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We report a series of experiments in which a cylinder, with a vertical axis, is moved
back and forth along a long narrow channel containing fresh water at Reynolds numbers
Re = 3220–13 102. We examine the mixing of a cloud of dye along the channel by
the oscillatory motion of the cylinder. Using light attenuation techniques to measure
the time evolution of the concentration of dye along the channel, we find that at early
times the concentration profile collapses to a Gaussian profile with dispersivity, D =
(2.4 ± 0.5)fdW, where f is the frequency of the cylinder oscillation, d is the diameter of
the cylinder and W is the width of the channel, respectively. For times much longer than
L2/D, with L being the length of the channel, the concentration becomes progressively
more uniform over the whole length of the channel, and we show that the long-time
non-uniform component decays with time dependence exp(−4π2Dt/L2). We consider the
implications of these experiments for the dispersal of viral aerosols along poorly ventilated
corridors, with implications for infection transmission in hospitals and public buildings.
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1. Introduction

Understanding the pathways for infection transmission in hospitals and other buildings
is critical for managing epidemics such as the present Covid-19 pandemic. Although there
is debate about the dominant pathways for respiratory virus transmission (Beggs 2003;
Tellier 2006), there is evidence that aerosols are produced by breathing, talking, coughing
and sneezing (Duguid 1947; Gupta, Lin & Chen 2009; Bourouiba, Dehandschoewercker
& Bush 2015) and that these can carry viable virus (Milton et al. 2013). Although these
droplets may partially evaporate, typically 5 %–10 % of the droplet may be non-volatile
(Tang 2009; Liu et al. 2017), and these form a droplet nucleus with radius 0.36–0.45 of the
original droplet size that can contain a pathogenic microorganism (Wells 1934; Papineni &
Rosenthal 1997). The volatile component of droplets initially smaller than 10 μm typically
evaporate in 1–10 s (cf. Liu et al. 2017), and so the associated, non-volatile nucleus may
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remain suspended for over 20 minutes, given the time for a 4 μm droplet to fall 2 m is over
1000 s (Wan & Chao 2007; Liu et al. 2017).

The dispersion of such droplets is controlled by the ventilation flows, convection
resulting from temperature differences in the space, and mixing and dispersion produced
by the movement of people through the space (Hoffman, Bennett & Scott 1999). Typical
ventilation flow speeds may be of order 0.1–1.0 cm s−1 (Etheridge 2011), while convective
flows produced by heating systems or thermal mass may have a scale as large as
1–10 cm s−1 (Linden, Lane-Serff & Smeed 1990; Gladstone & Woods 2001). In contrast,
people moving through a space have speed of order 1.5 ± 0.5 m s−1, and so drive a wake
flow which may be an order of magnitude larger than the ventilation flows, with typical
length scales of 0.5–1.0 m, given the typical dimensions of people (Wu & Gao 2014).
Wake-driven mixing has the potential to be very significant during the time scale over
which the ventilation flow replenishes the air, and the continued mixing of new and old
air may cause a concomitant increase in the age of airborne aerosols while reducing their
concentration (cf. Wang & Chow 2011).

There have been many studies exploring the mixing of air in rooms subject to ventilation
flows, and in many cases these studies suggest that the air is mixed with an effective
dispersion coefficient in the space. Cheng et al. (2011) carried out an experimental study
involving two naturally ventilated rooms, with ventilation rates ranging between 0.2 and
5.4 air changes per hour, and estimated that a tracer gas released into the rooms was
subjected to turbulent diffusion with an effective diffusion coefficient of order Dv ≈
10−3−10−2 m2 s−1. Foat et al. (2020) describes the outcome of similar experiments in
a meeting room with mechanical ventilation, with inlet and outlet vents located at the
level of the ceiling. A tracer gas was released in the room and its decay was monitored
using sensors. Based on the transient concentration of the tracer, the effective diffusion
coefficient was again estimated to be of order Dv ≈ 10−2 m2 s−1. Comparable results were
obtained by Nomura et al. (1997), Nicas (2009) and Shao et al. (2017).

In this paper we explore quantitatively the mixing which may arise from the movement
of people along a corridor through a series of controlled and simplified analogue
experiments. We use a small scale channel filled with water and move a cylinder back
and forth along the channel to represent a person walking. We inject a pulse of dye in the
centre of the channel, and use a light attenuation method to track the gradual dilution of the
dye along the channel. After many passages of the cylinder, we find that the dye becomes
dispersed, and eventually well mixed throughout the channel. We analyse the quantitative
data through a series of systematic experiments to develop a model for the effective
dispersion coefficient of the moving cylinder, and show that the model is consistent with
the early- and late-time mixing of the dye. We compare our results with earlier estimates
of the effective diffusion coefficient in ventilated rooms, and apply them to provide some
simple predictions for the dispersal distance of airborne aerosols in a corridor, prior to
their ventilation.

2. Experimental apparatus

We used two different tanks during these experiments to explore the sensitivity to
different parameters. First we conducted a series of experiments using a tank 20 cm deep,
104 cm long and 10 cm wide, containing water to a depth H = 18 cm (see figure 1).
A series of four cylinders of diameter 1.5, 2.5, 4 and 5 cm were, in turn, placed in the
tank and moved back and forth along the whole length of the tank, up to within 5.6 cm of
the end walls, using a motorised traverse system, with a speed u ranging between 9.0 and
26.2 cm s−1. A fluorescent light panel was placed behind the tank and provided uniform
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FIGURE 1. Schematic representation of the experimental apparatus.

illumination, and the motion of a known pulse of dye released in the centre of the tank
was recorded using a JAI SP-5000 high-speed digital camera located 5 m from the tank
(see figure 1). The camera captured 60 to 200 frames per second in different experiments,
with a resolution 1650 × 300 pixels. In a second series of experiments, to investigate the
effects of a different channel length and width, we used a different tank of dimensions
20 cm × 265 cm × 15 cm, but with the same set of cylinders.

Table 1 summarises the conditions of all experiments carried out. At the start of each
experiment, a known mass of neutrally buoyant dye was added to the centre of the tank.
The initial dye concentration in the pulse was of order c0 ≈ 0.10 ± 0.02 g L−1, and the
ratio between the length of the region of dyed fluid at the beginning of an experiment
and the length of the tank was 0.10 ± 0.05. Hence, towards the end of each experiment
the well-mixed uniform dye concentration in the tank was of order c∞ ≈ 0.01 g L−1. In
order to obtain quantitative information, the line-of-sight width-averaged light intensity
was measured at each point in the tank throughout each experiment. This width-averaged
light intensity was calibrated using a series of test experiments in which dye solutions of
different concentration, ranging between c0 and c∞, were added to the tank to generate a
calibration curve. We note that during an experiment, a very small portion of the fluid
in the tank (of order 5 % or less) was obstructed by the opaque oscillating cylinder.
The concentration of dye in this region was estimated using linear interpolation of the
surrounding concentration field. Although this introduced some error, the accuracy of the
light attenuation technique and of the described linear interpolation was tested in each
experiment by estimating the total mass of dye in the tank at each time using the light
attenuation calibration. We found that during each experiment this was a constant with an
error of less than 2 %. In this way, the depth-averaged concentration of dye, c(x, y, t) was
measured at each time, t, and each point, (x, y), on a vertical plane parallel to the side wall
of the tank, where 0 < x < L and 0 < y < H.

The Reynolds number of the cylinder moving in the tank at a speed of order 10–20
cm s−1 is approximately 4000–12 000 depending on the size of the cylinder (see table 1).
Although this is smaller than in a real corridor, in which the Reynolds number of a moving
person is about 105, it is still high and we expect the scaling laws for the dispersion tested
over this range of Re also to apply at higher Re (cf. Williamson 1996).
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Exp. L (m) W (m) d (m) u (m s−1) t̂
D × 10−3

(m2 s−1)
Dη × 10−3

(m2 s−1) Re

a 2.542 0.15 0.050 0.262 1.00 1.03 0.97 13102
b 2.542 0.15 0.050 0.216 1.00 0.90 0.84 10808
c 0.927 0.10 0.050 0.214 1.00 1.34 1.49 10734
d 2.542 0.15 0.050 0.184 1.00 0.83 0.73 9232
e 0.650 0.10 0.040 0.214 1.00 1.76 1.79 8588
f 0.927 0.10 0.040 0.214 1.00 0.98 1.21 8588
g 0.826 0.10 0.040 0.214 1.00 1.08 1.21 8588
h 0.738 0.10 0.040 0.214 1.00 1.45 1.59 8588
i 0.927 0.10 0.050 0.146 1.00 0.97 1.12 3669
j 2.542 0.15 0.050 0.144 1.00 0.68 0.61 7338
k 0.927 0.10 0.040 0.146 1.00 0.77 0.90 5870
l 0.927 0.10 0.025 0.214 1.00 0.78 0.81 5366
m 0.927 0.10 0.050 0.090 1.00 0.53 0.71 4484
n 0.927 0.10 0.025 0.146 1.00 0.64 0.58 3668
o 0.927 0.10 0.040 0.090 1.00 0.60 0.58 3588
p 0.927 0.10 0.015 0.214 1.00 0.40 0.50 3220
q 0.927 0.10 0.040 0.214 0.62 0.58 0.62 8588
r 0.927 0.10 0.040 0.214 0.50 0.52 0.55 8588
s 0.927 0.10 0.040 0.214 0.41 0.40 0.44 8588
t 0.927 0.10 0.040 0.214 0.33 0.27 0.30 8588
u 0.927 0.10 0.040 0.214 0.29 0.26 0.27 8588
v 0.927 0.10 0.040 0.214 0.25 0.25 0.26 8588

TABLE 1. Range of conditions for the experiments. L (m) denotes the distance travelled by the
cylinder along the channel, while W (m) is the width of the channel. d (m) is the diameter
of the cylinder and u (m s−1) is its speed. t̂ = tt/(tt + ts) is the frequency of the oscillations
of the cylinder (see § 5). D (m2 s−1) is the estimate of the diffusion coefficient based on the
early-time dispersal of the tracer in the tank, while Dη (m2 s−1) is the estimate of the diffusion
coefficient based on the late-time progressive homogenisation of the tracer concentration in the
tank (see § 4). Re = ud/ν is the Reynolds number associated with the motion of the cylinder,
with ν = 1.0 × 10−6 m2 s−1 being the kinematic viscosity of water at the laboratory temperature
20 ◦C.

3. Experimental observations

In figure 2(a), we present a series of images which were captured at different times
during experiment k (see table 1). It is seen that a pulse of neutrally buoyant, dyed fluid
was initially located in the centre of the tank, while the fluid at both sides was clear. Over
time, the dyed fluid dispersed to both edges of the tank following multiple oscillations of
the cylinder. Figure 2(b) presents these images in false colour using the calibrated light
attenuation data, to help visualise the mixing. We observe that the periodic mixing caused
by the oscillations of the cylinder results in the dye becoming increasingly well mixed
vertically in the tank, with fluctuations in the vertical profile of dye concentration decaying
to values of order 5 %–10 % or smaller relative to the mean after 2–3 oscillations of the
cylinder. Figure 2(b) also shows that as the dye gradually spreads to the ends of the tank, its
vertically averaged mean concentration progressively decreases. In figure 2(c), we present
data from three experiments in which the cylinder speed was fixed, while its diameter
was changed (experiments c, f and l in table 1). For each experiment, a time series of
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FIGURE 2. (a) Series of images illustrating the dispersal of a pulse of dye during experiment
k (see table 1). The images were captured at times 0, 16.3, 35.2, 45.9, 72.3 and 110.6 s after
the beginning of the experiment. (b) For each image, false colours are used to illustrate the
dye concentration field in the tank. (c) Time series of the vertically averaged profiles of dye
concentration in the tank in experiments c, f and l (see table 1). In each time series image,
the diagonal white line corresponds to the position of the cylinder at different times during the
experiment.

the vertically averaged dye concentration profiles along the channel is plotted using false
colours. In each panel, the diagonal white lines correspond to the position of the cylinder
as the experiment proceeds. It is seen that the dye migrates from the centre to the outer
edge of the tank and its concentration decreases. After reaching the edge of the tank, the
dye gradually becomes well mixed throughout the tank. Figure 2(c) also shows that with
a larger cylinder, the mixing is faster: for example, compare the outcome of experiments c
and l, in which the diameter of the cylinder was d = 5 and 2.5 cm, respectively.
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For each image captured during an experiment, we have measured the centre of mass of
dye in the tank, xc, defined by the relation

∫ xc

−L/2
c̄ dx =

∫ L/2

xc

c̄ dx where c̄(x, t) = 1
H

∫ H

0
c(x, y, t) dy. (3.1)

Using our estimates of xc, we have then calculated the variance of the position of the
vertically averaged dye pulse as a function of time, σ 2:

σ 2 =

∫ L/2

−L/2
c̄(x − xc)

2 dx

∫ L/2

−L/2
c̄ dx

. (3.2)

In figure 3(a) we present data illustrating the variation of xc/L as a function of tu/L in
experiments a–p (see table 1). The time scale L/u corresponds to the time for the cylinder
to traverse the length of the tank, with a corresponding frequency f = u/L. It is seen
that the centre of mass of the dye is initially located near the centre of the tank, xc ≈
L/2 (figure 3a). However, as the cylinder moves across the pulse of dye, there is a net
displacement of fluid in the tank, which is associated with the volume of the cylinder: this
causes xc to be displaced by up to 3–4 cm during the initial oscillations when the dye is
localised near the centre of the tank (figure 3a). However, as the dye becomes increasingly
mixed along the tank, this fluctuation in the location of the centre of mass of the dye
relative to the centre of the tank, which is associated with the oscillations, becomes much
smaller.

In figure 3(b) we illustrate the dependence of σ 2 as a function of time in a selection of
the experiments from table 1. On the vertical axis, the variance is scaled by the speed of
the cylinder, u, multiplied by the width of the channel, W, and time. A virtual time origin
t0 is used to account for the effective time which would be required for the dyed fluid to
spread to the initial width of the dye pulse in the tank, as discussed in § 4. In figure 3(b) we
can see that after a very early-time transient, the ratio σ 2/(uW(t + t0)) is approximately
constant over time before the dye pulse has spread to the far walls of the tank (see the
horizontal dotted lines in figure 3b). This suggests that for tu/L < 8 − 10 approximately,
the dye spreads along the channel as a diffusion-type process. It is seen that in each
experiment, the ratio σ 2/(uW(t + t0)) tends to a different constant, and this suggests that
the rate of spreading of the dye is controlled by additional parameters, such as the cylinder
diameter d or the channel length L: we will explore these dependencies systematically
in § 4. The curves plotted in figure 3(b) exhibit a series of periodic fluctuations which
are associated with the cylinder motion. In fact, as noted in § 2, the linear interpolation
of the dye concentration field in the region occupied by the opaque cylinder introduces
small, systematic variations in which σ increases and then decreases as the cylinder passes
through the pulse of dyed fluid in the tank. However, it is seen in figure 3(b) that these
fluctuations do not affect the mean values of σ 2 averaged over a number of oscillations of
the cylinder. We note that towards the end of each of the data sets shown in figure 3(b),
the variance begins to decrease from the constant value, and this corresponds to the point
at which the spreading of the dye is suppressed by the end walls of the tank.

At later times during each experiment, when the dye extends across the whole length
of the tank, we have measured the root mean square deviation of the tracer concentration
from the along-channel mean, ¯̄c, to quantify the progressive homogenisation of the dye

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.671


Mixing of air in a corridor by movement of people 903 A52-7

0

0.02

0.04

0.06

0.08

0.10

0.12

0

–5.5
In

 η

–6.5

–4.5

–3.5

Exp b
Exp f
Exp j
Exp l
Exp p

Exp a Exp b Exp c Exp d Exp e Exp f Exp g Exp h
Exp i Exp j Exp k Exp l Exp m Exp n Exp o Exp p

–2.5

2 4 6 8 10

0

0

–0.06

0.06

5 10 15 20 25 30 35 40 45 50

10 20 30 40
tu/L tu/L

(b)

(a)

(c)

uW
(t

 +
 t 0)

σ
2

x c –
 L

/2
L

Exp i
Exp n
Exp o
Exp p

FIGURE 3. (a) Coordinate of the centre of mass of the dyed fluid, xc, as a function of time, t.
xc has been estimated using (3.1). Data for experiments a–p (see table 1) are presented in
dimensionless form: the coordinate of the centre of mass, xc, is scaled by the length of the tank,
L, while time t is scaled by the time required for the cylinder to traverse the tank, f −1 = L/u.
(b) Variance of the position of the dye pulse, σ 2 (see (3.2)) at early times during the experiments.
For clarity, only a selection of profiles have been plotted in this figure, while the collapse of all
experimental results is presented in figure 5(b). (c) Root mean square deviation of the tracer
concentration from the mean, η (see (3.3)), at late times during the experiments. For clarity, only
a selection of profiles have been plotted in this figure, while the collapse of all experimental
results is presented in figure 7(b).

concentration throughout the tank

η = 1
HL ¯̄c

∫ L/2

−L/2

∫ H

0
|c̄(x, t) − ¯̄c| dy dx where ¯̄c = 1

HL

∫ L/2

−L/2

∫ H

0
c dy dx . (3.3)

In figure 3(c) we show the variation of ln(η) with time for a selection of the experiments
in table 1. Dotted straight lines are plotted besides each curve, illustrating how for tu/L >
15–20, η decays approximately exponentially with time, with small periodic fluctuations
associated with the oscillations of the cylinder in the tank.

4. Dimensional analysis and scaling laws

The data presented in figure 3 suggest that there is an early-time phase in which the
lateral extent of the tracer increases with time at a rate dependent upon t1/2, followed
by a phase in which the concentration becomes progressively more uniform along the
channel, adjusting to this state exponentially. However, the multiplicative constant varies
from experiment to experiment. We now seek to develop some scaling laws for these
constants using a series of systematic experiments. We expect that the dye will spread
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along the corridor as a dispersion-type process as the wake mixes the tracer back and
forth and so has no net directionality. At early times, this would be consistent with a law
of the form

σ = (D(t + t0))
1/2, (4.1)

where D is an effective dispersivity with dimensions [L2/T] and t0 is the time required for
the tracer to disperse from a virtual point source to the initial finite length of the dye pulse
in the tank at the start of the experiment, with the initial standard deviation given by

σ0 = (Dt0)
1/2. (4.2)

For each experiment we have estimated t0, and we have found it to be of order
10–20 s, depending on the width of the dye pulse at the beginning of each experiment
(see figure 3b). This is typically less than 10 %–15 % of the time required for σ to reach
the end walls of the tank, with the exception of the few experiments in which the length of
the channel was reduced (experiments e, g, h in table 1), for which the correction was of
order 20 %–30 %.

The stirring and mixing of the tracer is achieved by the wake of the cylinder, and so
we expect that D scales with the product of the speed and radius of the cylinder; however,
it may also be a function of the ratio of the channel width to the cylinder diameter (cf.
Williamson 1996). In order to explore this, we now analyse the experimental results in a
systematic fashion, varying the speed and the diameter of the cylinder, and the width and
length of the channel, in each case while keeping other parameters fixed. Since the speed
of the cylinder is the only parameter which includes time in its dimensions, by dimensional
analysis we expect that

D = uWF
(

d
W

,
L
W

)
, (4.3)

where F is a function of the ratio of the diameter of the cylinder to the width of the
channel, d/W, and the length to the width of the channel, L/W. In figure 4(a), we use the
results of four experiments in which u changes but everything else is fixed (experiments a,
b, d and j, see table 1), and show that the ratio σ/(uW(t + t0))

1/2 is approximately constant,
with variations of less than 3 %, indicating that F is independent of u as expected.
Motivated by the experimental results, we propose that F may be given by the product
of a function F1(d/W) multiplied by a separate function F2(L/W)

F
(

d
W

,
L
W

)
= F1

(
d
W

)
× F2

(
L
W

)
. (4.4)

In figure 4(b), we show the variation of F1 as a function of d/W, for a series of
experiments in which everything other than d is fixed (experiments c, f, i, k, l, m, n, o
and p, see table 1). Within experimental error, F1 is found to increase linearly with the
ratio d/W,

F1(d/W) = (0.26 ± 0.03)(d/W), (4.5)

indicating that the diffusion of the tracer is enhanced when the diameter of the cylinder
is increased (see figure 2c). Assuming that (4.5) captures the dependence of F on the
dimensionless group d/W, we have rescaled all data from experiments a–p in table 1 to
explore the variation of D as a function of L/W. In figure 4(c), we illustrate the variation
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FIGURE 4. Effects of: (a) the speed of the cylinder, u; (b) the ratio of the width of the cylinder
to that of the channel, d/W; and (c) the ratio of the width to the length of the channel, W/L, on
the dispersivity of the tracer in the channel.

of σ 2/(uL(t + t0)F1) as a function of L/W and obtain

F2(L/W) = (9.2 ± 0.8)(L/W)−1. (4.6)

In figure 4(c) there is some variation in σ 2/(uL(t + t0)F1) for W/L = 0.11: here, each
point corresponds to an experiment with a different value of d/W (see table 1); however,
it is seen that the estimate given by (4.6) (dashed line) lies within 10 % of each data point.

Based on all the experiments, we therefore propose the approximate empirical law

Dmodel = (2.4 ± 0.5)
udW

L
, (4.7)

leading to the approximate relation

σ

L
= (1.55 ± 0.16)

(
udW(t + t0)

L3

)1/2

. (4.8)

This is consistent within an error of less than 10 % with all our data, as illustrated in
figure 5(a), where we compare D as measured from the results of experiments a–p in
table 1 with the model approximation given by (4.7). As a further test, in figure 5(b)
the model is used to rescale and collapse the standard deviation profiles of the tracer
distribution, σ/L, as a function of (Dmodel(t + t0))

1/2/L. It is seen that the model provides
a good fit to all the data.

If the mixing produced by the cylinder is dispersive in nature, as indicated by this
early time behaviour of the standard deviation, then we expect the ensemble average of
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FIGURE 5. (a) Comparison of the values of D estimated using (4.7) for experiments a–p (see
table 1) with the values measured during the experiments; (b) illustration of the rescaled standard
deviation of the tracer distribution at early times during experiments a–p (see table 1), as a
function of the rescaled time.

the concentration, averaged across each cross-sectional area, c̄(x, t) to be governed by a
turbulent diffusion equation of the form

∂ c̄
∂t

= D
∂2c̄
∂x2

. (4.9)

At early time, the evolution of the concentration of a pulse of tracer is therefore expected
to follow a solution of the form

c̄(x, t) = K
(4πD(t + t0))1/2

exp
(

− (x − xc)
2

4D(t + t0)

)
, (4.10)

where xc is the position of the centre of the dye pulse (see (3.1)), and where K =∫ L/2
−L/2 c̄(x, o) dx , evaluated at the start of the experiment. In figure 6 we consider

experiments a–p (see table 1) and show the variation of the profile c(x, t)(4πD(t +
t0))

1/2/K as a function of (x − xc)/(4D(t + t0))
1/2, and we compare this with the above

solution. For each experiment, we have taken the vertically averaged dye concentration
profiles along the channel as measured at 20 different times during the experiment and
we plot c(x, t)(4πD(t + to))

1/2/K as a function of (x − xc)/(4D(t + to))
1/2 (an example is

given from experiment m in figure 6a). We then take the time average of these profiles (red
dashed line in figure 6a) for each experiment, and in figure 6(b) we compare these averages
from each experiment with the model solution. It is seen that there is a fractional error of
less than 5 % between the model Gaussian (equation 4.10) and the average concentration
profile from each experiment, suggesting that the dispersive model of mixing provides a
satisfactory description of the data.

The initial spreading of the dye given by (4.10) becomes limited by the end walls of
the tank when the dye reaches them. As a simple estimate, this transition occurs when
t = L2/2D = L3/(4.8udW), after which the dispersion of the tracer becomes limited by
the no-flux condition through the end walls, and this leads to a gradual homogenisation of
the dye concentration in the channel. The adjustment of the dye to a uniform concentration
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FIGURE 6. (a) A series of 20 dye concentration profiles as measured at regular time intervals
between times t1 = 10 s and t2 = 70 s during experiment m (see table 1) are collapsed using
(4.10). The mean curve resulting from the average of the collapsed profiles is plotted using a
dashed red line. (b) Comparison of the average collapsed profiles calculated for experiments a–p
(see table 1). The profiles are compared with the Gaussian distribution plotted using (4.10) (red
dashed line). It is seen that there is an error of less than 5 % between the averaged profiles and
the Gaussian curve.

can then be described by a power series solution for the diffusion (4.9) of the form

c̄(x, t) = ¯̄c +
∞∑

n=1

an exp
(

−4π2Dn2(t + t0)

L2

)
cos

(
2πnx

L

)
, (4.11)

where c̄(x, t) is the vertically averaged dye concentration profile along the channel (see
(3.1)), ¯̄c is the mean concentration of dye in the channel (see (3.3)) and the coefficients
an depend on the initial distribution of the dye. The slowest decaying mode in this power
series solution is proportional to

exp
(

−4π2D(t + t0)

L2

)
cos

(
2πx

L

)
. (4.12)

Therefore, at long times, when only the slowest decaying mode is significant, we expect η
to decay according to the relation

ln(η(t)) = A − 4π2D(t + t0)

L2
, (4.13)

where A is a constant dependent on the coefficient a1 in the power series solution. In
order to test this prediction, we have estimated the value of D for each of experiments
a–p (see table 1) from the slope of the curves in the log–linear plot shown in figure 3(c).
By following a similar exercise to that above, which led to (4.7), we find that using this
long time estimates for D, the data can be collapsed to the empirical law Dη = (2.66 ±
0.4) udW/L, which, within the error bars, coincides with the prediction for D based on the
early-time data given in (4.7). To illustrate the overlap of these diffusivities, in figure 7(a)
we include a plot which compares D with Dη. Furthermore, in figure 7(b), we use the time
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FIGURE 7. (a) The estimate of the diffusion coefficient D (m2 s−1) obtained from the early-time
variance data (experiments a–p in table 1, see figure 4) is compared with that obtained from the
late-time data, Dη (m2 s−1, see figure 3c and (4.12) and (4.13)). (b) Illustration of the rescaled
profiles of root mean square deviation of tracer concentration from the mean, η (see figure 2c).
The collapse of the profiles from experiments a–p (see table 1) is plotted using (4.13).

scale τ = L2/(4π2D) as a scaling for the adjustment time, and we show the variation of
ln(η) − A as a function of this rescaled time, t/τ . It is seen that all the experimental data
converge to a straight line.

5. Effect of the frequency of walkers

In order to apply this model to a real situation in which there may be a variable number
of people walking along the corridor as a function of time, we need to include a further
dependence in the model for D. To this end, we repeated some of the experiments but at
the end of each traverse of the tank, the cylinder was paused for a fixed period of time and
then resumed (experiments q–v, see table 1). An image of the mixing produced by these
experiments is shown in figure 8(a). In order to model the dispersion in these experiments,
we need to account for the smaller frequency of oscillations. The present model includes
an implicit frequency f = u/L, corresponding to the number of traverses of the cylinder
along the length of the tank per unit time, resulting in a period tt = L/u. If the cylinder
stops for a time ts at the end of the tank, then the frequency of oscillations reduces by the
fraction

t̂ = tt

tt + ts
. (5.1)

In the experiments, visual observation suggests that the wake decays over a time
comparable to a few multiples of the cylinder radius divided by the cylinder speed. Given
that the delay between successive passes of the channel is relatively long compared to this
decay time, then we expect that the dispersion D should be rescaled to the new frequency
of passage of the cylinder, giving a dispersion coefficient

Df = t̂D. (5.2)

In figure 8(b) we illustrate that this revised value Df can be used to describe the growth
of the standard deviation σ/L for a series of experiments which include time delays
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FIGURE 8. (a) Time series of the vertically averaged profiles of dye concentration in the tank
in four experiments with decreasing frequency of cylinder oscillation in the tank (experiments
f, r, t and v, see table 1); (b) collapse of the standard deviation profiles of the tracer distribution
in the channel using the rescaled diffusion coefficient given by (5.2) (experiments f and q–v, see
table 1).

ts = 2.7, 4.5, 6.0, 8.8, 10.0 and 12.3 s (experiments q–v, see table 1), suggesting that the
dispersion coefficient presented in (4.7) can be written in the form

Df = (2.4 ± 0.5)fdW, (5.3)

where f is the average frequency of the cylinder moving along the corridor, W is the width
of the corridor traversed by the cylinder and d the cylinder diameter.
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6. Discussion

The simplified model experiments presented in this paper suggest that for 0.15 <
d/W < 0.5, the motion of a cylinder in a channel leads to a dispersion coefficient
D = (2.4 ± 0.5)fdW, and that the associated diffusion equation models the transport of
tracer by the oscillatory motion of a cylinder along the channel, with no net flow.

In a corridor in a busy hospital or public building, we expect f to lie in the range
0.01 < f < 0.1 s−1, and so with typical corridor widths of order W ≈ 2–3 m (National
Health Service 2013) and typical people widths of order d ≈ 0.4–0.5 m, the magnitude of
this dispersive transport D is expected to be of order 0.01–0.1 m2 s−1. It is worth noting
that this is of order 1 to 10 larger than the typical effective diffusion coefficients associated
with the ventilation flow inside a room, Dv ≈ 10−3−10−2 (see § 1, cf. Nicas 2009; Cheng
et al. 2011; Shao et al. 2017; Foat et al. 2020); this highlights the very significant role that
people moving through a space can have in mixing the air and airborne aerosols. Given
that aerosols of size 5–10 μm will remain suspended for times in excess of 100–1000 s,
we expect them to be mixed over distances of order (Dt)1/2 = 1.5–15 m from the original
source; the aerosols will be continually diluted across this region. This mixing will delay
the time for removal of the aerosols by the ventilation flow. Corridors are rarely considered
in planning airborne infection control strategies, yet our study shows that the movement of
people in corridors may play a significant role in transporting aerosol around a building.
Similar dispersive effects are likely to occur within rooms. Going forward, we plan to
extend this work to consider the mixing by people moving in fully three-dimensional
spaces, as well as the small-aspect ratio corridors considered herein.
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