutes with SLn(Fq), so it must be scalar. It follows

that the restriction of ϕ to sln(Fq) is zero. 2

Lemma 4.5. For every non-trivial word w, there is n0 such that, for any integer n > n0, we have

w(SLn(Ẑ))7 = SLn(Ẑ).

Proof. By [LS09], there is n0 such that, if n > n0 and p is any prime, then w(SLn(Fp))2 contains

all non-scalar matrices. In particular, w(SLn(Fp))3 = SLn(Fp). Fix a prime p. Choosing generators

a, b ∈ SLn(Fp) (which are not scalars), there are g, h ∈ w(SLn(Zp))2 such that the reductions of

g, h modulo p are a, b respectively. We get that w(SLn(Zp))4 ⊃ Φg,h(SLn(Zp) × SLn(Zp)). It is

well known that SLn and thus also SLn×SLn are smooth at every point. Lemmas 4.4 and 4.2

imply that w(SLn(Zp))4 contains the coset ghSLn(Zp; p). Hence, w(SLn(Zp))7 = SLn(Zp).
Since w(SLn(Ẑ)) =

∏
pw(SLn(Zp)), the claim follows. 2

Proof of Theorem 1.1 (without an explicit bound). By Theorem 1.4 and Lemma 4.5. 2

We move on to the proof of Theorem 1.2.

Lemma 4.6. For every n > 2 there is a constant C such that the following holds: if p is a prime

and A ∈ sln(Fp) is non-central, then every element of sln(Fp) is equal to the sum of at most C

elements of {x−1Ax | x ∈ SLn(Fp)}.

Proof. It is well known that the only non-trivial SLn(Fp)-invariant subspace of sln(Fp) is the

subset consisting of scalar matrices. Hence, for every p, there is a constant Cp such that every

element of sln(Fp) is equal to the sum of at most Cp elements of {x−1Ax | x ∈ SLn(Fp)}.
Therefore, in order to find a uniform C, we can and will assume that p is large. In particular,

we assume that p 6= 2.

For 1 6 i 6= j 6 n, let Ei,j(a) be the matrix whose (i, j)th entry is a and with all other entries

zero. Note that E1,2(a) is conjugate to E1,2(ab
2), for every b ∈ Fp. Since every element in Fp is a

sum of two squares, we get that, for any a ∈ F×p , any element of the form E1,2(b) is the sum of at

most two conjugates of E1,2(a). In particular, there exists a one-dimensional linear subspace of

sln(Fp) such that all its elements are sums of two conjugates of E1,2(a). Using the fact that the

only SLn(Fp)-invariant subspace of sln(Fp) is the subset consisting of scalar matrices once again,

we see that if a 6= 0, then every matrix in sln(Fp) is the sum of at most 2(n2 − 1) conjugates of

E1,2(a). Therefore, it is enough to prove that there is a constant C such that, for some a ∈ Fp,
the matrix E1,2(a) is a sum of C conjugates of A. We divide the proof into several steps.

1253

https://doi.org/10.1112/S0010437X19007334 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007334


N. Avni and C. Meiri

Step A. Assume that A is nilpotent. By using Jordan’s normal form we see that A is conjugate
to a block-diagonal matrix and each block-diagonal matrix has the from

0 a
0 1

. . .
. . .
0 1

0

 , (3)

where 0 6= a ∈ Fp (we cannot assume that a = 1 since we are conjugating with a matrix in
SLn(Fp) and not GLn(Fp)). A straightforward argument implies that it is enough to deal with
the case where there is just one block. Clearly, we can assume that the dimension of this block is
at least 3. Then there exists ε ∈ {−1, 1} such that the diagonal matrix diag(ε, 1,−1, . . . , (−1)n)
belongs to SLn(Fp). Denote B := diag(ε, 1,−1, . . . , (−1)n) +E2,n(1). Then the nth coordinate of
the first row of A+ B−1AB is non-zero while all the other rows equal zero. Thus, A+ B−1AB
is conjugate to E1,2(a) for some non-zero a.

Step B. Assume that n = 2. If A is nilpotent, it is conjugate to E1,2(a), for some a, and the claim
holds. In general, since A is not scalar, it is conjugate to

(
0 a
b 0

)
. We claim that, if p > 11, there

are x, y, z ∈ F×p such that x2 + y2 + z2 = 0 and x−2 + y−2 + z−2 6= 0. If this claim holds, then(
x

x−1

)
A

(
x−1

x

)
+

(
y

y−1

)
A

(
y−1

y

)
+

(
z

z−1

)
A

(
z−1

z

)
=

(
0 0

b(x−2 + y−2 + z−2) 0

)
,

which is nilpotent.
To prove the claim, let X be the projective curve defined by x2 + y2 + z2 = 0. Then X

has p + 1 points over Fp, and at most six of them have a zero in some coordinate. At most
four of the points of X satisfy the equation x−2 + y−2 + z−2 = 0 (because these points satisfy
1 = (y2 + z2)(y−2 + z−2)). In particular, if p > 11, the claim is true.

Step C. Assume n > 2 and the claim is true for all numbers smaller than n. We consider the
following cases.

Case C1. Assume that detA = 0. By conjugating A we can assume that it is of the form(
0 ∗
0 B

)
, (4)

where B ∈ sln−1(Fp). If B = 0 then A is a nilpotent matrix and we are done by step 1. Otherwise,
we can assume that p > n−1 so B is a non-scalar matrix since its trace is equal to zero. Then by
the induction hypothesis the sum of a bounded number of conjugates of A is a non-zero nilpotent
matrix and we are done by step 1.

Case C2. Assume now that detA 6= 0. By using the rational canonical normal form we see that
there exist non-zero a, b ∈ Fp such that A is conjugate to a block-diagonal matrix and one of the
blocks of A (for notational ease, assume it is the first) is of the form

0 a
0 1

. . .
. . .
0 1

b ∗ · · · ∗ ∗

 . (5)
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Denote B := diag(−1,−1, 1, . . . , 1). Then A+B−1AB is a non-zero singular matrix and we are

done by case C1. 2

Remark 4.7. The proof of Lemma 4.6 can be adapted to work over all finite fields of characteristic

different than 2. For fields of characteristic 2, the argument of step B should be replaced.

Lemma 4.8. For any n > 3 there is C such that the following statements hold.

(1) For any p, if X ⊆ SLn(Zp) is symmetric and invariant to conjugation, then XC = 〈X〉.
(2) For any non-trivial word w, the width of w in SLn(Ẑ) is less than C.

Proof. (1) Let k = min{i | (∃g ∈ X)g is not central modulo pk+1}. Clearly, 〈X〉 ⊆ Z(SLn(Zp)) ·
SLn(Zp; pk). We will show that there is C such that SLn(Zp; pk) ⊆ XC , and it will follow that

XC+|Z(SLn(Zp))| = 〈X〉, which proves the claim since |Z(SLn(Zp))| 6 n.

Case 1: k = 0. Let X ⊆ SLn(Fp) be the reduction of X modulo p. By assumption, X is

non-central, so [LS01, Corollary 1.9] implies that there is C1, depending only on n, such that

X
C1 = SLn(Fp). Let a, b ∈ XC1 such that their reductions modulo p generate SLn(Fp). By

Lemma 4.4, the differential of the map Φa,b at (1, 1) is onto, which implies that dΦa,b(sl
2
n(Zp)) =

sln(Zp), since dΦa,b is Zp-linear. By Lemma 4.2, abSLn(Zp; p)⊆ Φa,b(SLn(Zp)×SLn(Zp))⊆X2C1 .

It follows that X3C1 = SLn(Zp).
Case 2: k > 0. Let g ∈X be such that g is not a scalar modulo pk+1. Since g is a scalar modulo

pk, there exists h ∈ SLn(Zp) such that g|Z(SLn(Zp))|−1h−1gh ∈X |Z(SLn(Zp))| belongs to SLn(Zp; pk)
and is not a scalar modulo pk+1. Since SLn(Zp; pk)/SLn(Zp; pk+1) = sln(Fp) as SLn(Zp)-modules,

Lemma 4.6 implies that there is a constant C, independent of X, such that XC ·SLn(Zp; pk+1) ⊇
SLn(Zp; pk). Let a be a maximal nilpotent Jordan block and let b = aT . Note that the intersection

of the centralizers of a, b in Mn is the collection of scalar matrices. Choose a, b ∈XC∩SLn(Zp; pk)
whose images in SLn(Zp; pk)/SLn(Zp; pk+1) = sln(Fp) are a and b. We will show that Φa,b :

SLn×SLn → SLn satisfies the conditions of Lemma 4.2.

Since a−1 is divisible by pk, we have valp(x 7→ x−1ax−a) > k. It follows that the derivative of

this map also has p-valuation at least k. Similarly, Φa,b satisfies the first condition of Lemma 4.2.

Note that dΦa,b(sl(Zp)2) ⊂ pksl(Zp). In order to show the reverse containment, it is enough to

show that the composition of dΦa,b and the reduction map pksln(Zp) → pksln(Zp)/pk+1sln(Zp)
is onto. This composition is the map (X,Y ) 7→ [X, a] + [Y , b] (where [x, y] is the Lie bracket),

so we need to show that there is no non-zero linear functional that vanishes on all elements of

the form [X, a] and [X, b], for X ∈ sln(Fp). Any such functional has the form tr(A·) for some

A ∈ sln(Fp). Since tr(A[B,C]) = tr([A,B]C) for every three matrices A, B and C, the assumption

that tr(A[a,X]) = 0 for all X ∈ sln(Fp) implies that [A, a] = αI, for some α. Similarly, [A, b] = βI,

for some β. From [A, a] = αI we get (by induction) that Ai+1,i = −iα, whereas from [A, b] = βI

we get that Ai+1,i = Ai+2,i+1. Since n > 3, we get α = 0. Similarly, β = 0. Consequently, A

commutes with a and b, so A = 0, a contradiction.

Applying Lemma 4.2 to Φa,b, we get that any element in abSLn(Zp; pk+1) is in Φa,b(SLn(Zp)2),
so, in particular, abSLn(Zp; pk+1) ⊂ X2C and SLn(Zp; pk+1) ⊂ X4C . Since XC SLn(Zp; pk+1) ⊇
SLn(Zp; pk), we get that X5C ⊇ SLn(Zp; pk), proving the claim in this case.

(2) Since w(SLn(Ẑ)) =
∏
w(SLn(Zp)), the claim follows from the first claim. 2

Proof of Theorem 1.2. By Theorem 1.4 and Lemma 4.8. 2
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5. Proof of Theorems 1.1 and 1.4 with explicit bounds

The goal of this section is to prove the explicit bound of Theorem 1.1. The proof follows the
arguments in [DV88].

Lemma 5.1. Let q,m ∈ N+ and denote n := 3m. Assume that g1, . . . , gm ∈ SL3(Z; q) and
g1 · · · gm = e. Then g := diag(g1, . . . , gm) ∈ Ln(Z; q)Ũn(Z; q)Un(Z; q) where Ũn(Z; q) := {hkh−1 |
k ∈ Un(Z; q) ∧ h ∈ SLn(Z)}.

Proof. Let I3 be the identity matrix of SL3(Z) and identify Mn(Z) with Mm(M3(Z)), where
Mk(R) is the ring of k×k matrices over the ring R. Let l1 be the matrix of Mm(M3(Z)) with I3 on
the diagonal, g−1i on the (i+1, i)th entry for every 1 6 i 6m−1, and zero elsewhere. Let l2 be the
matrix of Mm(M3(Z)) with I3 on the diagonal, I3 on the (i+1, i)th entry for every 1 6 i 6m−1,
and zero elsewhere. Let u1 be the matrix ofMm(M3(Z)) with I3 on the diagonal, 1−g1 · · · gi on the
(i, i+1)th entry for every 1 6 i 6m−1, and zero elsewhere. Let u2 be the matrix of Mm(M3(Z))
with I3 on the diagonal, (1− g1 · · · gi)gi+1 on the (i, i+ 1)th entry for every 1 6 i 6 m− 1, and
zero elsewhere. Then g = l−11 u−11 l2u2 = (l−11 l2)(l

−1
2 u−11 l2)u2 ∈ Ln(Z; q)Ũn(Z; q)Un(Z; q). 2

Lemma 5.2. Let q,m ∈ N+ and denote n := 3m. Assume that g1, . . . , gm ∈ U3(Z; q)L3(Z; q).
Denote g := diag(g1 · · · gm, I3, . . . , I3) ∈ SLn(Z; q) and Ũn(Z; q) := {hkh−1 | k ∈ Un(Z; q) ∧ h ∈
SLn(Z)}. Then g ∈ Ln(Z; q)Ũn(Z; q)Un(Z; q)Ln(Z; q).

Proof. Define h := diag(gm, gm−1, . . . , g1) ∈ Un(Z; q)Ln(Z; q). Lemma 5.1 implies that gh−1 ∈
Ln(Z; q)Ũn(Z; q)Un(Z; q). Thus,

g ∈ Ln(Z; q)Ũn(Z; q)Un(Z; q)h ⊆ Ln(Z; q)Ũn(Z; q)Un(Z; q)Ln(Z; q). 2

Lemma 5.3. Let n > m > 3 and q > 1. Denote E∗(m,Z; q) := {diag(1, . . . , 1, g) ∈ SLn(Z) | g ∈
E(m,Z; q)}. Then E(n,Z; q) = Ln(Z; q)Un(Z; q)Ln(Z; q)E∗(m,Z; q)Un(Z; q).

Proof. Let q > 1. The proof is by induction on n. The base case n = m is clear. Assume that
the statement is true for some n >m. We have to show that the statement is true also for n+ 1.
Let U−n (Z; q) and L−n (Z; q) be the images in SLn+1(Z) of Un(Z; q) and Ln(Z; q) under the map
M 7→ diag(1,M). Denote C−n (q) := 〈ej,1(q) | 2 6 j 6 n+1〉 and R−n (q) := 〈e1,j(q) | 2 6 j 6 n+1〉.
Finally, recall that the main theorem of [Men65] implies that for every k > 3,

E(k,Z; q) = {g ∈ SLk(Z; q) | ∀1 6 i 6 k, gi,i = 1(mod q2)}.

Let g ∈ E(n + 1,Z; q). Then gcd(g1,1, g2,1, . . . , gn,1) = 1 and gcd(qg1,1, g2,1, . . . , gn,1) = q. Recall
that Z satisfies the following stable range condition: if m > 3 and a1, . . . , am ∈ Z then
there exist t2, . . . , tm ∈ Z such that gcd(a1, . . . , am) = gcd(a2 − t2a1, . . . , an − tna1). Thus,
there exists h ∈ C−n (Z; q)g such that gcd(h2,1, . . . , hn,1) = q. Since h ∈ E(n,Z; q), we have
h1,1 = 1 modulo q2 so there exists h′ ∈ R−n (Z; q)h such that h′1,1 = 1. Finally, there exists
h′′ ∈ C−n (q)h′R−n (q) such that h′′ = diag(1, g′) for some g′ ∈ SLn(Z; q). Note that g′ ∈ E(n,Z; q)
since its diagonal entries are equal to 1 modulo q2. Thus, the induction hypothesis implies that
h′′ ∈ L−n (Z; q)U−n (Z; q)L−n (Z; q)E∗(m,Z; q)U−n (Z; q). It follows that g belongs to

C−n (Z; q)R−n (Z; q)C−n (Z; q)L−n (Z; q)U−n (Z; q)L−n (Z; q)E∗(m,Z; q)U−n (Z; q)R−n (Z; q).

Since both U−n (Z; q) and L−n (Z; q) normalize C−n (Z; q) and R−n (Z; q), we have

C−n (Z; q)R−n (Z; q)C−n (Z; q)L−n (Z; q)U−n (Z; q)L−n (Z; q)E∗(m,Z; q)U−n (Z; q)R−n (Z; q)

= C−n (Z; q)L−n (Z; q)R−n (Z; q)U−n (Z; q)C−n (Z; q)L−n (Z; q)E∗(m,Z; q)U−n (Z; q)R−n (Z; q)

= Ln+1(Z; q)Un+1(Z; q)Ln+1(Z; q)E∗(m,Z; q)Un+1(Z; q). 2
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Corollary 5.4. For every n > 3 denote Ũn(Z; q) := {hkh−1 | k ∈ Un(Z; q) ∧ h ∈ SLn(Z)} =
{hkh−1 | k ∈ Ln(Z; q) ∧ h ∈ SLn(Z)}. There exists an integer N such that, for every n > N and
every q ∈ Z,

E(n,Z; q) ⊆ Ln(Z; q)(Ũn(Z; q))3Un(Z; q).

Proof. Proposition 2.9 implies that there exists a constant D such that for every q ∈ Z,
(U3(Z; q)L3(Z; q))D = 〈U3(Z; q)L3(Z; q)〉. Denote E∗(3,Z; q) := {diag(1, . . . , 1, g) ∈ SL3D(Z) | g ∈
E(3,Z; q)}. Lemma 5.2 shows that, for any q, E∗(3,Z; q)⊆ L3D(Z; q)Ũ3D(Z; q)U3D(Z; q)L3D(Z; q).
Lemma 5.3 implies that

E(n,Z; q) ⊆ Ln(Z; q)Un(Z; q)Ln(Z; q)Ũn(Z; q)Un(Z; q)Ln(Z; q)Un(Z; q).

Since Ln(Z; q)Un(Z; q)Ln(Z; q) ⊂ Ln(Z; q)Ũn(Z; q) and Un(Z; q)Ln(Z; q)Un(Z; q) ⊂ Ũn(Z; q)
Un(Z; q), we get the result. 2

Proof of Theorems 1.1 and 1.4 (with explicit bounds). Let n > 3. The proof of Theorem 1.4
shows that there is a non-zero q ∈ Z such that Un(Z; q) and Ln(Z; q) are contained in
w(SLn(Z))16. Since w(SLn(Z)) is a normal subset, the set Ũn(Z; q) := {hkh−1 | k ∈ Un(Z; q)∧h ∈
SLn(Z)} is contained in w(SLn(Z))16. Corollary 5.4 implies that if n is large enough then
E(n,Z; q) ⊆ w(SLn(Z))16·5. Since E(n,Z; q) contains a congruence subgroup, we have proved
the bound in Theorem 1.4. Finally, Lemma 4.5 implies that if n is large enough then SLn(Z) ⊆
w(SLn(Z))16·5+7. 2
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