ON SIMPLE ALTERNATIVE RINGS

A. A. ALBERT

1. Introduction. The only known simple alternative rings which are not associative are the Cayley algebras. Every such algebra has a scalar extension which is isomorphic over its center \mathbf{F} to the algebra $\mathbf{C}=e_{11} \mathbf{F}+e_{00} \mathbf{F}+\mathbf{C}_{10}+\mathbf{C}_{01}$, where $\mathbf{C}_{i j}=e_{i j} \mathbf{F}+f_{i j} \mathbf{F}+g_{i j} \mathbf{F}(i, j=0,1 ; i \neq j)$. The elements e_{11} and e_{0} are orthogonal idempotents and $e_{i i} x_{i j}=x_{i j} e_{i j}=x_{i j}, \quad e_{j i} x_{i j}=x_{i j} e_{i i}=0$, $x_{i j}{ }^{2}=0$ for every $x_{i j}$ of $\mathbf{C}_{i j}$. The multiplication table of \mathbf{C} is then completed by the relations ${ }^{1}$

$$
\begin{gather*}
f_{10} g_{10}=e_{01}, g_{10} e_{10}=f_{01}, e_{10} f_{10}=g_{01}, \tag{1}\\
g_{01} f_{01}=e_{10}, e_{01} g_{01}=f_{10}, f_{01} e_{01}=g_{10}, \tag{2}\\
e_{i j} e_{i i}=f_{i i} f_{i i}=g_{i j} e_{j i}=e_{i i}, \tag{3}\\
e_{i j} f_{i i}=e_{i j} g_{i i}=f_{i i} e_{j i}=f_{i j} g_{i i}=g_{i j} e_{i j}=g_{i i} f_{i j}=0 . \tag{4}
\end{gather*}
$$

R. H. Bruck and E. Kleinfeld have recently shown ${ }^{2}$ that every alternative division ring of characteristic not two is either associative or a Cayley algebra. Their methods do not seem to be readily applicable to the simple case but we shall use the machinery of idempotents to prove the following result.

Theorem. Every simple alternative ring which contains an idempotent not its unity quantity is either associative or is the Cayley algebra \mathbf{C}.
2. Elementary properties. Our results are based on properties which were given by Zorn. ${ }^{1}$ He assumed that the characteristic was not 2 or 3 and did not give complete details of his computations. As we shall make no assumption about the characteristic of our rings it will be necessary for us to re-derive the properties of Zorn and so make our exposition quite self-contained.
We first note that an alternative ring \mathbf{C} is a mathematical system having the usual properties of associative rings except that the associative law for products is replaced by the identities $x(x y)=(x x) y,(y x) x=y(x x)$. It is easy to see that the associator

$$
(x, y, z)=(x y) z-x(y z)
$$

is an alternating function of its arguments x, y, z, a result which implies that

$$
\begin{gather*}
z(x y+y x)=(z x) y+(z y) x,(x y+y x) z=x(y z)+y(x z), \tag{5}\\
\\
z(x y)+y(x z)=(z x) y+(y x) z,
\end{gather*}
$$

for every x, y, z of \mathbf{C}. We shall assume henceforth that \mathbf{C} contains an idempotent u not the unity quantity of C .

[^0]The ring C may be expressed as the module direct sum $C=C_{11}+C_{10}+C_{01}+C_{00}$ of its submodules $\mathbf{C}_{i j}$ where $\mathbf{C}_{i j}$ consists of all $x_{i j}$ of \mathbf{C} such that $u x_{i j}=i x_{i j}$, $x_{i j} u=j x_{i j}(i, j=0,1)$. Indeed if $x=x_{11}+x_{10}+x_{01}+x_{00}$ then $x_{11}=u(x u)$, $x_{10}=u x-u(x u), x_{01}=x u-u(x u), x_{00}=x-x u-u x-u(x u)$. This decomposition is precisely that of the associative case and needs no additional argument. However the multipicative properties of the modules $C_{i i}$ need to be derived. We proceed as follows:

Let $u x=\lambda x, x u=\mu x, u y=a y, y u=\beta y$. Then

$$
\begin{aligned}
(x, y, u) & =(x y) u-x(y u)=(x y) u-\beta x y=-(y, x, u)=y(x u)-(y x) u \\
& =\mu y x-(y x) u=-(x, u, y)=x(u y)-(x u) y=(a-\mu) x y=(y, u, x) \\
& =(y u) x-y(u x)=(\beta-\lambda) y x=(u, x, y)=(u x) y-u(x y) \\
& =\lambda x y-u(x y)=-(u, y, x)=u(y x)-(u y) x=u(y x)-a y x .
\end{aligned}
$$

We thus obtain the identities

$$
\begin{align*}
(x y) u= & (a+\beta-\mu) x y, u(x y)=(\lambda+\mu-a) x y, \tag{6}\\
(y x) u= & (\lambda+\mu-\beta) y x, u(y x)=(a+\beta-\lambda) y x, \tag{7}\\
& (a-\mu) x y=(\beta-\lambda) y x, \tag{8}
\end{align*}
$$

where (7) is obviously derivable from (6) by the interchange of x and y and the consequent interchanges of λ, μ with a, β. If $\lambda=\mu=\alpha=\beta=1$ we have $(x y) u=u(x y)=x y$ and so C_{11} is a subring of C. Similarly the values $\lambda=\mu$ $=a=\beta=0$ yield $u(x y)=(x y) u=0$ and so C_{00} is a subring of C. We now put $\lambda=\mu=1$ and $a=\beta=0$ to obtain $x y=y x,(x y) u=-x y$, $(y x) u=2 y x$, and so $(x y) u=2 x y, 3 x y=0$. But $[(x y) u] u=-(x y) u=x y$ $=(x y) u^{2}=(x y) u=-x y$ and $2 x y=0, x y=0$. This proves ${ }^{3}$ that C_{11} and and \mathbf{C}_{00} are orthogonal subrings of \mathbf{C}.

We next put $\lambda=\mu=1=\alpha$ and $\beta=0$. Then $(x y) u=0$ and $u(x y)=x y$, $y x=0$, and so $\mathrm{C}_{11} \mathrm{C}_{10} \subseteq \mathrm{C}_{10}, \mathrm{C}_{10} \mathrm{C}_{11}=0$. By symmetry $\mathrm{C}_{01} \mathrm{C}_{11} \subseteq \mathrm{C}_{01}, \mathrm{C}_{11} \mathrm{C}_{01}=0$. Similarly, the values $\lambda=\mu=\beta=0$ and $a=1$ yield $x y=0, u(y x)=y x$, $(y x) u=0$, and so $C_{00} C_{10}=0, C_{10} C_{00} \subseteq C_{10}$, and $C_{01} C_{00}=0, C_{00} C_{01} \subseteq C_{01}$ by symmetry. The relations $C_{10} \mathbf{C}_{01} \subseteq \mathbf{C}_{11}, \mathbf{C}_{01} \mathbf{C}_{10} \subseteq \mathbf{C}_{00}$ follow from (6), (7) by taking $\lambda=\beta=1, a=\mu=0$.

The properties derived so far for the component modules $C_{i j}$ are properties satisfied by all associative rings. In the associative case $\mathrm{C}_{10}{ }^{2}=\mathrm{C}_{01}{ }^{2}=0$. However, this last result need not hold in the alternative case, and we now put $a=\lambda=1, \mu=\beta=0$ and obtain $(x y) u=x y, u(x y)=0, x y=-y x$. Thus we have the property

$$
\begin{equation*}
x_{10} y_{10}=-y_{10} x_{10}=z_{01} \tag{9}
\end{equation*}
$$

for every x_{10} and y_{10} of C_{10}, where z_{01} is in C_{01}. Similarly

$$
\begin{equation*}
x_{01} y_{01}=-y_{01} x_{01}=z_{10} . \tag{10}
\end{equation*}
$$

[^1]Now $x_{10}{ }^{2}=\left(u x_{10}\right) x_{10}=u x_{10}{ }^{2}=u z_{01}=0$, and by symmetry we have the relation

$$
\begin{equation*}
x_{i j}{ }^{2}=0 \quad(i, j=0,1 ; i \neq j) \tag{11}
\end{equation*}
$$

Zorn also gave the following result:
Lemma 1. Let x, y, z be elements of the component modules of \mathbf{C} not all in the same subring $\mathrm{C}_{i i}$. Then $(x, y, z)=0$ except possibly when at least two of the elements are in the same module $C_{i j}(i \neq j)$.

We also have the identities

$$
\begin{align*}
z_{i j}\left(x_{i j} y_{i j}\right) & =\left(x_{i j} z_{i j}\right) y_{i j}=x_{i j}\left(y_{i j} z_{i j}\right), \tag{12}\\
\left(x_{i j} y_{i j}\right) z_{i i} & =\left(z_{i i} x_{i j}\right) y_{i j}=x_{i j}\left(z_{i i} y_{i j}\right), \tag{13}\\
x_{i j}\left(y_{i i} z_{i i}\right) & =z_{i i}\left(x_{i j} y_{i i}\right)=\left(z_{i j} x_{i i}\right) y_{i i}, \tag{14}\\
x_{i j}\left(y_{i j} z_{i j}\right) & =z_{i j}\left(x_{i j} y_{i j}\right)=y_{i j}\left(z_{i j} x_{i j}\right), \tag{15}\\
\left(x_{i j} y_{i j}\right) z_{i j} & =\left(z_{i j} x_{i j}\right) y_{i i}=\left(y_{i j} z_{i j}\right) x_{i j} . \tag{16}
\end{align*}
$$

We use (5) to write
$z_{i i}\left(x_{i j} y_{j i}\right)-x_{i j}\left(y_{i i} z_{j i}\right)=z_{i i}\left(x_{i j} y_{i i}\right)+x_{i j}\left(z_{j i} y_{j i}\right)=\left(z_{i i} x_{i j}+x_{i j} z_{j i}\right) y_{i i}=\left(z_{i i} x_{i j}\right) y_{i i}$
since $\left(x_{i j} z_{i i}\right) y_{j i}=0$. This proves (14). Also

$$
\left(x_{i j} y_{i j}\right) z_{i i}+\left(z_{i i} y_{i j}\right) x_{i j}=x_{i j}\left(y_{i j} z_{i i}\right)+z_{i i}\left(y_{i j} x_{i j}\right)=0
$$

and so $\left(x_{i j} y_{i j}\right) z_{i i}=-\left(z_{i i} y_{i j}\right) x_{i j}=x_{i j}\left(z_{i i} y_{i j}\right)$. Interchange x and y to obtain $\left(y_{i i} x_{i j}\right) z_{i i}=-\left(z_{i i} x_{i j}\right) y_{i j}=-\left(x_{i i} y_{i j}\right) z_{i i}$ and we have proved (13). Formula (12) follows by symmetry. Now ($x_{i i}, y_{i i}, z_{j i}$) $=0$ trivially,

$$
\begin{aligned}
& \left(x_{i i}, y_{i i}, z_{i j}\right)=-\left(x_{i i}, z_{i i}, y_{i i}\right)=x_{i i}\left(z_{i i} y_{i i}\right)-\left(x_{i i} z_{i j}\right) y_{i i}=0, \\
& \left(x_{i i}, y_{i j}, z_{i j}\right)=-\left(y_{i j}, x_{i i}, z_{i j}\right)=y_{i j}\left(x_{i i} z_{j i}\right)-\left(y_{i j} x_{i i}\right) z_{i j}=0, \\
& \left(x_{i i}, y_{i j}, z_{i i}\right)=-\left(y_{i j}, x_{i i}, z_{i i}\right)=y_{i j}\left(x_{i i} z_{i j}\right)-\left(y_{i i} x_{i i}\right) z_{i i}=0 .
\end{aligned}
$$

The remaining properties of the associator follow by symmetry. Formula (15) states that the factors in $x_{i j}\left(y_{i j} z_{i j}\right)$ may be permuted cyclically. To prove this result we use the final relation in (5) to write

$$
z_{i j}\left(x_{i j} y_{i j}\right)+y_{i j}\left(x_{i j} z_{i j}\right)=\left(z_{i j} x_{i j}\right) y_{i j}+\left(y_{i j} x_{i j}\right) z_{i j} .
$$

The left member is in $\mathbf{C}_{i j} \mathbf{C}_{i j}{ }^{2} \subseteq \mathrm{C}_{i j} \mathbf{C}_{i \boldsymbol{i}} \subseteq \mathrm{C}_{i i}$ and the right member is in $\mathbf{C}_{i i}{ }^{2} \mathbf{C}_{i i} \subseteq \mathbf{C}_{i i} \mathbf{C}_{i j} \subseteq \mathbf{C}_{i j}$. Since $i \neq j$ both members vanish and we have

$$
-y_{i j}\left(x_{i j} z_{i j}\right)=y_{i j}\left(z_{i j} x_{i j}\right), \quad\left(z_{i j} x_{i j}\right) y_{i j}=-\left(y_{i j} x_{i j}\right) z_{i j}=\left(x_{i j} y_{i j}\right) z_{i j}
$$

from which we have both (15) and (16).
Corollary. The ring \mathbf{C} is associative if and only if both \mathbf{C}_{11} and \mathbf{C}_{00} are assaciative and $\mathrm{C}_{10}{ }^{2}=\mathrm{C}_{01}{ }^{2}=0$.
3. Construction of ideals. We first consider the product $p_{i i}=x_{i j}\left(y_{i i} z_{i j}\right)$ which is an element of $\mathrm{C}_{i j} \mathrm{C}_{\mathbf{i} i}{ }^{2} \subseteq \mathrm{C}_{i i}$ and let $a_{i i}$ be any element of $C_{i i}$. Then $a_{i i} p_{i i}=\left(a_{i i} x_{i j}\right)\left(y_{i i} z_{i j}\right)$ by Lemma 1. But then (15) and (13) imply that

$$
a_{i i} p_{i i}=z_{i i}\left[\left(a_{i i} x_{i i}\right) y_{i j}\right]=z_{i i}\left[\left(x_{i i} y_{i i}\right) a_{i i}\right]=\left[z_{i j}\left(x_{i i} y_{i i}\right)\right] a_{i i}=p_{i i} a_{i i}
$$

for every $a_{i i}$ of $\mathrm{C}_{i i}$ and $p_{i i}$ of $\mathrm{C}_{i j} \mathrm{C}_{i,}{ }^{2}, \mathrm{C}_{i i}\left(\mathrm{C}_{i j} \mathrm{C}_{i j}{ }^{2}\right)=\left(\mathrm{C}_{i j} \mathrm{C}_{i j}{ }^{2}\right) \mathbf{C}_{i i} \subseteq \mathrm{C}_{i j} \mathrm{C}_{i j}{ }^{2}$. If $b_{i i}$ is in $C_{i i}$ then

$$
\begin{aligned}
b_{i i}\left(a_{i i} p_{i i}\right) & =b_{i i}\left[\left(a_{i i} x_{i i}\right)\left(y_{i i} z_{i j}\right)\right]=\left[b_{i i}\left(a_{i i} x_{i i}\right)\right]\left(y_{i i} z_{i i}\right) \\
& =\left[\left(b_{i i} a_{i i}\right) x_{i i}\right]\left(y_{i j} z_{i j}\right)=\left(b_{i i} a_{i i}\right) p_{i i},
\end{aligned}
$$

and $C_{i j} C_{i i}{ }^{2}$ is contained in the centre of $C_{i i}$. By symmetry we have the following result:

Lemma 2. The modules $\mathrm{C}_{i j} \mathrm{C}_{i i}{ }^{2}$ and $\mathrm{C}_{i \boldsymbol{i}}{ }^{2} \mathrm{C}_{i \boldsymbol{i}}$ are ideals of $\mathrm{C}_{i \boldsymbol{i}}$ which are contained in the centre of $\mathrm{C}_{\mathbf{i i}}(i, j=0,1 ; i \neq j)$.

We next prove the following result:
Lemma 3. Let B_{i} be an ideal of $\mathbf{C}_{i i}$. Then

$$
\begin{equation*}
\mathrm{D}_{i}=\mathrm{B}_{i}+\mathrm{B}_{i} \mathrm{C}_{i j}+\mathrm{C}_{i i} \mathrm{~B}_{i}+\left(\mathrm{C}_{i i} \mathrm{~B}_{i}\right) \mathrm{C}_{i j} \quad(i, j=0,1 ; i \neq j) \tag{17}
\end{equation*}
$$

is an ideal of \mathbf{C}.
We have $\left(C_{i i} B_{i}\right) C_{i j}=C_{i i}\left(B_{i} C_{i j}\right)$ by Lemma 1. We now compute

$$
C_{i i} D_{i}=C_{i i} B_{i}+\left(C_{i i} B_{i}\right) C_{i j} \subseteq D_{i}, \quad D_{i} C_{i i}=B_{i} C_{i}+C_{i i}\left(B_{i} C_{i i}\right) \subseteq D_{i}
$$

$C_{i j} D_{i}=C_{i j}\left(C_{i i} B_{i}\right)+C_{i j}\left[\left(C_{i i} B_{i}\right) C_{i j}\right] \subseteq C_{i i} B_{i}+\left[C_{i j}\left(C_{i i} B_{i}\right)\right] C_{i j}+\left(C_{i i} B_{i}\right)\left(C_{i j}{ }^{2}\right)$ by (14). Then $C_{i j} D_{i} \subseteq B_{i}+B_{i} C_{i j}+\left(C_{i i} B_{i}\right) C_{i} \subseteq B_{i}+B_{i} C_{i j}+B_{i} C_{i i}{ }^{2} \subseteq D_{i}$ since $\mathrm{C}_{i \mathbf{i}}{ }^{2} \subseteq \mathrm{C}_{i j}$. Also

$$
\mathrm{D}_{i} \mathrm{C}_{i j}=\mathrm{B}_{i} \mathrm{C}_{i j}+\left(\mathrm{B}_{i} \mathrm{C}_{i j}\right) \mathrm{C}_{i j}+\left(\mathrm{C}_{i i} \mathrm{~B}_{i}\right) \mathrm{C}_{i j} \subseteq \mathrm{~B}_{i} \mathrm{C}_{i j}+C_{i j}{ }^{2} \mathrm{~B}_{i}+\mathrm{C}_{i j}\left(\mathrm{~B}_{i} C_{i j}\right) \subseteq \mathrm{D}_{i}
$$

If we pass to a ring anti-isomorphic to C the module D_{i} is unchanged but $C_{i i}$ is replaced by $C_{i j}$. Hence $C_{i i} D_{i} \subseteq D_{i}, D_{i} C_{i i} \subseteq D_{i}$. Finally

$$
\begin{aligned}
C_{i j} D_{i} & =C_{i j}\left(C_{i i} B_{i}\right)+C_{i j}\left(\left(C_{i i} B_{i}\right) C_{i i}\right] \\
& =\left(C_{i j} C_{i i}\right) B_{i}+\left[C_{i j}\left(C_{i i} B_{i}\right)\right] C_{i j} \subseteq C_{i i} \bar{D}_{i}+\left(C_{i i} B_{i}\right) C_{i j} \subseteq D_{i}
\end{aligned}
$$

and $D_{i} C_{i i}=B_{i}\left(C_{i j} C_{i j}\right)+\left(C_{i}, B_{i}\right)\left(C_{i j} C_{i j}\right) \subseteq D_{i}$. This completes our proof.
Lemma 4. Let

$$
C_{10}{ }^{2} C_{10}=C_{10} C_{10}{ }^{2}=C_{01}{ }^{2} C_{01}=C_{01} C_{01}{ }^{2}=0 .
$$

Then $\mathbf{G}=\mathbf{C}_{10}{ }^{2}+\mathbf{C o p}_{01}{ }^{2}$ is a proper ideal of \mathbf{C}.
We have

$$
C_{i i} G=C_{i i} C_{i i}^{2}=\left(C_{i i} C_{i i}\right) C_{i i} \subseteq C_{i i}{ }^{2} \subseteq G, G C_{i i}=C_{i i}{ }^{2} C_{i i}=C_{i j}\left(C_{i i} C_{i j}\right) \subseteq G .
$$

Also $\mathrm{C}_{\mathbf{i} i} \mathrm{G}=\mathrm{C}_{i j} \mathrm{C}_{i i}{ }^{2} \subseteq \mathrm{C}_{i i}{ }^{2} \subseteq \mathrm{G}, \quad \mathrm{GC}_{i j} \subseteq \mathrm{C}_{i i}{ }^{2} \mathrm{C}_{i j} \subseteq \mathrm{C}_{i j}{ }^{2} \subseteq \mathrm{G}$, as desired. Now $\mathbf{C}_{11} \neq 0, \mathbf{C}_{11}$ is not contained in \mathbf{G}, and \mathbf{G} is a proper ideal of \mathbf{C}.

The constructions just given are sufficient for our needs and we proceed now to the simple case.
4. Simple rings. Lemma 1 implies that

$$
\begin{aligned}
x_{i i}\left[y_{i i}\left(z_{i i} w_{i i}\right)\right] & =x_{i i}\left[\left(y_{i i} z_{i j}\right) w_{i i}\right]=\left[x_{i i}\left(y_{i i} z_{i j}\right)\right] w_{i i} \\
& =\left[\left(x_{i i} y_{i i}\right) z_{i j}\right] w_{i i}=\left(x_{i i} y_{i i}\right)\left(z_{i j} w_{i i}\right) .
\end{aligned}
$$

Since $x_{i i}\left(z_{i j} w_{i i}\right)=\left(x_{i i} z_{i j}\right) w_{i i}$ and $\left(z_{i j} w_{i j}\right) x_{i i}=z_{i j}\left(w_{i i} x_{i i}\right)$ we see that $\mathrm{C}_{i j} \mathrm{C}_{i \boldsymbol{i}}$ is an associative ideal of $\mathbf{C}_{i i}$. It follows immediately that $B=C_{10} C_{01}+C_{10}+C_{01}$ $+C_{01} C_{10}$ is an ideal of C. If C is simple and $B=0$ then C_{00} is a proper ideal of \mathbf{C}, and $\mathbf{C}=\mathbf{C}_{11}$ has u as unity quantity contrary to hypothesis. Hence $\mathbf{B}=\mathbf{C}$, $C_{i i} C_{i i}=C_{i i}$ is associative. If B_{i} were a non-zero proper ideal of $C_{i i}$ the ideal D_{i} of Lemma 3 would be a non-zero proper ideal of C. Thus we have

Lemma 5. Let \mathbf{C} be simple. Then \mathbf{C}_{11} is a simple associative ring and \mathbf{C}_{00} is either zero or a simple associative ring.

When \mathbf{C} is simple the set \mathbf{G} of Lemma 4 cannot be a proper ideal of \mathbf{C}. Hence \mathbf{C} is either associative or $\mathbf{G}=\mathrm{C}_{10}{ }^{2}+\mathrm{C}_{01}{ }^{2} \neq 0$, one of the modules $\mathrm{C}_{10} \mathrm{C}_{10}{ }^{2}$, $C_{01}{ }^{2} C_{01}, C_{10}{ }^{2} C_{10}, C_{01} C_{01}{ }^{2}$ must not be zero. Let $C_{i j} C_{i j}{ }^{2} \neq 0$. By Lemma 2 we know that $B_{i}=C_{i j} C_{i j}{ }^{2}$ is a non-zero ideal of $C_{i i}$, by Lemma 5 that $B_{i}=C_{i i}$, $\mathbf{C}_{i i}$ coincides with its centre and must be a field. If $a_{i}=x_{i j} h_{i i} \neq 0$ where $x_{i j}$ is in $\mathbf{C}_{i j}$ and $y_{i i}$ is in $\mathbf{C}_{i j}{ }^{2}$ then

$$
a_{i}^{2}=a_{i}\left(x_{i j} y_{i i}\right)=\left(a_{i} x_{i j}\right) y_{i i}=\left[x_{i j}\left(y_{i i} x_{i j}\right)\right] y_{i i} \neq 0
$$

and so $y_{i i} x_{i j} \neq 0, \mathbf{C}_{i j}{ }^{2} \mathbf{C}_{i j} \neq 0$. The converse is obvious and so $\mathbf{C}_{i j} \mathbf{C}_{i j}{ }^{2} \neq 0$ if and only if $\mathbf{C}_{i j}{ }^{2} \mathbf{C}_{i j} \neq 0$. It follows that both \mathbf{C}_{11} and \mathbf{C}_{00} are fields. Moreover, since we may pass to an anti-isomorphic ring if necessary, we may assume that $\mathbf{C}_{10} \mathbf{C}_{10}{ }^{2} \neq 0$. We now prove

Lemma 6. The rings \mathbf{C}_{11} and \mathbf{C}_{00} are isomorphic fields with unity quantities $u=e_{11}$ and e_{00} respectively, $e=e_{11}+e_{00}$ is the unity quantity of \mathbf{C}, $e_{11}=e_{10} e_{01}$, $e_{00}=e_{01} e_{10}$ for quantities $e_{i j}$ in $\mathbf{C}_{i j}$ such that $e_{01}=f_{10} g_{10}$ and f_{10}, g_{10} are in C_{10}.

We select f_{11} and g_{10} so that $x_{10} e_{01}=a_{1} \neq 0$ in the field \mathbf{C}_{11}. Then a_{1} has an inverse b_{1} in C_{11} and $b_{1}\left(x_{10} e_{01}\right)=e_{11}=\left(b_{1} x_{10}\right) e_{01}=e_{10} e_{01}$. Thus

$$
e_{11}^{2}=e_{11}\left(e_{10} e_{01}\right)=\left(e_{11} e_{10}\right) e_{01}=\left[e_{10}\left(e_{01} e_{10}\right)\right] e_{01}=e_{11}
$$

and so $e_{01} e_{10}=e_{00} \neq 0$. But

$$
e_{00}{ }^{2}=\left(e_{00} e_{01}\right) e_{10}=\left[\left(e_{01} e_{10}\right) e_{01}\right] e_{10}=\left(e_{01} e_{11}\right) e_{10}=e_{01} e_{10}=e_{00}
$$

is an idempotent of \mathbf{C}_{00} and must be its unity quantity.
We now use Lemma 3 with $\mathbf{B}_{\boldsymbol{i}}=\mathbf{C}_{\mathbf{i i}} \neq 0$ and see that $\mathbf{C}_{11} \mathbf{C}_{10}=\mathbf{C}_{10} \mathbf{C}_{00}=\boldsymbol{C}_{10}$, $\mathbf{C}_{01} \mathbf{C}_{11}=\mathbf{C}_{00} \mathbf{C}_{01}=\boldsymbol{C}_{01}$. The fact that $\mathbf{C}_{01}=\boldsymbol{C}_{00} \boldsymbol{C}_{01}$ implies that $e_{000} x_{01}=x_{01}$
for every x_{01} of \mathbf{C}_{01}. Similarly $x_{10} e_{00}=x_{10}$ for every x_{10} of \mathbf{C}_{10}. It is now trivial to see that $e=e_{11}+e_{00}$ is the unity quantity of \mathbf{C}.

The mapping

$$
x_{11} \rightarrow x_{11} T=e_{01}\left(x_{11} e_{10}\right)=\left(e_{01} x_{11}\right) e_{10}
$$

is an isomorphism of \mathbf{C}_{11} onto \mathbf{C}_{00} such that

$$
y_{10}\left(x_{11} T\right)=x_{11} y_{10}, \quad\left(x_{11} T\right) z_{01}=z_{01} x_{11}
$$

for every x_{11} of \mathbf{C}_{11}, y_{10} of \mathbf{C}_{10} and z_{01} of \boldsymbol{C}_{01}. Indeed we compute

$$
\begin{gathered}
y_{10}\left[e_{01}\left(x_{11} e_{10}\right)\right]=\left(y_{10} e_{01}\right)\left(x_{12} e_{10}\right)+\left[y_{10}\left(x_{11} e_{10}\right)\right] e_{01}=x_{11}\left[\left(y_{10} e_{01}\right) e_{10}+\left(y_{10} e_{10}\right) e_{01}\right] \\
=x_{11}\left[y_{10}\left(e_{01} e_{10}+e_{10} e_{01}\right)\right]=x_{11} y_{10} .
\end{gathered}
$$

Similarly $w_{01} x_{11}=\left(x_{11} T\right) w_{01}$. Also

$$
\begin{aligned}
\left(x_{11} T\right)\left(y_{11} T\right) & =\left[e_{01}\left(x_{11} e_{10}\right)\right]\left(y_{11} T\right)=e_{01}\left[\left(x_{11} e_{10}\right)\left(y_{11} T\right)\right] \\
& =e_{01}\left[y_{11}\left(x_{11} e_{10}\right)\right]=e_{01}\left[\left(x_{11} y_{11}\right) e_{10}\right]=\left(x_{11} y_{11}\right) T .
\end{aligned}
$$

Since \mathbf{C}_{11} and \mathbf{C}_{00} are fields, this proves that T is an isomorphism of \mathbf{C}_{11} onto \mathbf{C}_{00}. Actually T has an inverse given by $x_{11}=e_{10}\left(x_{00} e_{01}\right)=e_{10} y_{01}$ since then

$$
x_{11} T=\left[e_{01}\left(e_{10} y_{01}\right)\right] e_{10}=\left[\left(e_{01} e_{10}\right) y_{01}+\left(e_{01} y_{01}\right) e_{10}\right] e_{10}=\left(x_{00} e_{01}\right) e_{10}=x_{00}
$$

a result following from $\left(z_{10} e_{10}\right) e_{10}=z_{10} e_{10}{ }^{2}=0$ and

$$
\left(x_{00} e_{01}\right) e_{20}+\left(x_{00} e_{10}\right) e_{01}=\left(x_{00} e_{01}\right) e_{10}=x_{00} e_{00}=x_{00} .
$$

We now show that the set \mathbf{Z} of all elements $z=z_{11}+z_{11} T$ is contained ${ }^{4}$ in the centre of C. Indeed $z y_{i i}=y_{i i} z$ for every $y_{i i}$ of $\mathbf{C}_{i i}$ trivially. Also

$$
z y_{10}=z_{11} y_{10}=y_{10}\left(z_{11} T\right)=y_{10} z, \quad z y=y z
$$

for every y of \mathbf{C}. Since $Z=C_{12}+\mathbf{C o n}_{00}$ we know that the associators (z, x, y) with x and y in components $\mathbf{C}_{i j}$ are zero unless possibly when $x=x_{i j}$ and $y=y_{i j}$ are in the same $\mathrm{C}_{i j}(i \neq j)$. But

$$
\begin{gathered}
{\left[\left(z_{11}+z_{11} T\right) x_{10}\right] y_{10}=\left(z_{11} x_{10}\right) y_{10},} \\
\left(z_{11}+z_{11} T\right)\left(x_{10} y_{10}\right)=\left(z_{11} T\right)\left(x_{10} y_{10}\right)=\left[x_{10}\left(z_{11} T\right)\right] y_{10}=\left(z_{11} x_{10}\right) y_{10}
\end{gathered}
$$

as desired.
By our construction, $\mathrm{C}_{11}=e_{11} \mathbf{Z}$ and $\mathbf{C}_{00}=e_{00} \mathbf{Z}$ are one-dimensional algebras over Z. We also note that since $e_{10} e_{01}=e_{10}\left(f_{10} g_{10}\right)=e_{11}$ we may use (15) to obtain $g_{10}\left(e_{10} f_{10}\right)=f_{10}\left(g_{10} e_{10}\right)=e_{11}$. Put

$$
e_{10} f_{10}=g_{01}, g_{10} e_{10}=f_{01}
$$

and obtain (1). Then

$$
g_{01} g_{10}=\left(e_{10} f_{10}\right) g_{10}=\left(f_{10} g_{10}\right) e_{10}=e_{00}=\left(g_{10} e_{10}\right) f_{10}=f_{0,} f_{10}
$$

and we have (3). Now $e_{10} g_{01}=e_{10}\left(e_{10} f_{10}\right)=0, e_{10} f_{01}=e_{10}\left(g_{10} e_{10}\right)=-e_{10}\left(e_{10} g_{10}\right)$ $=0$ since $e_{10}{ }^{2}=0$. Similarly

[^2]\[

$$
\begin{gathered}
f_{10} g_{01}=f_{10} e_{01}=g_{10} e_{01}=g_{10} f_{01}=0, \\
g_{01} e_{10}=f_{01} e_{10}=g_{01} f_{10}=e_{01} f_{10}=e_{01} g_{10}=f_{01} g_{10}=0
\end{gathered}
$$
\]

and we have completed a proof which shows that (4) holds. The computation

$$
e_{01}\left(g_{10} e_{10}\right)+g_{10}\left(e_{01} e_{10}\right)=e_{01} f_{01}+g_{10}=\left(e_{01} g_{10}+g_{10} e_{01}\right) e_{10}=0
$$

yields $g_{10}=f_{01} e_{01}$. The remaining formulae of (2) are derived similarly.
We have now shown that \mathbf{C} contains an algebra \mathbf{D} over \mathbf{Z} with the multiplication table given by (1)-(4). It remains only to show that $e_{i j}, f_{i j}, g_{i j}$ are linearly independent over \mathbf{F} and that these elements form a basis of $\mathbf{C}_{\mathbf{i} i}$ over \mathbf{Z} in order to prove that \mathbf{D} is the eight-dimensional Cayley algebra over \mathbf{Z} and that $C=D$.

Lemma 7. Let $h_{i j} h_{i i}=e_{i j}$ so that $h_{i i} h_{i j}=e_{i j}$. Then $x_{i j} h_{i j}=0$ if and only if $x_{i j}=a h_{i j}$ for a in \mathbf{Z}.

We have $x_{i j}\left(e_{i i}+e_{i j}\right)=x_{i j}=\left(x_{i j} h_{i j}\right) h_{i i}+\left(x_{i j} h_{i j}\right) h_{i j}$. If $x_{i j} h_{i j}=0$ then $x_{i j}=a h_{i j}$ with $x_{i j} h_{i i}=a e_{i i}$ and a in \mathbf{Z}. The converse follows from $h_{i j}{ }^{2}=0$.

Lemma 8. Let $x_{i j} e_{i i}=x_{i i} f_{i i}=x_{i i} g_{i i}=0$. Then $x_{i i}=0$.
If $x_{i j} h_{i i}=a e_{i i}$ and $h_{i i} x_{i j}=\beta e_{j i}$ then

$$
h_{i i}\left(x_{i j} h_{j i}\right)=a h_{i i}=\left(h_{i i} x_{i j}\right) h_{i j}=\beta h_{i i} .
$$

If $h_{i i} \neq 0$ then $a=\beta$. Now $x_{i j} e_{i j}= \pm x_{i j}\left(f_{i i} g_{i i}\right)$ by (1) and (2) and so

$$
x_{i j} e_{i j}= \pm\left[g_{i i}\left(x_{i i} f_{i i}\right)-\left(g_{i i} x_{i j}\right) f_{i i}\right]
$$

by (14). It follows that $x_{i j} e_{i j}=0$ and that $x_{i j}=a e_{i j}$. Similarly $x_{i j}=\beta f_{i j}$. But if $a \neq 0$ we have

$$
a e_{i} f_{i i}= \pm a g_{i i}=\beta f_{i i}^{2}=0
$$

contrary to hypothesis. Hence $a=0, x_{i j}=0$.
It is evident that the proof above implies that $f_{i j} \neq a e_{i j}$ for a in Z. If $g_{i j}=a e_{i j}+\beta f_{i j}$ then

$$
g_{i j} e_{i j}= \pm f_{i j}=\beta f_{i j} e_{i j}= \pm \beta g_{i j}
$$

which has been shown to be impossible. We have shown that \mathbf{D} is an eightdimensional algebra.

We now let $x_{i j} e_{j i}=a e_{i i}, x_{i i} f_{i i}=\beta e_{i i}, x_{i j} g_{i i}=\gamma e_{i i}$ for a, β, γ in Z. Then $y_{i i}=x_{i i}-\left(\alpha e_{i j}+\beta f_{i j}+\gamma g_{i j}\right)$ has the property that

$$
\begin{aligned}
& y_{i j} e_{i i}=(a-a) e_{i i}=0, \\
& y_{i j} f_{j i}=(\beta-\beta) e_{i i}=0, \\
& y_{i i} g_{i i}=(\gamma-\gamma) e_{i i}=0
\end{aligned}
$$

and so $y_{i:}=0$ by Lemma 8. This completes our proof.

The L'niversity of Chicago

[^0]: Received January 18, 1951.
 ${ }^{1}$ The multiplication table of a Cayley algebra was given in this form by M. Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ., vol. 8 (1930), 123-147.
 ${ }^{2}$ The structure of alternative division rings, Proc. Amer. Math. Soc., vol. 2 (1951), 878-890.

[^1]: ${ }^{3}$ This seems to be one of the few places in our development where an assumption about the characteristic would make any difference.

[^2]: ${ }^{4}$ If C has characteristic not two or three the property $z y=y z$ implies that $(z, x, y)=0$. However our proof is so arranged that $(z, x, y)=0$ is quite trivial.

