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Abstract
An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction
that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the
maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory
of persistence modules originating in topological data analysis.
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1. Introduction and main results

1.1. The transcendental Bézout problem

The classical Bézout theorem states that the number of common zeros of n polynomials in n variables is
generically bounded by the product of their degrees. The transcendental Bézout problem is concerned
with the count of zeros of entire maps C𝑛 → C𝑛. It is motivated by a number of influential mathematical
ideas. The starting point is Serre’s famous G.A.G.A. [32], by now understood as a meta-mathematical
principle stating that complex projective analytic geometry reduces to algebraic geometry. A prototypical
result is a theorem of Chow [11], by which every closed complex submanifold of C𝑃𝑛 is necessarily
algebraic (i.e., is given as the set of solutions of a system of polynomial equations). However, as the
following simple example shows, Chow’s theorem fails in the affine setting.
Example 1.1. Consider an analytic function 𝑓 : C→ C given by

𝑓 (𝑧) = 𝑒𝑧 + 1 = (𝑒𝑥 cos 𝑦 + 1) + 𝑖𝑒𝑥 sin 𝑦, 𝑧 = 𝑥 + 𝑖𝑦.

Zeros of f form an infinite discrete set {(2𝑘 + 1)𝜋𝑖, 𝑘 ∈ Z}. It is not biholomorphically equivalent to
any algebraic (and hence finite) proper subset of C.

In order to revive at least some parts of G.A.G.A. in the affine framework, one needs a substitute
of the notion of the degree of a polynomial for entire mappings 𝑓 : C𝑛 → C𝑛. As it is put in [18], “A
transcendental entire function that can be expanded into an infinite power series can be viewed as a
“polynomial of infinite degree”, and the fact that the degree is infinite brings no additional information
to the statement that an entire function is not a polynomial.” To this end, one introduces the maximum
modulus

𝜇( 𝑓 , 𝑟) = max
𝑧∈𝐵𝑟

| 𝑓 (𝑧) | ,

where 𝐵𝑟 stands for the closed ball of radius r. This quantity has at least two degree-like features. First,
assume that1

lim sup
𝑟→∞

log 𝜇( 𝑓 , 𝑟)
log 𝑟

< 𝑘 + 1.

Then, remarkably, f is a polynomial of the total degree ≤ 𝑘 . This is a minor generalization of Liouville’s
classical theorem. Thus, one can distinguish polynomials in terms of the maximum modulus.

In what follows, let 𝜁 ( 𝑓 , 𝑟) denote the number of zeros of a continuous map 𝑓 : C𝑛 → C𝑛 inside the
ball 𝐵𝑟 .

The second feature of the maximum modulus of an entire function 𝑓 : C → C is given by the
following statement which readily follows from Jensen’s formula: if 𝑓 (0) ≠ 0, then for every 𝑎 > 1,

𝜁 ( 𝑓 , 𝑟) ≤ 𝐶 log 𝜇( 𝑓 , 𝑎𝑟) ∀𝑟 > 0 , (1.1)

where C is a positive constant depending on a and 𝑓 (0). For instance, in Example 1.1, both 𝜁 and log 𝜇
grow linearly in r.

These two features might have given a hope that log 𝜇( 𝑓 , 𝑟) is an appropriate substitute of the degree
for an entire map 𝑓 : C𝑛 → C

𝑛 (this was known as the transcendental Bézout problem). However,
this analogy was overturned by Cornalba and Shiffman [13] who famously constructed, for 𝑛 = 2, an

1Here and throughout the text we denote by log the logarithm to base 2.
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Figure 1. Dots represent zeros of f, whereas shaded regions depict the set 𝑓 −1(𝐵𝛿).

entire map f with log 𝜇( 𝑓 , 𝑟) ≤ 𝐶𝜖 𝑟
𝜖 for every 𝜖 > 0 (and hence of growth order zero), with 𝜁 ( 𝑓 , 𝑟)

growing arbitrarily fast. As Griffiths wrote in [19] “This is the first instance known to this author when
the analogue of a general result in algebraic geometry fails to hold in analytic geometry.”

1.2. Coarse zero count

One of the motivations for the present paper is to further explore the Cornalba–Shiffman example using
the notion of coarse zero count introduced in [9], which is based on topological persistence. The idea,
roughly speaking, is to discard the zeros corresponding to small oscillations of the map. It turns out
that with such a count, we are able to get a Jensen-type estimate (1.1), albeit with a possibly non-sharp
power of log 𝜇( 𝑓 , 𝑟) in the right-hand side; see (1.2) below.

Given a continuous map 𝑓 : C𝑛 → C𝑛 and positive numbers 𝛿, 𝑟 > 0, we define the counting function
𝜁 ( 𝑓 , 𝑟, 𝛿) of 𝛿-coarse zeros of f inside a ball 𝐵𝑟 as the number of connected components of the set
𝑓 −1(𝐵𝛿) ∩ 𝐵𝑟 which contain zeros of f ; see Figure 1.

Theorem 1.2. For any analytic map 𝑓 : C𝑛 → C𝑛 and any 𝑎 > 1, 𝑟 > 0, and 𝛿 ∈ (0, 𝜇 ( 𝑓 ,𝑎𝑟 )2 ), we have

𝜁 ( 𝑓 , 𝑟, 𝛿) ≤ 𝐶

(
log

(
𝜇( 𝑓 , 𝑎𝑟)

𝛿

))2𝑛−1
, (1.2)

where the constant C depends only on a and n.

This theorem is proved in Section 2.1. Its generalization in the framework of topological persistence
is presented in Section 6.

Note that by Liouville’s theorem, unless f is constant, 𝜇( 𝑓 , 𝑎𝑟) is unbounded. Therefore, for any
given 𝛿 > 0, the condition 𝛿 ∈ (0, 𝜇( 𝑓 , 𝑎𝑟)/2) holds for all r large enough.

Remark 1.3. Consider a higher-dimensional generalization of Example 1.1: take an analytic map
𝑓 : C𝑛 → C𝑛 given by

𝑓 (𝑧1, . . . , 𝑧𝑛) = (𝑒𝑧1 + 1, . . . , 𝑒𝑧𝑛 + 1).

https://doi.org/10.1017/fms.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.49


4 L. Buhovsky et al.

It is easy to see that log 𝜇( 𝑓 , 𝑟) grows linearly in r and 𝜁 ( 𝑓 , 𝑟, 𝛿) grows as 𝑟𝑛 when 𝑟 → ∞, for 𝛿
sufficiently small. It would be interesting to understand whether the power of the logarithm in (1.2) is
sharp or it can be improved, possibly, to n.

It follows from Theorem 1.2 that for the Cornalba-Shiffman example, the coarse count of zeros grows
slower than any positive power of r; see Theorem 1.5 below for precise asymptotics.

Remark 1.4. Consider a function f of growth order ≤ 𝜌; that is, for all 𝜖 > 0, there exist positive
constants 𝐴𝜖 , 𝐵, such that

| 𝑓 (𝑧) | ≤ 𝐴𝜖 𝑒
𝐵 |𝑧 |𝜌+𝜖

everywhere. Then by (1.2), 𝜁 ( 𝑓 , 𝑟, 𝛿) grows slower than 𝑟 (2𝑛−1)𝜌+𝜖 for every 𝜖 > 0. At the same time,
it was shown in [10, equation (1.9)] that for any 𝛼 > 0, 𝜁 ( 𝑓 + 𝑐, 𝑟) grows slower than 𝑟 (2𝑛−1)𝜌+1+𝛼 for
almost all 𝑐 > 0 small enough. Although the growth rate in (1.2) is slightly sharper, it is interesting to
note that the power (2𝑛 − 1)𝜌 appears in both bounds.

1.3. Cornalba–Shiffman example: a coarse perspective

Let us remind the Cornalba–Shiffman construction. Let 𝑔 : C→ C be given by

𝑔(𝑧) =
∞∏
𝑖=1

(
1 − 𝑧

2𝑖
)
.

For 𝑘 ≥ 1 an integer, let

𝑔𝑘 (𝑧) =
𝑔(𝑧)

1 − 𝑧
2𝑘

be the function defined by the same product with k-th term excluded. All the infinite products converge
uniformly on compact subsets of C, and hence, g and 𝑔𝑘 are holomorphic by Weierstrass’ theorem. For
a positive integer c, we define a polynomial 𝑃𝑐 : C→ C as

𝑃𝑐 (𝑤) =
𝑐∏
𝑗=1

(
𝑤 − 1

𝑗

)
.

Given a strictly increasing sequence of positive integers 𝔠 = {𝑐𝑖}, 𝑐1 < 𝑐2 < . . . define 𝑓 : C2 → C as

𝑓 (𝑧, 𝑤) =
∞∑
𝑖=1

2−𝑐
2
𝑖 𝑔𝑖 (𝑧)𝑃𝑐𝑖 (𝑤).

f converges uniformly on compact sets and is hence holomorphic by Weierstrass’ theorem in several
variables. Finally, we define a map 𝐹 : C2 → C2, 𝐹 (𝑧, 𝑤) = (𝑔(𝑧), 𝑓 (𝑧, 𝑤)). As shown in [13], for all
𝔠, F is of order zero. However, the zero set of F is given by

𝐹−1(0) =
{(

2𝑖 ,
1
𝑗

)
| 𝑖 = 1, 2, . . . ; 𝑗 = 1, . . . , 𝑐𝑖

}
,

as depicted in Figure 2. The dots represent zeros of F, and the number of zeros 𝜁 (𝐹, 𝑟) = 𝜁 (𝐹, 𝑟, 0)
equals the number of dots inside the circle.

We now see that by taking 𝔠, which increases sufficiently fast, 𝜁 (𝐹, 𝑟) can grow arbitrarily fast, which
disproves the two-dimensional transcendental Bézout problem. More precisely, in [13], Cornalba and
Shiffman made a remark that 𝑐𝑖 = 22𝑖 would suffice. Indeed, it is not difficult to check that for 𝜆 > 0,
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Figure 2. Classical count of zeros.

if 𝑐𝑖 = 	2𝜆𝑖
, then 𝜁 (𝐹, 𝑟) = Θ(𝑟𝜆) (i.e., the order of growth of the number of zeros is 𝜆), while for
𝑐𝑖 = 22𝑖 , log 𝜁 (𝐹, 𝑟) = Θ(𝑟) and the order of growth of 𝜁 (𝐹, 𝑟) is infinite. Here and further on, we write
𝑎(𝑟) = Θ(𝑏(𝑟)) if 𝑎(𝑟) = 𝑂 (𝑏(𝑟)) and 𝑏(𝑟) = 𝑂 (𝑎(𝑟)) as 𝑟 → ∞; we will also write 𝑎(𝑟) ∼ 𝑏(𝑟) if
lim𝑟→∞ 𝑎(𝑟)/𝑏(𝑟) = 1.

Let us re-examine the same class of examples from the coarse point of view. The following result is
proved in Section 3.

Theorem 1.5. Let 𝔠 be an arbitrary increasing sequence of positive integers. When 𝑟 → +∞ it holds

log 𝜇(𝐹, 𝑟) = Θ((log 𝑟)2),

and for a fixed 𝛿 > 0
𝜁 (𝐹, 𝑟, 𝛿) ∼ log 𝑟.

Let us explain the geometric picture behind Theorem 1.5, while referring the reader to Section 3 for
detailed proofs. For a fixed 𝛿, we show that the set {|𝐹 | ≤ 𝛿}, while possibly being complicated for
small radius r, stabilizes for large radii and can be described rather accurately. More precisely, we show
that there exists 𝑘0, which depends only on 𝛿, such that {|𝐹 | ≤ 𝛿} contains intervals {2𝑘 } × [0, 1] for all
𝑘 ≥ 𝑘0. Thus, for 𝑘 ≥ 𝑘0, the zeros on each of the intervals {2𝑘 } × [0, 1] are counted coarsely as one
zero, and the coarse count increases at the rate log 𝑟. This implies 𝜁 (𝐹, 𝑟, 𝛿) = 𝑂 (log 𝑟). Furthermore,
for 𝑘 ≥ 𝑘0, {|𝐹 | ≤ 𝛿} will never intersect hyperplanes 𝐻𝑘 = {(𝑤, 𝑧) | 𝑅𝑒(𝑧) = 2𝑘 + 2𝑘−1}. In other
words, {|𝐹 | ≤ 𝛿} consists of parts contained between those hyperplanes and which contain intervals
{2𝑘 } × [0, 1], as shown on Figure 3 (shaded regions represent the set {|𝐹 | ≤ 𝛿}). This implies that
𝜁 (𝐹, 𝑟, 𝛿) = Θ(log 𝑟), which we can improve to 𝜁 (𝐹, 𝑟, 𝛿) ∼ log 𝑟 as claimed by Theorem 1.5.

Putting together Theorems 1.2 and 1.5, we come to the following conclusion. It follows from
Theorem 1.2 for 𝑛 = 2 that

𝜁 (𝐹, 𝑟, 𝛿) ≤ 𝐶𝑎 (log 𝜇(𝐹, 𝑎𝑟) − log 𝛿)3.

On the logarithmic scale, this inequality tells us that for fixed a and 𝛿,

log 𝜁 (𝐹, 𝑟, 𝛿) = 𝑂 (log log 𝜇(𝐹, 𝑎𝑟)), (1.3)
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Figure 3. Coarse count of zeros.

when 𝑟 → +∞. Theorem 1.5 implies that (1.3) is asymptotically sharp as

log 𝜁 (𝐹, 𝑟, 𝛿) = Θ(log log 𝜇(𝐹, 𝑎𝑟)). (1.4)

In other words, Cornalba–Shiffman examples exhibit highly oscillatory behavior on small scales, which
increases the count of zeros in an uncontrollable way and contradicts the transcendental Bézout problem.
However, equality (1.4) shows that if we discard small oscillations, the same examples behave essentially
as predicted by the coarse version of the transcendental Bézout problem.

1.4. Islands vs peninsulas

A connected component of 𝑓 −1(𝐵𝛿) ∩ 𝐵𝑟 is called an island if it is disjoint from 𝑆𝑟 = 𝜕𝐵𝑟 , and a
peninsula otherwise. We prove the following result in Section 2.3: this is a combination of Corollary 2.11
and Corollary 2.9.

Theorem 1.6. Every island has nonempty interior which contains at least one zero of 𝑓 .

Let 𝜁0 ( 𝑓 , 𝑟, 𝛿) denote the number of islands, and let 𝜏( 𝑓 , 𝑟, 𝛿) denote the total number of zeros of f
with multiplicities contained in islands in 𝐵𝑟 . Since an island can contain more than one zero, clearly,

𝜁0 ( 𝑓 , 𝑟, 𝛿) ≤ 𝜏( 𝑓 , 𝑟, 𝛿).

The following result is a consequence of Rouché’s theorem for analytic mappings; see Section 4.

Theorem 1.7. For all 𝑎 > 1, 𝑟 > 0 and 𝛿 ∈ (0, 𝜇( 𝑓 , 𝑎𝑟)/2),

𝜏( 𝑓 , 𝑟, 𝛿) ≤ 𝐶1
(
log(𝜇( 𝑓 , 𝑎𝑟)/𝛿)

)𝑛
, (1.5)

where 𝐶1 depends only on a and n.

Note that in view of Remark 1.3, estimate (1.5) is sharp.
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Remark 1.8. Estimates analogous to (1.5) for the usual count of zeros have been proven under positive
lower bounds on the Jacobian of f in [22, 23, 24]. Upper bounds in Theorems 1.2 and 1.7 apply to all
holomorphic mappings 𝑓 : C𝑛 → C𝑛. A detailed comparison of our results with those in [22, 23, 24] is
carried out in Section 5. In particular, we give a different proof of a result from [24] using Theorem 1.7.

In general, 𝜁 ( 𝑓 , 𝑟, 𝛿) and 𝜁0 ( 𝑓 , 𝑟, 𝛿) can behave rather differently. Indeed, this is the case for the
Cornalba-Shiffman example, as we discuss below.

Let F be a Cornalba-Shiffman map defined previously. It is natural to ask what is the possible
growth of the coarse count of islands 𝜁0 (𝐹, 𝑟, 𝛿). We show that, as opposed to 𝜁 (𝐹, 𝑟, 𝛿), 𝜁0 (𝐹, 𝑟, 𝛿)
can grow arbitrarily slow, with an upper bound depending on 𝔠. More precisely, in Section 4, we prove
the following theorem.
Theorem 1.9. Let 𝜆, 𝛿 > 0, 𝑙 ≥ 1 an integer and write exp2 (𝑥) = 2𝑥 . If 𝑐𝑖 = 	exp2 . . . exp2︸����������︷︷����������︸

𝑙 times

(𝜆𝑖)
, then

there exists a constant 𝑚𝑙,𝜆, 𝛿 such that for all 𝑟 ≥ exp2 . . . exp2︸����������︷︷����������︸
𝑙+1 times

(1), it holds

𝜁0 (𝐹, 𝑟, 𝛿) ≤ 1
𝜆

log . . . log︸������︷︷������︸
𝑙+1 times

𝑟 + 𝑚𝑙,𝜆, 𝛿 .

In particular, for 𝑐𝑖 = 22𝑖 as in [13], we have that 𝜁0 (𝐹, 𝑟, 𝛿) = 𝑂 (log log log 𝑟).
From the geometric perspective, the slow growth of 𝜁0 (𝐹, 𝑟, 𝛿) is due to elongation of {|𝐹 | ≤ 𝛿}

in the w-direction. Namely, as r increases, new groups of zeros of roughly the same modulus r appear,
while the components of {|𝐹 | ≤ 𝛿} which contain these zeros grow in the w-direction faster than r (the
diameter of their w-projection grows faster than r). Hence, it takes larger r for a component of {|𝐹 | ≤ 𝛿}
to be fully contained in 𝐵𝑟 (i.e., to contribute to 𝜁0 (𝐹, 𝑟, 𝛿)).

1.5. Discussion

Below, we discuss some extensions of our results as well as directions for further research.

1.5.1. Analytic mappings from C𝑛 to C𝑘
A bound analogous to Theorem 1.2 holds for entire mappings 𝑓 : C𝑛 → C𝑘 . It appears as Theorem 2.6
in Section 2.2. To have geometric meaning in this case, the definition of 𝜁 ( 𝑓 , 𝑟, 𝛿) should be generalized.
To this end, we look at coarse homology groups of the zero set: for 0 ≤ 𝑑 ≤ 2𝑛 − 1, set

𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) = dim Im
(
𝐻𝑑 ({ 𝑓 = 0} ∩ 𝐵𝑟 ) → 𝐻𝑑 ({| 𝑓 | ≤ 𝛿} ∩ 𝐵𝑟 )

)
.

Considering generic algebraic maps 𝑓 , we expect only 0 ≤ 𝑑 ≤ 𝑛 − 𝑘 to have geometric significance.
Of particular interest is 𝑑 = 𝑛 − 𝑘, since this is the dimension where vanishing cycles appear. We prove
the upper bound

𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) ≤ 𝐶
(
log(𝜇( 𝑓 , 𝑎𝑟)/𝛿)

)2𝑛

under the same assumptions on the parameters 𝑎, 𝑟, 𝛿 as in Theorem 1.2.

1.5.2. Affine varieties
It would be interesting to generalize our main results to more general affine algebraic varieties 𝑌 ⊂ C𝑁 .
The starting case would be varieties which compactify to smooth projective varieties 𝑋 ⊂ C𝑃𝑁 by a
normal crossings divisor 𝐷 = 𝑋 \ 𝑌 . We expect that the methods of [12] combined with those of [9]
– in particular, the subadditivity theorem for persistence barcodes – should be useful for this purpose.
See also Section 6.
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1.5.3. Harmonic mappings
We expect that an analogue of Theorem 1.2 should hold in the context of harmonic maps. Namely,
suppose that ℎ = (ℎ1, . . . , ℎ𝑑) : R𝑑 → R𝑑 is a harmonic map in the sense that ℎ 𝑗 : R𝑑 → R is harmonic
for all j (this is equivalent to the map being harmonic in the variational sense [21, Section 2.2, Examples
3, 4] where R𝑑 is endowed with the standard Euclidean metric). In this case, we expect that the coarse
counts 𝜁 (ℎ, 𝑟, 𝛿), 𝜁0 (ℎ, 𝑟, 𝛿) being defined analogously to the above, satisfy the upper bound

𝜁0 (ℎ, 𝑟, 𝛿) ≤ 𝜁 (ℎ, 𝑟, 𝛿) ≤ 𝐶2
(
log(𝜇(ℎ, 𝐶1𝑎𝑟)/𝛿)

)𝑑
, (1.6)

for all 𝑎 > 1, 𝑟 > 0, and 𝛿 ∈ (0, 𝜇(ℎ, 𝐶1𝑎𝑟)/2), where 𝐶1 ≥ 1 depends on d only, and 𝐶2 depends
only on a and 𝑑. (By Liouville’s theorem, the condition on 𝛿 holds for all r large enough, if our
mapping is not constant.) This bound is sharp asymptotically in r for all fixed 𝛿 > 0, as can be seen
from the example ℎ = (ℎ1, . . . , ℎ𝑑) where ℎ𝑖 (𝑥1, . . . , 𝑥𝑑) = (𝑒𝑥𝑖+1 sin(𝑥𝑖)) for 1 ≤ 𝑖 ≤ 𝑑 − 1 and
ℎ𝑑 (𝑥1, . . . , 𝑥𝑑) = (𝑒𝑥1 sin(𝑥𝑑)). Note that log 𝜇(ℎ, 𝑎𝑟) is closely related to the notion of the doubling
index of the harmonic function (see, for example, [25, Equation (12)]).

An outline of the argument is as follows. First, replace Proposition 2.2 by an analogous estimate
for real polynomials of degree k on a ball in R𝑑 in terms of 𝑘𝑑 . Second, replace Proposition 2.1 by
suitable Cauchy estimates, which hold for entire harmonic maps (see, for example, [4, Theorem 2.4],
[16, Chapter 2.2, Proof of Theorem 10]). The rest of the argument follows our proof of Theorem 1.2
directly. Note that the only property required from a harmonic mapping is that it satisfies Cauchy’s
estimates; hence, inequality (1.6) should extend to a certain ‘quasi-analytic’ class of mappings.

It would be interesting to realize this outline and to optimize the constant 𝐶1 ≥ 1.

1.5.4. Near-holomorphic mappings
Let us also note that the proof of Theorem 1.2 yields the following stronger result about the coarse count
of zeros of continuous functions that are close to holomorphic ones.

Denote by 𝑑𝐶0 ( 𝑓 , 𝑔) the 𝐶0-distance between continuous mappings 𝑓 , 𝑔 : C𝑛 → C𝑛.

Corollary 1.10. Fix 𝑏 < 1 and 𝛿 > 0, and let ℎ : C𝑛 → C𝑛 be a continuous function such that there
exists a holomorphic function 𝑓 : C𝑛 → C𝑛 with 𝑑𝐶0 (ℎ, 𝑓 ) < 𝑏

2 𝛿. Then

𝜁 (ℎ, 𝑟, (1 + 𝑏)𝛿) ≤ 𝐶
(
log(𝜇(ℎ, 𝑎𝑟)/𝛿)

)2𝑛−1
,

where C depends on 𝑎, 𝑏, 𝑛 only.

1.5.5. A dynamical interlude
A dynamical counterpart of the transcendental Bézout problem is the count of periodic orbits of entire
maps 𝑓 : C𝑛 → C𝑛. Here, by a k-periodic orbit, we mean a fixed point of the iteration 𝑓 ◦𝑘 = 𝑓 ◦ · · · ◦ 𝑓
(k times). There exists a vast literature on the orbit growth of algebraic maps f (see, for example, [3]).
For instance, it follows from the Bézout theorem that if the components of f are generic polynomials
of degree ≤ 𝑑, the number of k-periodic orbits does not exceed 𝑑𝑘𝑛. Can one expect a bound on the
number of k-periodic orbits in the ball of radius r in terms of the maximum modulus function 𝜇( 𝑓 , 𝑟)?
The naive answer is ‘no’ due to the Cornalba-Shiffman examples. Nevertheless, Theorem 1.2 above
readily yields such a bound on the coarse count 𝜁 ( 𝑓𝑘 , 𝑟, 𝛿), where

𝑓𝑘 (𝑧) := 𝑓 ◦𝑘 (𝑧) − 𝑧 .

One can check that the maximum modulus function behaves nicely under the composition and the sum:

𝜇( 𝑓 ◦ 𝑔, 𝑟) ≤ 𝜇( 𝑓 , 𝜇(𝑔, 𝑟)), 𝜇( 𝑓 + 𝑔, 𝑟) ≤ 𝜇( 𝑓 , 𝑟) + 𝜇(𝑔, 𝑟) .
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Fix 𝑎 > 1 and 𝛿 > 0, set �̃�(𝑟) := 𝜇( 𝑓 , 𝑟), and put

𝜇𝑘 (𝑟) = �̃�◦𝑘 (𝑟) + 𝑟 .

By Theorem 1.2, we have the desired estimate

𝜁 ( 𝑓𝑘 , 𝑟, 𝛿) ≤ 𝐶 max

((
log

(
𝜇𝑘 (𝑎𝑟)
𝛿

))2𝑛−1
, 1

)
. (1.7)

A few questions are in order.

Question 1.11. Can one find a transcendental entire map f for which estimate (1.7) is sharp?

A natural playground for testing this question are transcendental Hénon maps whose entropy as
restricted to a family of concentric discs grows arbitrarily fast [2].

Further, recall that a k-periodic orbit of an entire map 𝑓 : C𝑛 → C
𝑛 is called primitive if it is not

m-periodic with 𝑚 < 𝑘 . Denote by 𝜈𝑘 ( 𝑓 , 𝑟) the number of primitive k-periodic orbits lying in the ball
of radius r.

Question 1.12. Does there exist a transcendental entire map f of order 0 (i.e., the modulus 𝜇( 𝑓 , 𝑟)
grows slower than 𝑒𝑟 𝜖 for every 𝜖 > 0) such that 𝜈𝑘 ( 𝑓 , 𝑟) grows arbitrarily fast in k and r?

For instance, taking 𝑓 (𝑧) = 𝐹 (𝑧) + 𝑧, where F is a Cornalba-Shiffman map, we see that 𝜈1( 𝑓 , 𝑟) can
grow arbitrarily fast. Can one generalize this construction to 𝑘 ≥ 2?

Finally, let us mention that the failure of the transcendental Bézout theorem appears as one of the
substantial difficulties in the work [20] dealing with a dynamical problem of a completely different
nature – namely, with embeddings of Z𝑘 -actions into the shift action on the infinite dimensional cube
(see (2) on p. 1450 in [20]). In particular, the authors analyze the structure of zeroes of so-called tiling-
like band-limited maps (see p.1477 and Lemma 5.9). It would be interesting to perform our coarse count
of zeroes (i.e., to calculate 𝜁) for this class of examples.

Organization of the paper

In Section 2.1, we prove Theorem 1.2, providing our solution of the persistent transcendental Bézout
problem. This result is extended in Section 2.2 to maps C𝑛 → C𝑚 and higher homology groups, and
in Section 6, it is reformulated and generalized in the context of topological persistence. Section 2.3
contains a proof of Theorem 1.6 on the structure of islands.

In Sections 3 and 4, we study the Cornalba-Shiffman example and prove Theorems 1.5, 1.7 and 1.9.
A comparison of our results with an earlier work of Li and Taylor [24] on the transcendental Bézout

problem can be found in Section 5.

2. Proofs

2.1. Proof of Theorem 1.2

In order to prove Theorem 1.2, we will approximate an analytic map by a polynomial. To this end, we
first recall a version of the classical Cauchy estimates for complex analytic mappings.

Proposition 2.1. Let 𝑓 : C𝑛 → C
𝑚 be a complex analytic mapping, 𝑎 > 1, and 𝑅𝑘 = 𝑓 − 𝑝𝑘 be the

Taylor remainder for the approximation of f by the Taylor polynomial mapping 𝑝𝑘 at 0 of degree < 𝑘.
Then for all 𝑟 > 0, 𝑘 ≥ 0,

𝜇(𝑅𝑘 , 𝑟) ≤ 𝐶𝑎𝑎
−𝑘𝜇( 𝑓 , 𝑎𝑟)

for the constant 𝐶𝑎 = 𝑎
𝑎−1 depending only on 𝑎.
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We give a proof for clarity.

Proof. Let 𝑣 ∈ 𝑆2𝑛−1 ⊂ C𝑛 and 𝑢 ∈ 𝐵𝑟 (C) ⊂ C. Write a point z in 𝐵𝑟 = 𝐵𝑟 (C𝑛) as 𝑧 = 𝑢𝑣. Then
𝑅𝑘 (𝑧) = 𝑓 (𝑢𝑣) − 𝑝𝑘 (𝑢𝑣).Now take 𝑣′ ∈ 𝑆2𝑚−1, and set 𝑔(𝑢) = 〈 𝑓 (𝑢𝑣), 𝑣′〉, 𝑞𝑘 (𝑢) = 〈𝑝𝑘 (𝑢𝑣), 𝑣′〉. Then
𝑞𝑘 is the Taylor polynomial of g of degree < 𝑘 , and 𝑟𝑘 = 𝑔 − 𝑞𝑘 is the corresponding Taylor remainder.
It is enough to bound 𝑟𝑘 (𝑢) uniformly in 𝑣, 𝑣′ for 𝑢 ∈ 𝐵𝑟 (C).

Let 0 < 𝑟 < 𝜌. We use the following integral formula for the Cauchy remainder; see [1, pages
125-126]: for 𝑢, 𝑤 with |𝑢 | = 𝑟 , |𝑤 | = 𝜌,

𝑟𝑘 (𝑢) =
1

2𝜋𝑖

∫
𝑆1
𝜌

𝑔(𝑤)
( 𝑢
𝑤

) 𝑘 1
𝑤 − 𝑢 𝑑𝑤.

Therefore,

|𝑟𝑘 (𝑢) | ≤
( 𝑟
𝜌

) 𝑘 𝜌

𝜌 − 𝑟 𝜇(𝑔, 𝜌),

and picking 𝜌 = 𝑎𝑟, we get

|𝑟𝑘 (𝑢) | ≤ 𝐶𝑎𝑎
−𝑘𝜇(𝑔, 𝑎𝑟) ≤ 𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟).

So taking maxima over 𝑢, 𝑣 and 𝑣′, we obtain

𝜇(𝑅𝑘 , 𝑟) ≤ 𝐶𝑎𝑎
−𝑘𝜇( 𝑓 , 𝑎𝑟). �

Next, we highlight topological properties of polynomials needed for the proof of Theorem 1.2.

Proposition 2.2. Let 𝑘 ≥ 1. Let 𝑝1, . . . , 𝑝𝑛 : C𝑛 → C be complex polynomials of degree at most 𝑘. Set
𝑝 : C𝑛 → C𝑛, 𝑝 = (𝑝1, . . . , 𝑝𝑛) for the induced polynomial mapping, and assume p is proper. Let B be
a closed ball in C𝑛, denote by ℎ = |𝑝 |2 and by Crit(ℎ|𝜕𝐵) the set of critical points of ℎ|𝜕𝐵 . Then 𝑝−1 (0)
is a finite set of at most 𝑘𝑛 points, whereas Crit(ℎ|𝜕𝐵) has at most 5𝑘 (10𝑘)2𝑛−2 connected components.

Proof. First, we estimate the number of connected components of Crit(ℎ|𝜕𝐵). If ℎ|𝜕𝐵 is constant, the
claim immediately follows. Otherwise, there exists a point 𝑁 ∈ 𝜕𝐵 which is regular for ℎ|𝜕𝐵 . Consider
complex linear coordinates (𝑧1, . . . , 𝑧𝑛), 𝑧 𝑗 = 𝑥2 𝑗−1 + 𝑖𝑥2 𝑗 , in which B is the unit ball, so 𝜕𝐵 is the unit
sphere, and N is the base vector (0, . . . , 0, 𝑖). Note that h is a real polynomial of degree at most 2𝑘
in 𝑥1, . . . , 𝑥2𝑛. Following [28], we consider inverse stereographic projection 𝜃 : R2𝑛−1 → 𝜕𝐵 \ {𝑁},
𝜃 (𝑢1, . . . , 𝑢2𝑛−1) = (𝑥1, . . . , 𝑥2𝑛), 𝑥 𝑗 =

2𝑢 𝑗

|𝑢 |2+1 for 1 ≤ 𝑗 ≤ 2𝑛 − 1, 𝑥2𝑛 = |𝑢 |2−1
|𝑢 |2+1 . Then 𝜃∗ℎ = 𝑞

( |𝑢 |2+1)2𝑘

for a polynomial q in 𝑢1, . . . , 𝑢2𝑛−1 of degree at most 4𝑘. The critical points of 𝜃∗ℎ are in bijection
with those of ℎ|𝜕𝐵 and are given by 2𝑛 − 1 polynomial equations 𝜕𝑢 𝑗 𝑞(𝑢) (|𝑢 |2 + 1) − 4𝑘𝑢 𝑗𝑞(𝑢) = 0,
1 ≤ 𝑗 ≤ 2𝑛 − 1, each one of degree at most 4𝑘 + 1 ≤ 5𝑘. By an estimate of Milnor [27, Theorem 2], we
obtain that the total Betti number of Crit(ℎ|𝜕𝐵) is bounded by 5𝑘 (10𝑘)2𝑛−2. Since 0-th Betti number
counts path components, we get that the total number of path components of Crit(ℎ|𝜕𝐵) is not greater
than 5𝑘 (10𝑘)2𝑛−2. Finally, the number of connected components is less than or equal to the number of
path components,2 and the claim follows.

For the second part of the proposition, it is enough to notice that since p is proper, 𝑝−1(0) is compact
and thus consists of a finite set of points by [31, Theorem 14.3.1]. The number of these points is bounded
by 𝑘𝑛 in view of Bézout’s theorem (see [17, Example 8.4.6] for example). �

Remark 2.3. As can be seen from the proof, the exponent 2𝑛−1 in Proposition 2.2 is a boundary effect.
We currently do not know if it can be improved.

2In fact, in this case, these two numbers are equal since Crit(ℎ |𝜕𝐵) can be triangulated (see Remark 2.7) and hence is locally
path connected.
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Last, we formulate a lemma which connects Proposition 2.2 to the coarse count of zeros of near-
polynomial maps.

Lemma 2.4. Let 𝑓 : C𝑛 → C
𝑛 be a continuous map, 𝑝 : C𝑛 → C

𝑛 a proper complex polynomial
map, ℎ = |𝑝 |2, and 𝐵 ⊂ C𝑛 a closed ball. Assume that | 𝑓 (𝑧) − 𝑝(𝑧) | < 𝛿/2 for all 𝑧 ∈ 𝐵. Let Ω be a
connected component of 𝑓 −1(𝐵𝛿) ∩ 𝐵 which contains a zero of 𝑓 . Then Ω contains either a zero of p or
a connected component of Crit(ℎ|𝜕𝐵).

Proof. First, we prove that Ω contains a local minimum of ℎ. Let 𝑧0 be a zero of f in Ω. Then
|𝑝(𝑧0) | ≤ | 𝑓 (𝑧0) | + |𝑝(𝑧0) − 𝑓 (𝑧0) | < 𝛿/2. It follows that minΩ |𝑝 | < 𝛿/2, and let 𝑧1 ∈ Ω be a point
where this minumum is achieved. Then | 𝑓 (𝑧1) | ≤ |𝑝(𝑧1) | + | 𝑓 (𝑧1) − 𝑝(𝑧1) | < 𝛿/2 + 𝛿/2 = 𝛿; hence, Ω
contains a neighborhood of 𝑧1 in 𝐵𝑟 , and therefore, 𝑧1 is, in fact, a local minimum of the function |𝑝 |,
and hence also of the function h, on 𝐵𝑟 .

Now, if 𝑧1 ∈ 𝜕𝐵, then 𝑧1 ∈ Crit(ℎ|𝜕𝐵), and let Z be a connected component of Crit(ℎ|𝜕𝐵) which
contains 𝑧1. Since h is constant on Z, we have that for every 𝑧 ∈ 𝑍 , it holds | 𝑓 (𝑧) | ≤ |𝑝(𝑧) |+| 𝑓 (𝑧)−𝑝(𝑧) | <
𝛿/2 + 𝛿/2 = 𝛿. Thus, 𝑧 ∈ 𝑓 −1(𝐵𝛿) ∩ 𝐵, and therefore, 𝑍 ⊂ 𝑓 −1(𝐵𝛿) ∩ 𝐵. We claim that, in fact, 𝑍 ⊂ Ω.
Indeed, 𝑍 ∩Ω ≠ ∅, and since both Z and Ω are connected, so is 𝑍 ∪Ω. However, 𝑍 ∪Ω ⊂ 𝑓 −1(𝐵𝛿) ∩ 𝐵,
and since Ω is a connected component of 𝑓 −1(𝐵𝛿) ∩ 𝐵, 𝑍 ⊂ Ω as claimed.

In case 𝑧1 ∈ 𝐵 \ 𝜕𝐵, we have that 𝑝(𝑧1) = 0 because p is an open mapping. Indeed, since p is proper,
it is a finite mapping, and as it is equidimensional, it is therefore an open mapping [14, Proposition 3,
Section 2.1.3]. �

Proof of Theorem 1.2. By Proposition 2.1, we can approximate 𝑓 by a Taylor polynomial mapping 𝑝
at 0 of degree < 𝑘 such that | 𝑓 − 𝑝 | ≤ 𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟) on 𝐵𝑟 . Here, we choose 𝑘 to be the minimal
positive integer such that 𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟) < 𝛿/2. We can slightly perturb 𝑝 to make it proper by adding
a homogeneous polynomial of degree k, while | 𝑓 − 𝑝 | < 𝛿/2 continues to hold on 𝐵𝑟 . Indeed, p being
proper is equivalent to |𝑝(𝑧) | → ∞ as |𝑧 | → ∞, which can be achieved by such a perturbation. Lemma
2.4 implies that 𝜁 ( 𝑓 , 𝑟, 𝛿) is bounded from above by the total number of zeros of p and connected
components of Crit(ℎ|𝜕𝐵). Now, Proposition 2.2 gives us that 𝜁 ( 𝑓 , 𝑟, 𝛿) ≤ 𝑘𝑛 + 5𝑘 (10𝑘)2𝑛−2, which
proves the claim. �

Remark 2.5. Theorem 1.2 also holds for analytic maps 𝑓 : C𝑛 → C𝑚 with 𝑚 < 𝑛. Indeed, if 𝑚 < 𝑛,
we can include 𝜄 : C𝑚 → C𝑛 and define 𝑓 = 𝜄 ◦ 𝑓 . Now 𝜁 ( 𝑓 , 𝑟, 𝛿) = 𝜁 ( 𝑓 , 𝑟, 𝛿), 𝜇( 𝑓 , 𝑎𝑟) = 𝜇( 𝑓 , 𝑎𝑟) and
(1.2) for f follows from the same inequality for 𝑓 .

2.2. Higher-dimensional counts

A similar approach leads to a proof of the following more general statement, albeit with a slightly
weaker exponent on the right-hand side. See also Section 6. Consider the invariants 𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) from
Section 1.5.1.

Theorem 2.6. For any analytic map 𝑓 : C𝑛 → C
𝑚, 𝑚 ≤ 𝑛 and any 𝑎 > 1, 𝑟 > 0, an integer

0 ≤ 𝑑 ≤ 2𝑛 − 1, and 𝛿 ∈ (0, 𝜇 ( 𝑓 ,𝑎𝑟 )2 ), we have

𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) ≤ 𝐶

(
log

(
𝜇( 𝑓 , 𝑎𝑟)

𝛿

))2𝑛
, (2.1)

where the constant C depends only on a and n.

Proof. First, we notice that it is enough to prove the theorem in the case 𝑚 = 𝑛 by the same reasoning
as in Remark 2.5.

By Proposition 2.1, we can approximate 𝑓 by a Taylor polynomial mapping 𝑝 at 0 of degree < 𝑘
such that | 𝑓 − 𝑝 | ≤ 𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟) on 𝐵𝑟 . Here, we choose 𝑘 to be the minimal positive integer such
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that 𝐶𝑎𝑎
−𝑘𝜇( 𝑓 , 𝑎𝑟) < 𝛿/2. Since | | 𝑓 | − |𝑝 | | ≤ | 𝑓 − 𝑝 | < 𝛿/2, there exist natural maps

𝐻𝑑 ({ 𝑓 = 0} ∩ 𝐵𝑟 )
𝑖1−→ 𝐻𝑑 ({|𝑝 | ≤ 𝛿/2} ∩ 𝐵𝑟 )

𝑖2−→ 𝐻𝑑 ({| 𝑓 | ≤ 𝛿} ∩ 𝐵𝑟 ).

It follows that

𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) = dim 𝐼𝑚(𝑖2 ◦ 𝑖1) ≤ dim𝐻𝑑 ({|𝑝 | ≤ 𝛿/2} ∩ 𝐵𝑟 )
= dim𝐻𝑑 ({|𝑝 |2 ≤ 𝛿2/4} ∩ 𝐵𝑟 ).

Identifying C𝑛 = R2𝑛, we have that |𝑝 |2 is a real polynomial of degree < 2𝑘 and {|𝑝 |2 ≤ 𝛿2/4} ∩ 𝐵𝑟 is
defined by two polynomial inequalities

𝛿2

4
− |𝑝 |2 ≥ 0 and 𝑟 − 𝑥2

1 − . . . − 𝑥
2
2𝑛 ≥ 0.

By [27, Theorem 3], we have that dim𝐻𝑑 ({|𝑝 |2 ≤ 𝛿2/4} ∩ 𝐵𝑟 ) is bounded by 1
2 (4𝑘 + 2𝑘) (3 + 2𝑘)2𝑛−1,

which finishes the proof. �

Remark 2.7. In the proofs of Theorem 2.6 and Proposition 2.2, we used results of Milnor which relate
to Betti numbers defined using Čech cohomology. These Betti numbers coincide with ones coming from
singular homology, as explained in [27], due to the fact that semialgebraic sets admit triangulations.

2.3. Zeros and islands

In this section, we prove Theorem 1.6, which is a combination of Corollary 2.11 and Corollary 2.9. It
is a structure theorem for islands of analytic mappings. We start with the following general result which
is possibly known, but we could not locate it in the literature.

Proposition 2.8. Let 𝑔 : 𝑈 → C𝑚, for an open set𝑈 ⊂ C𝑛, for 𝑛 ≥ 𝑚 ≥ 1, be a holomorphic mapping.
Then every point 𝑞 ∈ 𝑈 of non-degenerate minimum of ℎ = |𝑔 |2 must be a zero of 𝑔.

Proof. Write 𝑔 = 𝑢 + 𝑖𝑣, where 𝑢, 𝑣 are the real and imaginary part of g, respectively, and i is the
imaginary unit. Then ℎ = |𝑢 |2 + |𝑣 |2. Now 𝑑𝑞ℎ = 2〈𝑢, 𝑑𝑞𝑢〉 + 2〈𝑣, 𝑑𝑞𝑣〉, while 𝑑𝑞𝑔 = 𝑑𝑞𝑢 + 𝑖𝑑𝑞𝑣. This
shows that if q is a critical point of ℎ, then 𝑔(𝑞) ∈ C𝑚 is orthogonal to the image of 𝑑𝑞𝑔. Therefore, as
𝑛 ≥ 𝑚, if 𝑔(𝑞) ≠ 0, then the kernel 𝐾 = ker 𝑑𝑞𝑔 is a nontrivial complex-linear subspace of C𝑛. Now, as
𝑑𝑞𝑔 vanishes on 𝐾, writing the second order Taylor approximation

𝑔(𝑧) = 𝑔(𝑞) + 1
2
𝑑2
𝑞𝑔(𝑧 − 𝑞, 𝑧 − 𝑞) + 𝑜(|𝑧 − 𝑞 |2)

of g at 𝑞, where 𝑑2
𝑞𝑔 is the complex Hessian (or quadratic differential) of g at 𝑞, we obtain that

ℎ(𝑧) = ℎ(𝑞) + Re〈𝑑2
𝑞𝑔(𝑧 − 𝑞, 𝑧 − 𝑞), 𝑔(𝑞)〉 + 𝑜(|𝑧 − 𝑞 |2)

is the second order Taylor approximation of h at 𝑞, where the brackets denote the Hermitian inner
product on C𝑚. Hence, the Hessian 𝑑2

𝑞ℎ is given on 𝑎, 𝑏 ∈ 𝐾 by

𝑑2
𝑞ℎ(𝑎, 𝑏) = 2 Re〈𝑑2

𝑞𝑔(𝑎, 𝑏), 𝑔(𝑞)〉.

Since 𝑑2
𝑞𝑔 is a C𝑚-valued complex bilinear form, 〈𝑑2

𝑞𝑔, 𝑔(𝑞)〉 is a C-valued complex bilinear form.
Therefore, by a classical observation (see [26, Assertion 1, p.39]), the quadratic form of 𝑑2

𝑞ℎ|𝐾 has zero
signature as the real part of a complex quadratic form. Therefore, it cannot be positive-definite. This
contradicts the hypothesis that q is an interior non-degenerate minimum. Hence, 𝑔(𝑞) = 0. �
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Corollary 2.9. Let 𝑔 : 𝐵𝑟 → C𝑚 be a holomorphic mapping on a ball 𝐵𝑟 in C𝑛, 𝑛 ≥ 𝑚. Consider an
island of {|𝑔 | ≤ 𝛿} with nonempty interior 𝑉. Then V contains a zero of 𝑔.

Proof. Denote by K the island of {|𝑔 | ≤ 𝛿} with interior 𝑉. First, we claim that |𝑔 | is not constant on
𝐾. To this end, let 𝑞 ∈ 𝑉 , L a complex line passing through q parametrized by 𝑧 ∈ C and denote by
𝑢(𝑧) =

∑𝑛
𝑗=1 |𝑔 𝑗 (𝑧) |2 the restriction of |𝑔 |2 to 𝐿. If |𝑔 | was constant on K, u would be constant on a

neighborhood of q in L and we would have that

0 = Δ𝑢 = 4
𝑛∑
𝑗=1

𝜕𝑔 𝑗

𝜕𝑧

𝜕�̄� 𝑗

𝜕𝑧
= 4

𝑛∑
𝑗=1

���𝜕𝑔 𝑗

𝜕𝑧

���2.
This implies that each 𝑔 𝑗 is constant on a neighborhood of q and thus constant on the whole 𝐿 ∩ 𝐵𝑟 .
Since L was taken arbitrarily, we conclude that g is constant, which is impossible since {|𝑔 | ≤ 𝛿} has
an island by the assumption.

Now, assume by contradiction that 0 < min𝐾 |𝑔 | < max𝐾 |𝑔 | = 𝛿. Let 0 < 2𝜀 <
min{min𝐾 |𝑔 |,max𝐾 |𝑔 | − min𝐾 |𝑔 |}, and assume that 𝑔′ : 𝐾 → C

𝑚 satisfies |𝑔 − 𝑔′ | < 𝜀 on 𝐾.
Let 𝑞, 𝑞′ ∈ 𝐾 for which |𝑔(𝑞) | = min𝐾 |𝑔 |, |𝑔′(𝑞′) | = min𝐾 |𝑔′ |. Since

|𝑔(𝑞′) | < |𝑔′(𝑞′) | + 𝜀 ≤ |𝑔′(𝑞) | + 𝜀 < |𝑔(𝑞) | + 2𝜀 = min
𝐾

|𝑔 | + 2𝜀 < max
𝐾

|𝑔 |,

we have that 𝑞′ ∈ 𝑉 because |𝑔 | equals 𝛿 on 𝐾 \ 𝑉. Thus, |𝑔′ | has an interior local minimum 𝑞′. By
means of a transversality argument, we show the following proposition at the end of this subsection.

Proposition 2.10. Assume K contains no zeros of 𝑔. Then there exists an open set U, 𝐾 ⊂ 𝑈 such that
for every 𝜀 > 0, there exists a holomorphic function 𝑔′ : 𝑈 → C𝑚 such that |𝑔 − 𝑔′| < 𝜀 on U and |𝑔′ |2
is Morse.

For 𝑔′ given by Proposition 2.10, 𝑞′ must be a zero by Proposition 2.8. However, since 2𝜀 < min𝐾 |𝑔 |,
we have that 0 = |𝑔′(𝑞′) | > |𝑔(𝑞′) | − 𝜀 > 1

2 min𝐾 |𝑔 | > 0, which is a contradiction. �

Corollary 2.11. Let 𝑔 : 𝐵𝑟 → C𝑚 be a holomorphic mapping on a ball 𝐵𝑟 in C𝑛, 𝑛 ≥ 𝑚. Then every
island of {|𝑔 | ≤ 𝛿} has nonempty interior.

Proof. Let K be an island with empty interior. Then |𝑔 | = 𝛿 on K, and we denote by𝐾𝑖 , 𝑖 ≥ 1 a connected
component of {|𝑔 | ≤ 𝛿 + 1/𝑖} ∩ 𝐵𝑟 which contains 𝐾.

First, we claim that ∩𝑖≥1𝐾𝑖 = 𝐾. Indeed, 𝐾 ⊂ ∩𝑖≥1𝐾𝑖 by definition. However, since {𝐾𝑖} is a nested
sequence of connected compact sets, ∩𝑖≥1𝐾𝑖 is also compact and connected; see [15, Corollary 6.1.19].
Since |𝑔 | ≤ 𝛿 on ∩𝑖≥1𝐾𝑖 , we have that ∩𝑖≥1𝐾𝑖 is a connected subset of {|𝑔 | ≤ 𝛿} which contains K and
thus has to be equal to K since K is a connected component.

Second, we claim that there exists 𝑖0 such that for all 𝑖 ≥ 𝑖0, 𝐾𝑖 are disjoint from 𝜕𝐵𝑟 . Indeed, if
this was not the case, there would exist 𝑥𝑖 ∈ 𝐾𝑖 ∩ 𝜕𝐵𝑟 , and by compactness of 𝜕𝐵𝑟 we could assume
𝑥𝑖 → 𝑥∞ ∈ 𝜕𝐵𝑟 . This is not possible since 𝑥∞ ∈ ∩𝑖≥1𝐾𝑖 = 𝐾 , which is disjoint from 𝜕𝐵𝑟 .

Thus, {𝐾𝑖}, 𝑖 ≥ 𝑖0 is a sequence of islands in 𝐵𝑟 , each of which has a nonempty interior (since it
contains an open neighborhood of K). By Corollary 2.9, there exists a sequence 𝑧𝑖 ∈ 𝐾𝑖 , 𝑖 ≥ 𝑖0 of zeros
of g, and by compactness, we may assume that 𝑧𝑖 → 𝑧∞ ∈ 𝐾. This contradicts the fact that |𝑔 | = 𝛿
of 𝐾. �

We note that the condition 𝑛 ≥ 𝑚 is essential for Proposition 2.8 and Corollaries 2.9, 2.11, as can
be seen from the mapping 𝑔 : 𝐵𝑟 → C

2, 𝐵𝑟 ⊂ C, 𝑔(𝑧) = (1, 𝑧). Similarly, so is non-degeneracy in
Proposition 2.8, as shown by the example 𝑔 : 𝐵𝑟 → C2, 𝐵𝑟 ⊂ C2, 𝑔(𝑧, 𝑤) = (𝑧, 1 − 𝑧).

Proof of Proposition 2.10. Denote by 𝑔𝑧 the complex differential of g with respect to 𝑧 = (𝑧1, . . . , 𝑧𝑛).
Let U be such that the closure 𝑈 ⊂ 𝐵𝑟 and |𝑔 | > 𝑐 > 0, |𝑔𝑧 | < 𝐶 on U for some 𝑐, 𝐶. We argue as
follows in the spirit of Thom’s parametric transversality theorem.
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The function |𝑔 |2 = �̄�𝑔 is Morse on U whenever �̄�𝑔𝑧 is transverse to 0 as a mapping 𝑈 → C
𝑛.

Indeed, in this case by the proof of Proposition 2.8, at every critical point of |𝑔 |2, its Hessian will be
the real part of a non-degenerate complex-valued symmetric bilinear form 2�̄�𝑔𝑧𝑧 , and as such, it will be
non-degenerate.

Denote by 𝐴𝑖 the standard basis in the space Mat(𝑚 × 𝑛,C) of 𝑚 × 𝑛 complex matrices. Choose
𝛼 > 0 small enough, and consider an 𝛼-net 𝑏 𝑗 in a compact in C𝑚 containing 𝐴𝑖 (𝑈) for all i. Put

𝑣𝑖 𝑗 (𝑧) = 𝐴𝑖𝑧 − 𝑏 𝑗 .

We look at the perturbation

𝐺 (𝑧, 𝜖) = 𝑔(𝑧) +
∑

𝜖𝑖 𝑗𝑣𝑖 𝑗 (𝑧) .

The derivative of �̄�𝐺𝑧 over 𝜖𝑖 𝑗 is

𝐴𝑖 �̄� + (𝐴𝑖𝑧 − 𝑏 𝑗 )𝑔𝑧 . (2.2)

Fix any point 𝑧 ∈ 𝑈, and choose j so that the second summand in (2.2) is smaller than 𝐶𝛼. At the same
time, at least one of the components of �̄�(𝑧) has absolute value > 𝑐′, where 𝑐′ depends only on c and n.
Thus, the collection {𝐴𝑖 �̄�} contains elements 𝑐1𝑒1, . . . , 𝑐𝑚𝑒𝑚, where 𝑒1, . . . , 𝑒𝑚 is the standard basis
of C𝑚, and |𝑐𝑖 | > 𝑐′. As invertible matrices form an open set in Mat(𝑚 × 𝑚,C), after the perturbation
(𝐴𝑖𝑧 − 𝑏 𝑗 )𝑔𝑧 of norm at most 𝐶𝛼, these vectors still span C𝑚, provided 𝛼 is small enough. It follows
that �̄�𝐺𝑧 is transverse to 0. Thus, by Thom’s parametric transversality theorem, for almost all 𝜖 , we
have that |𝐺 𝜖 |2 is Morse. Choosing 𝑔′ = 𝐺 𝜖 for 𝜖 sufficiently small then finishes the proof. �

3. Coarse analysis of the Cornalba-Shiffman example

The goal of this section is to prove Theorem 1.5. We will break down its proof into Propositions 3.1, 3.4
and 3.6. Since there are no zeros of F when 𝑟 < 2, we always assume 𝑟 ≥ 2. The following elementary
estimate will be used repeatedly. For an integer 𝑚 ≥ 1,

2𝑚(𝑚+1)/2 <
𝑚∏
𝑖=0

(1 + 2𝑖) < 2(𝑚+1) (𝑚+2)/2.

First, we estimate 𝜇(𝐹, 𝑟) as needed for the first part of Theorem 1.5.

Proposition 3.1. For all 𝔠 and all 𝑟 ≥ 2, it holds

1
2
(log 𝑟)2 − 3

2
log 𝑟 + 1 ≤ log 𝜇(𝐹, 𝑟) ≤ 3

2
(log 𝑟)2 + 7

2
log 𝑟 + 𝐶,

where 𝐶 = 4 + log
(∏∞

𝑖=1(1 + 2−𝑖)
)
.

Proof. Let 𝑘 ≥ 1 be an integer such that 2𝑘 ≤ 𝑟 < 2𝑘+1. In this case, 𝑘 ≤ log 𝑟 < 𝑘 + 1. To prove the
first inequality, it is enough to take (𝑧, 𝑤) = (−𝑟, 0). Now

|𝐹 (−𝑟, 0) | ≥ |𝑔(−𝑟) | ≥ |𝑔(−2𝑘 ) | =
∞∏
𝑖=1

(1 + 2𝑘−𝑖),

and
∞∏
𝑖=1

(1 + 2𝑘−𝑖) >
𝑘∏
𝑖=1

(1 + 2𝑘−𝑖) =
𝑘−1∏
𝑗=0

(1 + 2 𝑗 ) > 2
𝑘 (𝑘−1)

2 >
( 𝑟
2

) 𝑘−1
2
.
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Since log 𝑟 < 𝑘 + 1, we have that 𝑘−1
2 >

log 𝑟−2
2 , and hence, |𝐹 (−𝑟, 0) | ≥

(
𝑟
2
) log 𝑟

2 −1
. Applying logarithm

to both sides proves the first inequality.
To prove the second inequality, we first notice that if |𝑧 | ≤ 𝑟 , then

|𝑔(𝑧) | ≤
∞∏
𝑖=1

(1 + 2−𝑖 |𝑧 |) <
∞∏
𝑖=1

(1 + 2𝑘+1−𝑖) =
𝑘∏
𝑗=0

(1 + 2 𝑗 ) ·
∞∏
𝑖=1

(1 + 2−𝑖).

Denoting 𝐶1 =
∏∞

𝑖=1(1 + 2−𝑖) and estimating

𝑘∏
𝑗=0

(1 + 2 𝑗 ) ≤
𝑘+1∏
𝑗=1

2 𝑗 = 2
(𝑘+1) (𝑘+2)

2 ≤ (2𝑟)
𝑘+2

2 ≤ (2𝑟)
log 𝑟

2 +1

yields

|𝑔(𝑧) | < 𝐶1 (2𝑟)
log 𝑟

2 +1. (3.1)

Similarly,

|𝑔𝑖 (𝑧) | < 𝐶1 (2𝑟)
log 𝑟

2 +1

for all 𝑖 ≥ 1. Using this inequality, we further estimate that if | (𝑧, 𝑤) | ≤ 𝑟 , then

| 𝑓 (𝑧, 𝑤) | ≤
∞∑
𝑖=1

|𝑔𝑖 (𝑧) | · |𝑃𝑐𝑖 (𝑤) |
2𝑐2

𝑖

≤ 𝐶1 (2𝑟)
log 𝑟

2 +1
∞∑
𝑖=1

|𝑃𝑐𝑖 (𝑤) |
2𝑐2

𝑖

.

Morever,

∞∑
𝑖=1

|𝑃𝑐𝑖 (𝑤) |
2𝑐2

𝑖

=
∞∑
𝑖=1

∏𝑐𝑖
𝑗=1 | (𝑤 − 1/ 𝑗) |

2𝑐2
𝑖

<
∞∑
𝑖=1

(𝑟 + 1)𝑐𝑖

2𝑐2
𝑖

≤
∞∑
𝑖=1

(𝑟 + 1)𝑖

2𝑖2
.

To bound the last term, we proceed as follows:

∞∑
𝑖=1

(𝑟 + 1)𝑖

2𝑖2
=

∑
1≤𝑖≤log(𝑟+1)

(
𝑟 + 1

2𝑖

) 𝑖
+

∑
𝑖>log(𝑟+1)

(
𝑟 + 1

2𝑖

) 𝑖
<

<
∑

1≤𝑖≤log(𝑟+1)
(𝑟 + 1)𝑖 +

∞∑
𝑗=0

1
2 𝑗

< (𝑟 + 2)log(𝑟+1) + 2 < (2𝑟)log 2𝑟 + 2.

Putting all the inequalities together, we obtain

| 𝑓 (𝑧, 𝑤) | < 𝐶1 (2𝑟)
log 𝑟

2 +1((2𝑟)log 2𝑟 + 2). (3.2)

Since |𝐹 (𝑧, 𝑤) | =
√
|𝑔(𝑧) |2 + | 𝑓 (𝑧, 𝑤) |2, combining (3.1) and (3.2) proves the desired inequality. �

We will now estimate 𝜁 (𝐹, 𝑟, 𝛿) from above. Before we carry out the relevant computations, let us
explain the geometric intuition behind the estimate.

Zeros of F belong to intervals {2𝑘 } × [0, 1], 𝑘 ≥ 1. For a fixed 𝛿, we wish to prove that there
exists 𝑘0 such that for all 𝑘 ≥ 𝑘0, each of the intervals, {2𝑘 } × [0, 1] is fully contained in {|𝐹 | ≤ 𝛿}.
This is the content of Corollary 3.3. Now, on each of these intervals all zeros belong to the same
connected component of {|𝐹 | ≤ 𝛿} and are thus counted at most once in the coarse count 𝜁 (𝐹, 𝑟, 𝛿);
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Figure 4. Merging of zeros starting from 2𝑘0 .

see Figure 4. In other words, each of the intervals {2𝑘 } × [0, 1], 𝑘 ≥ 𝑘0 contributes at most one to
𝜁 (𝐹, 𝑟, 𝛿), and since they appear at rate log 𝑟 , we have that

𝜁 (𝐹, 𝑟, 𝛿) ≤ log 𝑟 + the error term.

The error term comes from zeros on intervals {2𝑘 } × [0, 1] for 𝑘 < 𝑘0 where we cannot guarantee
merging of zeros in {|𝐹 | ≤ 𝛿} (i.e., we observe no coarse effects). Moreover, since 𝑘0 depends only on
𝛿, the error terms only depends on 𝔠 and 𝛿. These considerations are formally proven in Proposition 3.4.

Lemma 3.2. For each 𝛿 ≥ 2
(𝑖−1)𝑖

2 −𝑐2
𝑖 , the whole interval {2𝑖} × [0, 2𝑐𝑖−

(𝑖−1)𝑖
2𝑐𝑖 𝛿

1
𝑐𝑖 ] is contained in

{|𝐹 | ≤ 𝛿}.

Proof. First, we notice that

|𝑔𝑖 (2𝑖) | =
𝑖−1∏
𝑗=1

(2𝑖− 𝑗 − 1) ·
∞∏

𝑗=𝑖+1
(1 − 2𝑖− 𝑗 ) <

𝑖−1∏
𝑗=1

2𝑖− 𝑗 = 2
(𝑖−1)𝑖

2 .

Second,

|𝐹 (2𝑖 , 𝑤) | = | 𝑓 (2𝑖 , 𝑤) | = 2−𝑐
2
𝑖 |𝑔𝑖 (2𝑖) | |𝑃𝑐𝑖 (𝑤) | < 2

(𝑖−1)𝑖
2 −𝑐2

𝑖 |𝑃𝑐𝑖 (𝑤) |.

Now, if 𝑤 ∈ [0, 1], |𝑃𝑐𝑖 (𝑤) | < 1, and the claim follows by the assumption on 𝛿. If 𝑤 ∈ (1, 2𝑐𝑖−
(𝑖−1)𝑖

2𝑐𝑖 𝛿
1
𝑐𝑖 ],

|𝑃𝑐𝑖 (𝑤) | < 𝑤𝑐𝑖 , and thus, |𝐹 (2𝑖 , 𝑤) | < 2
(𝑖−1)𝑖

2 −𝑐2
𝑖 𝑤𝑐𝑖 ≤ 𝛿, and the claim follows. �

Corollary 3.3. If 𝛿 ≥ 2
−𝑖 (𝑖+1)

2 , then the whole interval {2𝑖} × [0, 1] is contained in {|𝐹 | ≤ 𝛿}.

Proof. Since 𝑐2
𝑖 ≥ 𝑖2, 𝛿 ≥ 2

−𝑖 (𝑖+1)
2 implies that 𝛿 ≥ 2

(𝑖−1)𝑖
2 −𝑐2

𝑖 , and thus,

{2𝑖} × [0, 1] ⊂ {2𝑖} × [0, 2𝑐𝑖−
(𝑖−1)𝑖

2𝑐𝑖 𝛿
1
𝑐𝑖 ] ⊂ {|𝐹 | ≤ 𝛿}

by Lemma 3.2. �

https://doi.org/10.1017/fms.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.49


Forum of Mathematics, Sigma 17

Proposition 3.4. The following estimates hold for 𝑟 > 2 :

𝜁 (𝐹, 𝑟, 𝛿) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
1≤𝑖≤log 𝑟

𝑐𝑖 , if 0 < 𝛿 < 2
− log 𝑟 (log 𝑟+1)

2

log 𝑟 + 2 −
√
−2 log 𝛿 +

∑
1≤𝑖<

√
−2 log 𝛿

𝑐𝑖 , if 2
− log 𝑟 (log 𝑟+1)

2 ≤ 𝛿 < 1
2

log 𝑟, if 𝛿 ≥ 1
2

.

Proof. For a subset 𝑆 ⊂ C2, we write dim𝐻0 (𝑆) for the number of its path components. First, we notice
that for all 𝑟 ≥ 2,

dim𝐻0(𝐹−1 (0) ∩ 𝐵𝑟 ) = number of zeros in 𝐵𝑟 ≤
∑

1≤𝑖≤log 𝑟
𝑐𝑖 ,

and hence, 𝜁 (𝐹, 𝑟, 𝛿) ≤
∑

1≤𝑖≤log 𝑟
𝑐𝑖 , which proves the first case of the proposition.

Now, we treat the third case (i.e., 𝛿 ≥ 1
2 ). In this case, by Corollary 3.3, all intervals {2𝑖}×[0, 1], 𝑖 ≥ 1

are contained in {|𝐹 | ≤ 𝛿}.Thus, dim𝐻0({|𝐹 | ≤ 𝛿}∩𝐵𝑟 ) equals the number of intervals {2𝑖}×[0, 1], 𝑖 ≥
1 which intersect 𝐵𝑟 . This number is not greater than log 𝑟 , and thus, 𝜁 (𝐹, 𝑟, 𝛿) ≤ log 𝑟.

Finally, we treat the second case (i.e., 2
− log 𝑟 (log 𝑟+1)

2 ≤ 𝛿 < 1
2 ).Denote by 𝑟0 > 2 the unique real number

such that 𝛿 = 2
− log 𝑟0 (log 𝑟0+1)

2 . By the assumption, 𝑟0 ≤ 𝑟. Let 𝑘 ≥ 1 be an integer such that 2𝑘 < 𝑟0 ≤ 2𝑘+1.

Now 2
−(𝑘+1) (𝑘+2)

2 ≤ 𝛿, and hence by Corollary 3.3, {|𝐹 | ≤ 𝛿} contains all interval {2𝑖} × [0, 1], 𝑖 ≥ 𝑘 + 1.
Thus,

dim(𝐻0 ({|𝐹 | ≤ 𝛿} ∩ 𝐵𝑟 ) ≤ I + II, (3.3)

where

I = the number of zeros in 𝐵𝑟 ∩ ∪𝑘
𝑖=1{2

𝑖} × [0, 1],

and

II = the number of intervals {2𝑖} × [0, 1], 𝑖 ≥ 𝑘 + 1 which intersect 𝐵𝑟 .

From (3.3), it follows that

𝜁 (𝐹, 𝑟, 𝛿) ≤ I + II.

Since 𝑘 < log 𝑟0 <
√
−2 log 𝛿, we have that

I ≤
∑

1≤𝑖<
√
−2 log 𝛿

𝑐𝑖 .

However, 𝑟 ≥ 𝑟0, and thus, log 𝑟 ≥ log 𝑟0 > 𝑘 as well as

II ≤ log 𝑟 − 𝑘.

Last, we use
√
−2 log 𝛿 < log 𝑟0 + 1 ≤ 𝑘 + 2 to obtain the desired inequality. �

We will now provide a lower bound for 𝜁 (𝐹, 𝑟, 𝛿). As before, we start by explaining the geometric
intuition.

As r increases, new zeros of F appear on intervals {2𝑘 } × [0, 1] (i.e., at a rate log 𝑟). We wish to
prove that zeros on different intervals will not be counted as one zero in the coarse count 𝜁 (𝐹, 𝑟, 𝛿).
Precisely, in Lemma 3.5, we prove that for a fixed 𝛿, there exists 𝑘0 which depends only on 𝛿, such that
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Figure 5. Separation of zeros starting from 2𝑘0 .

the set {|𝐹 | ≤ 𝛿} does not intersect any of the hyperplanes 𝐻𝑘 = {𝑅𝑒(𝑧) = 2𝑘 + 2𝑘−1} for 𝑘 ≥ 𝑘0. Since
𝐻𝑘 separates intervals {2𝑘 } × [0, 1] and {2𝑘+1} × [0, 1], {|𝐹 | ≤ 𝛿} cannot contain zeros from different
intervals for 𝑘 ≥ 𝑘0; see Figure 5. Similarly to the case of the upper bound, this implies that

𝜁 (𝐹, 𝑟, 𝛿) ≥ log 𝑟 + the error term,

where the error term comes from zeros on intervals {2𝑘 } × [0, 1] for 𝑘 < 𝑘0 where we cannot guarantee
separation of components of {|𝐹 | ≤ 𝛿}. These considerations are formally proven in Proposition 3.6.

In the lemma and the proposition that follow, we denote by 𝐶0 = 1
2
∏∞

𝑖=1

(
1 − 3

2𝑖+1

)
.

Lemma 3.5. Let 𝑧 ∈ C be such that 𝑅𝑒(𝑧) = 2𝑘 + 2𝑘−1 for some integer 𝑘 ≥ 1. Then for all 𝑤 ∈ C, it
holds

|𝐹 (𝑧, 𝑤) | > 𝐶02
(𝑘−1)𝑘

2 .

Proof. We estimate

|𝐹 (𝑧, 𝑤) | ≥ |𝑔(𝑧) | =
∞∏
𝑖=1

|1 − 2−𝑖𝑧 | ≥
∞∏
𝑖=1

|1 − 2−𝑖𝑅𝑒(𝑧) | =

=
𝑘−1∏
𝑖=1

(
2𝑘 + 2𝑘−1

2𝑖
− 1

)
· 1

2
·

∞∏
𝑖=𝑘+1

(
1 − 2𝑘 + 2𝑘−1

2𝑖

)
> 𝐶02

(𝑘−1)𝑘
2 .

�

Proposition 3.6. For all 𝑟 ≥ 2, it holds

𝜁 (𝐹, 𝑟, 𝛿) ≥
{
	log 𝑟
 − 1, if 𝛿 ≤ 𝐶0

	log 𝑟
 −
√

2 log 𝛿 − 2 log𝐶0 − 2, if 𝐶0 < 𝛿 ≤ 𝐶0𝑟
log 𝑟−1

2
.

Proof. We first prove the case 𝛿 ≤ 𝐶0. By Lemma 3.5, we see that on each hyperplane {𝑅𝑒(𝑧) =
2𝑖 + 2𝑖−1}, 𝑖 ≥ 1, it holds |𝐹 (𝑧, 𝑤) | > 𝐶0 ≥ 𝛿. Hence, {|𝐹 | ≤ 𝛿} does not intersect any of these

https://doi.org/10.1017/fms.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.49


Forum of Mathematics, Sigma 19

hyperplanes and in particular, zeros (2𝑖 , 1), 𝑖 ≥ 1 all belong to different connected components of
{|𝐹 | ≤ 𝛿}. In other words,

𝜁 (𝐹, 𝑟, 𝛿) ≥ the number of points (2𝑖 , 1), 𝑖 ≥ 1 in 𝐵𝑟 ≥ 	log 𝑟
 − 1,

which finishes the proof of the first case.

To prove the second case, we first denote by 𝑟0 > 2 the unique real number such that 𝛿 = 𝐶0𝑟
log 𝑟0−1

2
0 .

By assumption, 𝑟0 ≤ 𝑟 , and we denote by 𝑘 ≥ 1 an integer such that 2𝑘 ≤ 𝑟0 < 2𝑘+1.Now 𝛿 < 𝐶02
𝑘 (𝑘+1)

2 ,
and Lemma 3.5 implies that {|𝐹 | ≤ 𝛿} does not intersect hyperplanes {𝑅𝑒(𝑧) = 2𝑖 +2𝑖−1}, 𝑖 ≥ 𝑘 +1. As
in the first case, zeros (2𝑖 , 1), 𝑖 ≥ 𝑘 + 1 belong to different connected components of {|𝐹 | ≤ 𝛿} and thus

𝜁 (𝐹, 𝑟, 𝛿) ≥ the number of points (2𝑖 , 1), 𝑖 ≥ 𝑘 + 1 in 𝐵𝑟 ≥ 	log 𝑟
 − 1 − 𝑘.

Since log 𝛿 = log𝐶0+ 1
2 log 𝑟0(log 𝑟0−1) > log𝐶0+ 1

2 (𝑘−1)2, we have that 𝑘 <
√

2 log 𝛿 − 2 log𝐶0+1,
and the claim follows. �

4. Counting islands

Let us start with the proof of Theorem 1.7, which, as was mentioned in the introduction, is a an easy
corollary of Rouché’s theorem.

Proof of Theorem 1.7. By Rouché’s theorem for analytic mappings fromC𝑛 toC𝑛 (see, for example, [14,
Section 2.1.3]), if 𝑔 : C𝑛 → C𝑛 is a polynomial mapping of degree at most k such that 𝑑𝐶0 ( 𝑓 |𝐵𝑟 , 𝑔 |𝐵𝑟 ) <
𝛿/2, then

𝜏( 𝑓 , 𝑟, 𝛿) ≤ 𝜏(𝑔, 𝑟, 𝛿/2).

By Bézout’s theorem, however,

𝜏(𝑔, 𝑟, 𝛿/2) ≤ 𝑘𝑛.

By Proposition 2.1, it is enough to take k such that 𝐶𝑎𝑎
−𝑘𝜇( 𝑓 , 𝑎𝑟) < 𝛿/2. It is easy to see that the

optimal such k satisfies

𝑘 ≤ 𝐶 ′
𝑎 log(𝜇( 𝑓 , 𝑎𝑟)/𝛿).

Combining the three displayed inequalities finishes the proof. �

Before we give a formal proof of Theorem 1.9, let us briefly explain the geometric intuition as we did
for the proof of Theorem 1.5. As we already explained, for a fixed 𝛿, the sublevel set {|𝐹 | ≤ 𝛿} stabilizes
starting from 𝑟 = 2𝑘0 into components which contain intervals {2𝑘 } × [0, 1], 𝑘 ≥ 𝑘0, but which are
separated by hyperplanes 𝐻𝑘 = {𝑅𝑒(𝑧) = 2𝑘 + 2𝑘−1}. However, we will show that these components, in
fact, contain intervals {2𝑘 }× [0, 𝐿(𝑘)], where 𝐿(𝑘) can grow arbitrarily fast, the lower bound on growth
depending on 𝔠. This follows from Lemma 3.2. In other words, components of {|𝐹 | ≤ 𝛿} get elongated
in w-direction, and thus, they partly remain outside of 𝐵𝑟 for very large r, as shown on Figure 6. Due to
this elongation, most of the components of {|𝐹 | ≤ 𝛿} only contribute to 𝜁 (𝐹, 𝑟, 𝛿) and not to 𝜁0 (𝐹, 𝑟, 𝛿),
which leads to the upper bound given by Theorem 1.9.

Proof of Theorem 1.9. Since 𝜁0 (𝐹, 𝑟, 𝛿) is decreasing in 𝛿, it is enough to prove the statement for 𝛿 ≤ 1.
Denote by 𝑏𝑖 = 2𝑐𝑖−

(𝑖−1)𝑖
2𝑐𝑖 𝛿

1
𝑐𝑖 . Let 𝑖0 (𝑙, 𝜆, 𝛿) be the smallest index such that

1) For all 𝑖 ≥ 𝑖0, 𝛿 ≥ max(2−𝑐𝑖 , 2
(𝑖−1)𝑖

2 −𝑐2
𝑖 );

2) log 𝑏𝑖0 ≥ 𝑖0;
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Figure 6. Components count for 𝜁 (𝐹, 𝑟, 𝛿), but not for 𝜁0 (𝐹, 𝑟, 𝛿).

3) For all 𝑖 ≥ 𝑖0, 𝑏𝑖 is increasing.

Now,
𝜁0 (𝐹, 𝑟, 𝛿) ≤

∑
1≤𝑖≤log 𝑏𝑖0

𝑐𝑖 + I, (4.1)

where
I = the number of islands with zeros from {2𝑖} × [0, 1], 𝑖 > log 𝑏𝑖0 .

Since the first term of the right-hand side of this inequality depends only on 𝛿 and 𝔠, we wish to estimate
I. If 𝑟 ≤ 𝑏𝑖0 , then 2𝑖 > 𝑟 and I = 0. Thus, we assume that 𝑟 > 𝑏𝑖0 . First, from 2), it follows that

I ≤ the number of islands with zeros from {2𝑖} × [0, 1], 𝑖 > 𝑖0. (4.2)

Now, 3) implies that there exists a unique integer 𝑘 ≥ 𝑖0 such that 𝑏𝑘 ≤ 𝑟 < 𝑏𝑘+1. Due to 1), we may
apply Lemma 3.2 to conclude that {|𝐹 | ≤ 𝛿} contains intervals {2𝑖} × [0, 𝑏𝑖] for all 𝑖 ≥ 𝑖0. This fact,
combined with (4.2), implies

I ≤ the number of intervals {2𝑖} × [0, 𝑏𝑖], 𝑖 > 𝑖0 contained in 𝐵𝑟 ≤ 𝑘 − 𝑖0.

Going back to (4.1), we have that

𝜁0 (𝐹, 𝑟, 𝛿) ≤
∑

1≤𝑖≤log 𝑏𝑖0

𝑐𝑖 − 𝑖0 + 𝑘. (4.3)
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Finally, 1) gives us that 𝛿
1
𝑐𝑘 ≥ 1

2 , and hence, 2𝑐𝑘−
(𝑘−1)𝑘

2𝑐𝑘
−1 ≤ 𝑏𝑘 ≤ 𝑟. Taking logarithms, we obtain that

𝑐𝑘 ≤ log 𝑟 + (𝑘 − 1)𝑘
2𝑐𝑘

+ 1.

Since (𝑘−1)𝑘
2𝑐𝑘 + 1 has an upper bound which only depends on 𝜆, taking logarithms l times gives us

log . . . log︸������︷︷������︸
𝑙 times

𝑐𝑘 ≤ log . . . log︸������︷︷������︸
𝑙+1 times

𝑟 + 𝑎𝜆,

where 𝑎𝜆 depends only on 𝜆. Substituting the desired value of 𝑐𝑘 in this inequality together with (4.3)
finishes the proof. �

5. Comparison with other results

The goal of this section is to compare the results of this paper to the results of [24]. More precisely, we
will deduce Theorem 5.1 in [24] from Theorem 1.7, as well as show that Theorem 1.2 does not follow
from Theorem 5.1 in [24]. We start by recalling this result.

For an entire map 𝑓 : C𝑛 → C𝑛, let 𝐽 𝑓 denote the complex Jacobian matrix. Given a sequence of
zeros 𝜉 = {𝜉𝑖} ⊂ 𝑓 −1(0), we define 𝜁𝜉 ( 𝑓 , 𝑟) to be the number of elements of 𝜉 inside a ball 𝐵𝑟 .

Theorem 5.1 (Theorem 5.1 in [24]). Let 𝑓 : C𝑛 → C𝑛 be an entire map and 𝜉 = {𝜉𝑖} a sequence of
zeros of 𝑓 . If there exist real numbers 𝑐 > 0 and b such that

(∀𝑖) | det 𝐽 𝑓 (𝜉𝑖) | ≥ 𝑐(𝜇( 𝑓 , |𝜉𝑖 |))−𝑏,

then for any 𝑎 > 1, it holds

𝜁𝜉 ( 𝑓 , 𝑟) = 𝑂 ((log 𝜇( 𝑓 , 𝑎𝑟))𝑛),

when 𝑟 → ∞.

First, we give a proof of Theorem 5.1 using Theorem 1.7. The strategy of the proof follows [22].
Namely, the main results of [22], Theorems 1.1 and 1.2, are proven using a lemma which was referred
to as ‘Weak Bézout estimate’; see [22, Lemma 3.1]. This lemma establishes an inequality

𝜏( 𝑓 , 𝑟, 𝛿) ≤ 𝐶𝑛

(
(𝑟 + 1) 𝜇( 𝑓 , 𝑟 + 1)

𝛿

)2𝑛
, (5.1)

with 𝐶𝑛 which depends only on 𝑛. The proof of (5.1) relies on a global version of the Chern-Levine-
Nirenberg inequality; see [22, Theorem 2.1] and references therein. Substituting (5.1) with Theorem
1.7 and using the same general arguments as in [22] proves Theorem 5.1. To implement this strategy,
we will need the following lemma.

Lemma 5.2. Let 𝑓 : C𝑛 → C𝑛 be an entire map and 𝜉 a zero of f such that 𝐽 𝑓 (𝜉) ≠ 0. Then, for all
𝑧 ∈ C𝑛 such that

|𝑧 | ≤ 1

2
(
𝑛! (𝜇 ( 𝑓 , |𝜉 |+1))𝑛

| det 𝐽 𝑓 ( 𝜉 ) | + 1
) ,

it holds

| 𝑓 (𝜉 + 𝑧) | ≥
| det 𝐽 𝑓 (𝜉) | · |𝑧 |

2𝑛!(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1 .
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The proof of Lemma 5.2 can be extracted from the proof of Theorem 1.1 in [22]. We present it here for
the sake of completeness. We will use the following auxiliary statement, which is a direct consequence
of Schwarz lemma; see [22, Lemma 3.4] for details.

Lemma 5.3. Let 𝑓 : C𝑛 → C𝑛 be an entire map such that 𝑓 (0) = 0, 𝐽 𝑓 (0) = 0. Then for all z such that
|𝑧 | ≤ 1

2𝜇 ( 𝑓 ,1) , it holds | 𝑓 (𝑧) | ≤ 1
2 |𝑧 |.

Proof of Lemma 5.2. We start by proving the following auxiliary inequality:

‖𝐽 𝑓 (𝜉)−1‖𝑜𝑝 ≤ 𝑛!
(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1

| det 𝐽 𝑓 (𝜉) |
, (5.2)

where ‖ · ‖𝑜𝑝 denotes the operator norm. Recall that

‖𝐽 𝑓 (𝜉)−1‖𝑜𝑝 =
1

| det 𝐽 𝑓 (𝜉) |
‖ adj(𝐽 𝑓 (𝜉))‖𝑜𝑝,

and thus, we need to prove that

‖ adj(𝐽 𝑓 (𝜉))‖𝑜𝑝 ≤ 𝑛!(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1.

By Cauchy-Schwarz inequality,

‖ adj(𝐽 𝑓 (𝜉))‖𝑜𝑝 ≤ 𝑛 · max
𝑖, 𝑗

| adj(𝐽 𝑓 (𝜉))𝑖, 𝑗 |,

and we are left to prove that

max
𝑖, 𝑗

| adj(𝐽 𝑓 (𝜉))𝑖, 𝑗 | ≤ (𝑛 − 1)!(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1.

For each i and j, adj(𝐽 𝑓 (𝜉))𝑖, 𝑗 is a sum of (𝑛 − 1)! terms, each of which is a product of 𝑛 − 1 partial
derivatives of 𝑓 . Thus,

max
𝑖, 𝑗

| adj(𝐽 𝑓 (𝜉))𝑖, 𝑗 | ≤ (𝑛 − 1)! · (max
𝑖

|𝜕𝑖 𝑓 (𝜉) |)𝑛−1.

Finally, Cauchy’s inequality yields that max𝑖 |𝜕𝑖 𝑓 (𝜉) | ≤ 𝜇( 𝑓 , |𝜉 | + 1), which completes the proof of
(5.2).

Now, let 𝑔 : C𝑛 → C
𝑛 be an entire map given by 𝑔(𝑧) = (𝐽 𝑓 (𝜉))−1 𝑓 (𝜉 + 𝑧). Since 𝑔(0) = 0 and

𝐽𝑔 (0) = idC𝑛 , we may apply Lemma 5.3 to the map 𝑔(𝑧) − 𝑧, which gives us

|𝑔(𝑧) − 𝑧 | ≤ 1
2
|𝑧 |, (5.3)

for all z, such that |𝑧 | ≤ 1
2𝜇 (𝑔 (𝑧)−𝑧,1) . Moreover, 𝜇(𝑔(𝑧) − 𝑧, 1) ≤ 𝜇(𝑔, 1) + 1 implies that (5.3) holds for

all z with |𝑧 | ≤ 1
2(𝜇 (𝑔,1)+1) , and triangle inequality further implies that

|𝑔(𝑧) | ≥ 1
2
|𝑧 | (5.4)

as long as |𝑧 | ≤ 1
2(𝜇 (𝑔,1)+1) . From the definition of g and (5.4), it follows that

| 𝑓 (𝜉 + 𝑧) | · ‖ (𝐽 𝑓 (𝜉))−1‖𝑜𝑝 ≥ 1
2
|𝑧 |, (5.5)
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for all z such that |𝑧 | ≤ 1
2(𝜇 (𝑔,1)+1) . Applying (5.2) to (5.5) yields

| 𝑓 (𝜉 + 𝑧) | · 𝑛!
(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1

| det 𝐽 𝑓 (𝜉) |
≥ 1

2
|𝑧 |, (5.6)

for all z such that |𝑧 | ≤ 1
2(𝜇 (𝑔,1)+1) . Using (5.2) again gives us

|𝑔(𝑧) | ≤ | 𝑓 (𝜉 + 𝑧) | · ‖ (𝐽 𝑓 (𝜉))−1‖𝑜𝑝 ≤ | 𝑓 (𝜉 + 𝑧) | · 𝑛!
(𝜇( 𝑓 , |𝜉 | + 1))𝑛−1

| det 𝐽 𝑓 (𝜉) |
,

and thus,

𝜇(𝑔, 1) ≤ 𝑛!
(𝜇( 𝑓 , |𝜉 | + 1))𝑛
| det 𝐽 𝑓 (𝜉) |

.

Combining the last inequality and (5.6) finishes the proof. �

Proof of Theorem 5.1. For simplicity, we assume that 𝑏 ≥ 0 and 𝑓 (0) ≠ 0. The general case readily
reduces to this one.

Let 𝑟 ≥ 0 and 𝜉𝑖 ∈ 𝐵𝑟 . By the assumption

| det 𝐽 𝑓 (𝜉𝑖) | ≥ 𝑐(𝜇( 𝑓 , |𝜉𝑖 |))−𝑏 ≥ 𝑐(𝜇( 𝑓 , 𝑟))−𝑏 ≥ 𝑐(𝜇( 𝑓 , 𝑟 + 1))−𝑏,

and since 𝜇( 𝑓 , |𝜉𝑖 | + 1) ≤ 𝜇( 𝑓 , 𝑟 + 1), Lemma 5.2 gives us that

| 𝑓 (𝜉𝑖 + 𝑧) | ≥ 𝛿 :=
𝑐 |𝑧 |

2𝑛!(𝜇( 𝑓 , 𝑟 + 1))𝑛−1+𝑏 , (5.7)

for all z such that

|𝑧 | ≤ 𝜀 :=
1

2(𝑐−1 · 𝑛!(𝜇( 𝑓 , 𝑟 + 1))𝑛+𝑏 + 1)
.

Since 𝜀 < 1
2 < 1, a connected component of {| 𝑓 | ≤ 𝛿} which contains 𝜉𝑖 is itself fully contained in

𝐵𝑟+1. The same holds for each 𝜉 𝑗 ∈ 𝐵𝑟 , and thus,

𝜁𝜉 ( 𝑓 , 𝑟) ≤ 𝜏( 𝑓 , 𝑟 + 1, 𝛿).

Finally, by (5.7), 𝛿/2 ≤ 𝜇( 𝑓 , 𝑎(𝑟 + 1))/2 for all 𝑎 > 1, and we may apply Theorem 1.7, which yields

𝜁𝜉 ( 𝑓 , 𝑟) ≤ 𝜏( 𝑓 , 𝑟 + 1, 𝛿) ≤ 𝐶𝑛,𝑎

(
log

2 · 𝜇( 𝑓 , 𝑎(𝑟 + 1))
𝛿

)𝑛
.

Substituting the expression for 𝛿 into this inequality and using 𝜇( 𝑓 , 𝑟 + 1) ≤ 𝜇( 𝑓 , 𝑎(𝑟 + 1)) gives us

𝜁𝜉 ( 𝑓 , 𝑟) ≤ 𝐶𝑛,𝑎

(
log

4𝑛! · (𝜇( 𝑓 , 𝑎(𝑟 + 1)))𝑛+𝑏
𝑐 |𝑧 |

)𝑛
for all z such that |𝑧 | ≤ 𝜀. Taking |𝑧 | = 𝜀 yields

𝜁𝜉 ( 𝑓 , 𝑟) ≤ 𝐶𝑛,𝑎
(
𝐴𝑛,𝑏 log 𝜇( 𝑓 , 𝑎(𝑟 + 1)) + 𝐵𝑛,𝑐

)𝑛
,

where 𝐴, 𝐵, 𝐶 depend on 𝑛, 𝑎, 𝑏, 𝑐 as indicated. This completes the proof. �
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So far, we proved that Theorem 5.1 follows from Theorem 1.7. Now, we wish to show that Theorem 1.2
does not follow from Theorem 5.1. Namely, one may imagine the following scenario. Let 𝑓 : C𝑛 → C𝑛
be an entire map. Although the classical count of zeros of f might not satisfy the transcendental Bézout
bound, it may still happen that for a fixed 𝛿 > 0, we can choose a sequence of zeros {𝜉𝑖} from 𝑓 −1(𝐵𝛿)
such that Theorem 5.1 applies to this sequence and 𝜁 ( 𝑓 , 𝑟, 𝛿) = 𝑂 (𝜁𝜉 ( 𝑓 , 𝑟)). In this case, Theorem 5.1
would imply Theorem 1.2 (at least up to a constant which depends on 𝛿). However, our next result rules
out this possibility.
Proposition 5.4. Let 𝔠 = {𝑐𝑖} be an increasing sequence of positive integers such that lim𝑖→+∞

𝑖
𝑐𝑖

= 0
and F the corresponding Cornalba-Shiffman map. For all real numbers 𝑐 > 0 and b, the inequality

| det 𝐽 𝑓 (𝜉) | ≥ 𝑐(𝜇( 𝑓 , |𝜉 |))−𝑏

holds for at most finitely many zeros 𝜉 ∈ 𝐹−1 (0).
Proof. Since the zeros of Cornalba-Shiffman maps are isolated and 𝜇(𝐹, 𝑟) → +∞ as 𝑟 → +∞, it is
enough to prove the proposition for 𝑏 > 0. Since 𝐹 (𝑧, 𝑤) = (𝑔(𝑧), 𝑓 (𝑧, 𝑤)), we have that

det 𝐽𝐹 = 𝜕𝑧𝑔𝜕𝑤 𝑓 − 𝜕𝑤𝑔𝜕𝑧 𝑓 = 𝜕𝑧𝑔𝜕𝑤 𝑓 .

All relevant infinite sums and products converge uniformly on compact sets, and thus, we may compute

𝜕𝑧𝑔 =
∞∑
𝑙=1

−2−𝑙𝑔𝑙

as well as

𝜕𝑤 𝑓 =
∞∑
𝑙=1

2−𝑐
2
𝑙 𝑔𝑙𝜕𝑤𝑃𝑐𝑙 .

We wish to evaluate 𝐽𝐹 at zeros of 𝐹. To this end, let us denote the zeros of F by 𝜉𝑖, 𝑗 = (2𝑖 , 1/ 𝑗) for
𝑖 ≥ 1 and 1 ≤ 𝑗 ≤ 𝑐𝑖 . We calculate

𝜕𝑧𝑔(2𝑖) = −2−𝑖𝑔𝑖 (2𝑖)

as well as

𝜕𝑤 𝑓 (𝜉𝑖, 𝑗 ) = 2−𝑐
2
𝑖 𝑔𝑖 (2𝑖)𝜕𝑤𝑃𝑐𝑖 (1/ 𝑗) = 2−𝑐

2
𝑖 𝑔𝑖 (2𝑖)

∏
1≤𝑙≤𝑐𝑖 ,𝑙≠ 𝑗

(
1
𝑗
− 1
𝑙

)
.

Since
���∏1≤𝑙≤𝑐𝑖 ,𝑙≠ 𝑗

(
1
𝑗 −

1
𝑙

)��� ≤ 1, we get that for all i and j,

| det 𝐽𝐹 (𝜉𝑖, 𝑗 ) | ≤ 2−𝑐
2
𝑖 −𝑖 (𝑔𝑖 (2𝑖))2. (5.8)

Moreover,

𝑔(2𝑖) =
𝑖−1∏
𝑙=1

(1 − 2𝑖−𝑙) ·
∞∏

𝑙=𝑖+1
(1 − 2𝑖−𝑙) =

𝑖−1∏
𝑙=1

(1 − 2𝑙) ·
∞∏
𝑙=1

(1 − 2−𝑙),

and thus, we have that

|𝑔𝑖 (2𝑖) | <
𝑖−1∏
𝑙=1

(2𝑙 − 1) <
𝑖−1∏
𝑙=1

2𝑙 = 2
𝑖 (𝑖−1)

2 .
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Combining this inequality with (5.8) yields

| det 𝐽𝐹 (𝜉𝑖, 𝑗 ) | < 2−𝑐
2
𝑖 +𝑖

2−2𝑖 , (5.9)

for all i and 𝑗 . By the assumption on 𝔠, we have that for any 𝑏 > 0, 𝑐2
𝑖 ≥ 5𝑏(𝑖 +1)2 + 𝑖2 for all but finitely

many 𝑖. Thus, for all but finitely many i, it holds

| det 𝐽𝐹 (𝜉𝑖, 𝑗 ) | < 2−5𝑏 (𝑖+1)2−2𝑖 (5.10)

for all 𝑗 . Since |𝜉𝑖, 𝑗 | = | (2𝑖 , 1/ 𝑗) | < 2𝑖+1, we have that

2−5𝑏 (𝑖+1)2
< 2−5𝑏 (log |𝜉𝑖, 𝑗 |)2

<
(
2

3
2 (log |𝜉𝑖, 𝑗 |)2+ 7

2 log |𝜉𝑖, 𝑗 |
)−𝑏

. (5.11)

Now, by Proposition 3.1, (
2

3
2 (log |𝜉𝑖, 𝑗 |)2+ 7

2 log |𝜉𝑖, 𝑗 |
)−𝑏

≤ 2𝑏𝐶 (𝜇(𝐹, |𝜉𝑖, 𝑗 |))−𝑏, (5.12)

where 𝐶 > 0 is an absolute constant. Putting (5.10), (5.11) and (5.12) together gives us

| det 𝐽𝐹 (𝜉𝑖, 𝑗 ) | < 2−2𝑖+𝑏𝐶 (𝜇(𝐹, |𝜉𝑖, 𝑗 |))−𝑏

for all but finitely many indices 𝑖, 𝑗 . Since for every 𝑎 > 0, 2−2𝑖+𝑏𝐶 < 𝑎 for all but finitely many i, the
proof follows. �

Remark 5.5. Different results in the spirit of Theorem 5.1 were obtained in [22] and [23]. In one way
or another, these results rely on lower bounds on det 𝐽 𝑓 at zeros of 𝑓 . Namely, in [22], | det 𝐽 𝑓 (𝜉𝑖) |
is assumed to be bounded from below by a constant, whereas in [23], the upper bound for 𝜁𝜉 ( 𝑓 , 𝑟)
involves terms of the form log 1

det 𝐽 𝑓 ( 𝜉𝑖) . From (5.9), it follows that by taking {𝑐𝑖} which increases
sufficiently fast, we can make | det 𝐽𝐹 (𝜉𝑖, 𝑗 ) | of Cornalba-Shiffman maps decrease arbitrarily fast. Since,
by Theorem 1.5, 𝜁 (𝐹, 𝑟, 𝛿) increases as log 𝑟 independently of {𝑐𝑖}, we conclude that Theorem 1.2
cannot be deduced from the results of [22] and [23] using the above-described strategy.

Remark 5.6. It is interesting to notice that Proposition 5.4 does not rule out a possibility that Theorem
1.7, or at least the same bound for 𝜁0, can be deduced from Theorem 5.1. Indeed, we have not proven
any lower bound on the count of islands of Cornalba-Shiffman maps. As a matter of fact, it is not even
clear if for each 𝛿 > 0 and each sequence {𝑐𝑖}, 𝜁0 (𝐹, 𝑟, 𝛿) → +∞ as 𝑟 → +∞. Namely, it may happen
that starting from certain finite 𝑟0, all connected components of {|𝐹 | ≤ 𝛿}, which contain zeros of F,
elongate all the way to infinity in the w-direction and thus never become islands, but rather remain
peninsulas for all 𝑟 > 𝑟0.

Question 5.7. Is it true that for each 𝛿 > 0 and all sequences 𝔠, 𝜁0 (𝐹, 𝑟, 𝛿) → +∞ as 𝑟 → +∞? If so,
what is the possible growth rate of 𝜁0 (𝐹, 𝑟, 𝛿) depending on parameters 𝛿 and 𝔠?

Remark 5.8. The main technical ingredient in [24] and [23] is Theorem 3.6 from [24] (slightly modified
in [23]). Although the proof of this result has certain similarities with the proof of Theorem 1.7, it seems
that the two approaches are fundamentally different. Namely, approximation of a holomorphic map by
a polynomial is the key idea in the proof of Theorem 1.7, whereas it is not directly used in the proof of
Theorem 3.6 in [24]. It would be interesting to explore how the methods of [24] and [23] relate to the
coarse counts of zeros. In the opposite direction, it would be interesting to deduce the results of [23]
using the same strategy as above, by proving a suitable analogue of Theorem 1.7.
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6. Coarse counts and persistent homology

In this section, we discuss results generalizing Theorems 1.2 and 2.6, formulated in terms of persistent
homology and barcodes.

6.1. Persistence modules and barcodes

Recall that for a Morse function 𝑓 : 𝑀 → R on a compact manifold and a coefficient fieldK, its barcode
in degree 𝑞 ∈ Z is a finite multi-set B𝑞 ( 𝑓 ;K) of intervals with multiplicities (𝐼 𝑗 , 𝑚 𝑗 ), where 𝑚 𝑗 ∈ N
and 𝐼 𝑗 is finite, that is of the form [𝑎 𝑗 , 𝑏 𝑗 ) or infinite, that is of the form [𝑐 𝑗 ,∞). The number of infinite
bars is equal to the Betti number 𝑏𝑞 (𝑀;K) = dim𝐻𝑞 (𝑀;K).

This barcode is obtained algebraically from the persistence module 𝑉𝑞 ( 𝑓 ;K) consisting of vector
spaces 𝑉𝑞 ( 𝑓 ;K)𝑡 = 𝐻𝑞 ({ 𝑓 ≤ 𝑡};K) parametrized by 𝑡 ∈ R and connecting maps 𝜋𝑠,𝑡 : 𝑉𝑞 ( 𝑓 ;K)𝑠 →
𝑉𝑞 ( 𝑓 ;K)𝑡 induced by the inclusions { 𝑓 ≤ 𝑠} ↩→ { 𝑓 ≤ 𝑡} for 𝑠 ≤ 𝑡. These maps satisfy the structure
relations of a persistence module: 𝜋𝑠,𝑠 = id𝑉𝑞 ( 𝑓 ;K)𝑠 for all s and 𝜋𝑠2 ,𝑠3◦𝜋𝑠1 ,𝑠2 = 𝜋𝑠1 ,𝑠3 for all 𝑠1 ≤ 𝑠2 ≤ 𝑠3.
The total barcode of f is set to be

B( 𝑓 ;K) = �𝑞∈ZB𝑞 ( 𝑓 ;K),

where � stands for the sum operation on multisets. This is the barcode of the persistence module

𝑉 ( 𝑓 ;K) = ⊕𝑞∈Z𝑉𝑞 ( 𝑓 ;K).

On a compact manifold M with boundary 𝜕𝑀 and a Morse function 𝑓 : 𝑀 → R in the sense of
manifolds with boundary, we may define the persistence module and barcode of f as above.

One simple property of the barcode of this persistence module is that the number of bars in the
barcode coincides with the number of their starting points. Another property is that the number of bars
containing a given interval [𝑎, 𝑏] is dim Im(𝜋𝑎,𝑏).

Recall that the length of a finite bar [𝑎, 𝑏) is 𝑏 − 𝑎 and the length of an infinite bar [𝑐,∞) is +∞. We
require the following notion: for 𝛿 ≥ 0, let N𝛿 ( 𝑓 ;K) denote the number of bars of length > 𝛿 in the
barcode B( 𝑓 ;K). Similarly, N𝑞, 𝛿 ( 𝑓 ;K) is the number of bars of length > 𝛿 in the barcode B𝑞 ( 𝑓 ;K) and
N𝛿 ( 𝑓 ;K) =

∑
𝑞 N𝑞, 𝛿 ( 𝑓 ;K). The definitions of N𝑞, 𝛿 ( 𝑓 ;K) and N𝛿 ( 𝑓 ;K) extend to any continuous

function f on a compact manifold with boundary, as explained in detail in [9, Section 2.2].
We refer to [30] for a systematic introduction to persistence modules with a view toward applications

in topology and analysis. The only result which we require here is the following direct consequence of
the algebraic isometry theorem [5] (see [30, Theorem 2.2.8, Equation (6.4)]).

Theorem 6.1. Let 𝑓 , 𝑔 : 𝑀 → R be two functions on a compact manifold M with boundary such that
𝑑𝐶0 ( 𝑓 , 𝑔) ≤ 𝑐 − 𝜖/2 for 𝑐 > 𝜖/2 > 0. Then for all 𝑞 ∈ Z, N𝑞,2𝑐 ( 𝑓 ) ≤ N𝑞,𝜖 (𝑔).

6.2. Bounds on barcodes of analytic functions

For a continuous map 𝑓 : C𝑛 → C𝑚, and 𝑟 > 0, set

N𝛿 ( 𝑓 , 𝑟) = N𝛿 (| 𝑓 |
��
𝐵𝑟
), N𝑞, 𝛿 ( 𝑓 , 𝑟) = N𝑞, 𝛿 (| 𝑓 |

��
𝐵𝑟
).

Consider the invariants 𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) from Section 1.5.1. Note that

𝜁𝑑 ( 𝑓 , 𝑟, 𝛿) ≤ N𝛿 ( 𝑓 , 𝑟), 𝜁 ( 𝑓 , 𝑟, 𝛿) ≤ N0, 𝛿 ( 𝑓 , 𝑟),

as shown in Lemma 6.4 and Remark 6.5 in [9]. Using the terminology and methods of persistence, we
can prove the following result, which therefore generalizes Theorems 1.2 and 2.6.
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Theorem 6.2. For any analytic map 𝑓 : C𝑛 → C𝑚, 𝑚 ≤ 𝑛 and any 𝑎 > 1, 𝑟 > 0, and 𝛿 ∈ (0, 𝜇 ( 𝑓 ,𝑎𝑟 )2 ),
we have

N𝛿 ( 𝑓 ) ≤ 𝐶

(
log

(
𝜇( 𝑓 , 𝑎𝑟)

𝛿

))2𝑛
, (6.1)

N0, 𝛿 ( 𝑓 ) ≤ 𝐶

(
log

(
𝜇( 𝑓 , 𝑎𝑟)

𝛿

))2𝑛−1
, (6.2)

where the constant C depends only on a and n.

Since, given Theorem 6.1, this result reduces essentially to our proofs above and does not influence
the main results of the paper, we only briefly sketch its proof.

Sketch of the proof. First, we reduce as above to the case 𝑚 = 𝑛; see Remark 2.5. By Proposition
2.1, we can approximate 𝑓 by a complex Taylor polynomial mapping 𝑝 at 0 of degree < 𝑘 such
that | 𝑓 − 𝑝 | ≤ 𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟) on 𝐵𝑟 . Here, we choose 𝑘 to be the minimal positive integer such that
𝐶𝑎𝑎

−𝑘𝜇( 𝑓 , 𝑎𝑟) < 𝛿/2. Furthermore, by a classical but lengthy transversality argument (which we omit),
we may assume that ℎ = |𝑝 |2 has no critical points on 𝜕𝐵𝑟 and is Morse on 𝐵𝑟 and ℎ|𝜕𝐵𝑟 is Morse.
Now, by Proposition 2.2, the number of critical points of h on 𝐵𝑟 is at most 𝐶𝑘2𝑛, the number of critical
points of h of index 0 is at most 𝐶𝑘𝑛, whereas the number of critical points of ℎ|𝜕𝐵𝑟 is at most 𝐶𝑘2𝑛−1.
The starting points of bars of degree 0 correspond to critical points of h of index 0 and to critical points
of index 0 of ℎ|𝜕𝐵𝑟 with gradient pointing inwards, whereas the endpoints of bars in general correspond
to a subset of the critical points of h and of ℎ|𝜕𝐵𝑟 . This follows from Morse theory for manifolds
with boundary and was discussed in a more general framework in [9, Proposition 4.12]. Therefore,
N𝜖 (|𝑝 |) ≤ 𝐶𝑘2𝑛 and N0, 𝜖 (|𝑝 |) ≤ 𝐶𝑘2𝑛−1 for any 𝜖 > 0. Taking | | 𝑓 | − |𝑝 | | ≤ | 𝑓 − 𝑝 | < 𝑐 < 𝛿/2 and
0 < 𝜖 < 𝑐 − 𝛿, Theorem 6.1 implies N𝛿 (| 𝑓 |) ≤ 𝐶𝑘2𝑛 and N0, 𝛿 (| 𝑓 |) ≤ 𝐶𝑘2𝑛−1, which translates to the
required bound by our choice of 𝑘.

Remark 6.3. An entire map 𝑓 : C𝑛 → C𝑛 naturally gives rise to a persistence module𝐻∗ ({| 𝑓 | ≤ 𝑡}∩𝐵𝑟 )
in two parameters r and 𝑡. In this paper, we considered it as an r-parametrized family of persistence
modules with one parameter t. It would be interesting to study this persistence module from the
viewpoint of multiparameter persistence (see [6] and references therein), for example, by using the
recently introduced language of signed barcodes; see [7, 8, 29].
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