MONTEL ALGEBRAS ON THE PLANE
W. E. MEYERS

1. Introduction. The results of Rudin in [7] show that under certain
conditions, the maximum modulus principle characterizes the algebra A4 (G)
of functions analytic on an open subset G of the plane C (see below). In [2],
Birtel obtained a characterization of 4 (C) in terms of the Liouville theorem;
he proved that every singly generated F-algebra of continuous functions on C
which contains no non-constant bounded functions is isomorphic to 4 (C) in
the compact-open topology. In this paper we show that the Montel property
of the topological algebra A (G) also characterizes it. In particular, any Montel
algebra 4 of continuous complex-valued functions on G which contains the
polynomials and has continuous homomorphism space M (4) homeomorphic
to G is precisely 4 (G).

An example is given to show that this is not true if we do not require
M(4) = G. For each n = 1, a subalgebra of continuous complex-valued
functions on G is constructed which contains the polynomials and is isomorphic
to P(G"), the closure of polynomials in # variables in the topology of uniform
convergence on compact subsets of the open set G* in C" For polynomially
convex open sets G, the algebras so constructed are Montel but cannot be
isomorphic to 4 (G) unlessz = 1. Incase G = C, the algebras obtained provide
an answer to a question asked in [3]: Do there exist subalgebras of continuous
functions on the plane which properly contain 4 (C) but contain no non-
constant bounded functions?

2. Preliminaries. We shall use the result of Rudin mentioned above in
the following form. Define a uniform algebra on a topological space X to be an
algebra of continuous complex-valued functions on X which contains the
constants and is closed under uniform convergence on compact subsets of X.
By a maximum modulus algebra on X we shall mean a uniform algebra 4 on X
having the property that for every compact subset K of X, the Silov boundary
of the restriction algebra 4|K is contained in the topological boundary of K.
Rudin’s result can be formulated as follows: if 4 is a maximum modulus algebra
on an open subset G of C, if 4 contains the polynomials, and if M (4) = G,
then 4 = A(G).

Let 4 be a uniform algebra on X and K a compact subset of X. The 4-convex
hull of K, denoted hull, K, is the set {x € M(4): |d(x)| < ||a||x, a € 4},
where ¢(x) = x(a) defines the Gelfand transform ¢ of . For compact subsets
K of X, hully K is compact and the algebra Ax obtained as the uniform
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closure of the restriction algebra 4|K has non-zero continuous homomorphism
space M (Ax) = hull, K [6].

If X is a o-compact locally compact space, then any uniform algebra on X
is an F-algebra; by o-compactness, the topology of uniform convergence on
compact subsets is metrizable, and it is complete since X is a k-space [5].
Moreover, there exist compact subsets K, of X such that K,y D K,,
X = U,=1K,, and every compact subset of X is contained in some K,. Such
a sequence {K,},_1 is called a hemi-compact covering of X. If X has a hemi-
compact covering {K,}, -1 and 4 is a uniform algebra on X, then {hull, K,},—:
is a hemi-compact covering of M (4) [5]. It follows that when X is o-compact
and locally compact, the algebra 4 of Gelfand transforms of elements in 4 is
a uniform algebra on M (4) and 4 is algebraically and topologically isomorphic
to A. If M(4) = X (topologically), we shall identify the isomorphic algebras
A and 4 and say that 4 is a uniform algebra on M (4).

If K is a compact subset of C”, then hullpn K is also a compact set in C?,
denoted by K. Call a subset X of C* polynomially convex provided K C X
whenever K is a compact subset of X. For arbitrary X, define X to be the
intersection of all polynomially convex sets containing X.

When 4 is a uniform algebra on M (4), this concept of polynomial convexity
may be generalized to one of 4-convexity (cf. Rickart [6]). A subset YC M (A4)
is said to be A-convex provided hully; K C ¥ whenever K is a compact subset
of Y. For arbitrary ¥ C M (4), define hully ¥ to be the intersection of all
A-convex subsets of M (A4) which contain Y. Since M (4) is A-convex, hull, ¥V
always exists, and is 4-convex. If ¥ is o-compact and locally compact, then
Lemma 1 below shows that the non-zero continuous homomorphism space
M(Ay) of the uniform algebra Ay (defined as the closure of the restriction
algebra 4|V in the space C(Y), in the topology of uniform convergence on
compact subsets of Y) is hull, Y.

Finally, suppose that 4 is a uniform algebra on X and .S C X. If there is a
neighbourhood U of S and an element ¢ € 4 such that a(x) = 1 for x € .S
and |a(x)] < 1forx € U — S, then S is said to be a local peak set in X, and a
is said to peak locally at S within U. If U can be taken to be the whole space X,
then S is a peak set of A. We obtain our characterization of Montel algebras
by showing that, in the cases under consideration, they can have no (non-
trivial) local peak sets.

3. A characterization of 4(G). A uniform algebra 4 on X is said to be
Montel if every bounded subset (that is, every set of functions in 4 which is
uniformly bounded on compact subsets of X) is relatively compact in 4.

Note that the Montel property is preserved under topological isomorphisms.

ProposiTiON 1. Let A be a uniform algebra on a o-compact locally compact

space X. If A is Montel, then every local peak set of A in M(A) is open and
closed in M(A).
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Proof. Suppose that f € A peaks locally on .S within Uin M(4). For every
positive integer 7, the set U, = {x € U: |f(x) — 1| < 1/n} is a neighbourhood
of Sin M(4), and {U,},-11s a fundamental sequence of neighbourhoods of .S.
Let {K,}, -1 be a hemi-compact covering of M (4) by A-convex sets K,,. There
is an integer 7, such that SN K, ## @ for n = n,. Thus for n = n,, SN K,
is a local peak set of 4|K, in K, ; hence by a well-known result (see [4, p. 62])
it is known that S M K, is a peak set of Ag, in K,. It follows that there exist
functions f, € 4 such that [|f, — l|snk, < 1/n, || fallgn-v. < 1/n, and
[| fallan < 2, m = mo. However, { fu}nz s, is @ bounded subset of 4 and therefore
relatively compact. Let {f,.}~1 be a subsequence converging uniformly on
compact subsetsof X tof € A. Clearly f(x) = lforx € Sandify ¢ M(4)—S,
then f(y) = 0. Since f € C(M(A4)), it must be that S is open and closed in
M(A4).

CoRrROLLARY 1. Let A be a uniform algebra on a connected o-compact, locally
compact space X. If A is Montel, then A is a maximum modulus algebra on M (4).

Proof. Suppose that there is a compact subset K of M (4) and a function
f € A such that {x € M(A4): |f(x)| = ||fllx} does not meet the boundary of
K in M(A4). If x is chosen to be any element of this set, then the functiong € 4
defined by ¢ = ((f/f(x)) + 1)/2 peaks in K on {y € K: f(y) = f(x)} = S,
which is in the interior of K. Thus S is a local peak set of 4 in M (4), hence S
is open and closed in M (A4), whence .S = M(A4), which is impossible.

Applying the result of Rudin in the form stated above, we obtain the follow-
ing result.

COROLLARY 2. Let A be a uniform algebra on an open subset G of C and suppose
that A contains the polynomials and M (A) = G. Then A is Montel if and only if
A = A(G).

4. Montel algebras of non-analytic functions. In this section we show
that if G is a polynomially convex open connected subset of C and # = 1,
there is a uniform algebra A on G which is algebraically and topologically
isomorphic to the algebra of all analytic functions on an open subset of C*,
in the compact-open topology. Since the Montel property is preserved under
isomorphisms, the algebra is Montel. However, if # > 1, then 4 # 4(G)
since the continuous homomorphism space of 4 is an open subset of C* while
that of 4(G) is G (cf. [4, p. 58]).

In the construction, the following standard fact is used.

LemMmA. If K is a compact connected subset of C and e is any positive real
number, then there exists a simple closed curve J such that K is contained in the

relatively compact component of C — J and every point of J is at a distance less
than e from some point of K; cf. [8, p. 35].

PROPOSITION 2. If G is an open connected subset of C and n = 1, then P(G")
is algebraically and topologically isomorphic to a subalgebra of C(G).
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Proof. G is o-compact and locally compact, thus there exists a hemi-
compact covering {K;}7-1 of G. Since G is connected, locally connected, and
locally compact, every compact subset of G is contained in a compact con-
nected subset, thus we may assume that {K,}7_; is chosen so that each K is
connected.

Choose a sequence of simple closed curves J; in G as follows. K is a compact
connected subset of the open set G in C, thus there exists a simple closed curve
J1in G such that the relatively compact component ¢(J;) of C — J; contains
K. Applying the lemma now to the compact connected set J1, a simple closed
curve J, in G may be chosen so that the closure ¢(J;) of 2(J1) in C lies in 7(J;)
and ¢(J;) — 2(J1) C G. Suppose by way of induction that J; have been chosen,
1 = j < 2k, such that

1) J;CG, 1 =] = 2k,

(2) K,\J C(J2i-2) C i(Jzi—1) C C<J2i—1) C ’i(Jzi)y 1 =7=k, and

(3) c(Jar) —i(Jama) CG, 1 =4 Sk
Now Kj+1\J Jy is a compact subset of G, hence is contained in a compact
connected subset L;.;. By the lemma, there exists a simple closed curve
Joxs1 in G such that Lz C 2(Jyuye1) and another curve Jaye such that
jgk+1 C i(]2k+2) and C(]2k+2) - i(]2k+1) C G. Thus

1) Jopt1, Jaug2 C G,

(2) Kit1\J c(Jar) Cit(Jory1) C e ar1) C i(Jaxs2),

3) cJaws2) — t(Jas1) CG,
and by induction, (1), (2), and (3) hold for all positive integers. Define
R; = c¢(Jz;) —1(Jsj_1),j = 1. Note that U5-1 R, is closed in G.

Since {K ;} -1 1s a hemi-compact covering of G, it follows from the definition
of G that G = U$_.K,. Furthermore, J; = (c(Jj))A = ¢(J,) for all j, thus
by (2) above, G = US_1K; C US-1(c(T))" = US_ic(J;). Moreover, by (1),
we have US_1c(J;) = U5-1J; C G, hence

8

P

4) G = 1c(Jj).

J

Now let {T';}7-1 be a sequence of disjoint closed annuli T'; = {t € C: r/ <
|¢] = r,} whose outer radii 7, increase to infinity. Let I; be the closed interval
I,={t€ C:arg(t) =0 and r;/ <t < r,}. By the representation (4) of G
and the fact that ¢(J;) C ¢(J;41), j = 1, there is a homeomorphism ¢: G — C
such that ¢(R;) = Ty, j = 1. To show the existence of ¢, it is enough to
note that if J and J are simple closed curves with J' C #(J) and if ' and r
are real numbers with #’ < 7, then any onto homeomorphism

eIy {teC i =71}

can be extended to a homeomorphism ¢: ¢(J) — {¢ € C: [¢| =r}.
For each positive integer j, take a space-filling continuous function

g Ij — C" 1 with g](I]) = Drjn_l,
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where D,;"! is by definition the polydisc
{s=0(1...,8 1) EC" 0 |s4] = r;; 1 Sk = n — 1}.

For 1 £k =#n — 1, let m; denote the projection map to the kth coordinate
and define functions %; on U57_1R; by

h(t) = m(g;(Je@D]), £ € R,

Then & is continuous on the closed subset \U7.1R; of the normal space G and
by the Tietze extension theorem has a continuous extension to a function,
which we shall also call 4, on Gto C. Let fy = ¢ 1ok, 1 =k =n — 1.

Define a map F: G— C"by F(@t) = (fi(t), ..., fum1(t), t) for t € G. Clearly
F(G) C (G)" by definition of the functions fi, . . . , fy_1. On the other hand, if
s = (s1,..., s, is an element of (G)", then by the representation (4) thereisa
positive integer j such that sy, ..., s, € ¢(Jg;-3), thus

@(s1), ..., 0(se) € D,; ' C -Dle'

To see this, observe that the image under the homeomorphism ¢ of the con-
nected set ¢(J2;—2) — R;—1 = ¢(J2;—3) must lie in a single component of
C — ¢(R;-1). However, ¢(c(J2;-3)) is compact and equal to the closure of
©(2(J2j-3)) ; therefore ¢ (¢(J2;—3)) must be contained in the bounded component
of the complement of ¢(R;—1) = T';_1. Thus |¢(¢)| = r,_1 for all ¢ € ¢(Jg;—3).
It now follows that there exists # € I, such that g;(r) = (o(s1), ..., ¢(sn_1)),
and |¢(s,)| £ 7,1 < r. Let p be any polynomial on C* (in fact, any entire
function on C*). Then

(5) ()] < sup{lpGsy, - -y sun, )]t € G, ()] < 7}
= sup{|p(s1, .- ., a1, )] 8 € G, |o(t)] = 7}
= sup{|p(s1, .- -, S, )|t € G, |o(t)| = 7}

sup{|p(F()|:¢ € G, le()| = r}.

However, {F({): ¢t € G and |¢(¢)| = r} is a compact subset of F(G), thus
s € (F(G)®. That ¢ is a homeomorphism is used to conclude that
{t € G: |e(t)| < 7} is compact and that |o(¢)| = 7 implies ¢ € G.

We have shown that F(G) C (G)* C F(G)" and thus F(G) C (G)" C F(G)"
since (G)* = (G*)" is immediate.

If L is a compact subset of F(G), then m,(L) is compact in G and
L = F(m,(L)). However, G, and hence F(G), is hemi-compact; since F(G) is
also first countable, it is o-compact and locally compact [1]. It follows from
Lemma 1 below that P(F(G)) = P((GM)") = P(G"). Finally, we use Lemma 2
to conclude that P(G") is algebraically and topologically isomorphic to the
subalgebra A of C(G) generated by the functions fi, . . ., f,_1, and z.

A

LeMMA 1. Suppose that A is a uniform algebra on M (A) and Y is a o-compact
locally compact subset of M(A). If YC X Chull, ¥V, then Ax = Ay and
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M(Ax) = hully V; in particular, the restriction map f— f|YV is an algebraic
and topological isomorphism.

Proof. Let {K,},-1 be a hemi-compact covering of V. Then {hull, K,},—; is
a hemi-compact covering of M (4y), thus

M(4y) = U hull, K, C hull, 7.
n=1

However, M(Ay) is easily seen to be A-convex, whence hull, ¥ = M(4y)
is a hemi-compact union of the hull, K,. Clearly, f — f|Y is an algebraic
homomorphism of Ax into Ay. If g € Ay, the Gelfand transform g € //l\y is
such that 2|Y = g. However, ¢ € Awany, v; for if L is a compact subset of
hull, Y and ¢ > 0, then taking a compact subset K of ¥ such that L C hull, K
and an element p € 4 such that |[[g — p||x < ¢, it follows that

g — llz = 118 — tllhn, = = llg — pllx < ¢

or § € Apan, v. Let f = g|X. Then f € Ax and f— f|¥ = g, thus the homo-
morphism is onto. This also shows that the map is one-to-one. Thus f — f|V
is an algebraic isomorphism. The inequalities ||f|Y||x < ||f|lwu, x and
|| flloun, & = || f]¥||x which hold for K and L as above show that the map is in
fact topological, whence Ax = Ay and M (4dx) = M(4y).

LEMMA 2. Let X be o-compact and locally compact and let fv, . . . , f, be functions
in C(X). Suppose that the map F: X — C*defined by F(x) = (f1(x),...,[f.(x)),
x € X, has the property that if L is a compact subset of F(X), then there exists K
compact in X such that L C F(K). Then the uniform algebra A on X generated by
f1, « .« -, Ju s algebraically and topologically isomorphic to P(F(X)).

Proof. X is e-compact and locally compact, and the property of F assumed
in the hypothesis guarantees that F(X) is also s-compact and locally compact,
since it is hemi-compact and first countable. Thus the uniform algebras 4 and
P(F(X)) are F-algebras. Define a mapping ¢ on P(F(X)) by ¢(g) = go F.
Note that the image under ¢ of a dense subset of P(F(X)) is dense in 4.
Furthermore, if K is a compact subset of X, then F(K) is compact in F(X)
and if p is any polynomial on C*, then ||p||ra) = ||p © Fllx = ||¢(P)||x. Thus
@ is continuous and, since 4 is complete, into 4. It is clear that ¢ is one-to-one.
We show that ¢ is onto. Suppose that f € 4 and K is a compact subset of X,
8 a real number with 6 > 0. Choose a polynomial p,s such that

[P, 0 F — fllx <.

If the indices (K, 6) are ordered by (K3, 61) < (K., 6s) if and only if K; € K,
and 8, =< 8, then {px,5»} may be shown to be a Cauchy net as follows. Let L
be an arbitrary compact set in F(X) and let ¢ > 0. Choose a compact set
K, C X such that F(K;) D L. Then, if (K, %) < (K4,6,) (¢ =1,2), we
have ||p&,.5,) — Pusinlle < € thus {pu,»} is a Cauchy net. By completeness

of P(F(X)), {pw.o} has a limit g € P(F(X)). By continuity, ¢(g) = f.
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We have established that ¢ is a continuous algebraic isomorphism of an
F-algebra onto another, and the interior mapping principle enables us to
conclude that ¢ is topological.

For polynomially convex open sets G in C, P(G") = A(G") by Runge’s
theorem, hence we have the following corollary to Proposition 2.

CoROLLARY 3. If G is a polynomially convex open connected subset of C, then
for each positive integer n there is a uniform algebra A, on G containing the poly-
nomials and such that A, = A(G*) (algebraically and topologically).

By an earlier remark, each of the algebras 4, is Montel since 4 (G") is,
thus we have found infinitely many non-isomorphic Montel algebras 4, on G.
Of course, for n > 1, M(4,) = M(A(G,)) = G" # G, thus A(G) C 4,
(A4(G) #= 4,).

In the case G = C, the algebras A4, constructed above contain no non-
constant bounded functions. For suppose that f € 4, is bounded. By Lemmas 1
and 2, f = g o F, where g can be taken in the algebra P(F(C)) = P(C") =
A(C". However, g is bounded on F(C); thus by (5), g is bounded on C". It
follows that g, and hence f, is constant. We have therefore also found (infinitely
many non-isomorphic) uniform algebras on C having no non-constant bounded
functions and properly containing 4 (C), answering a question about the exis-
tence of such algebras raised by Birtel and Lindberg [3].
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