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We consider the global existence for the following fully parabolic chemotaxis system
with two populations

⎧⎪⎨⎪⎩
∂tui = κiΔui − χi∇ · (ui∇v), i ∈ {1, 2}, x ∈ Ω, t > 0,

vt = Δv − v + u1 + u2, x ∈ Ω, t > 0,

ui(x, t = 0) = ui0(x), v(x, t = 0) = v0(x), x ∈ Ω,

where Ω = R
2 or Ω = BR(0) ⊂ R

2 supplemented with homogeneous Neumann
boundary conditions, κi, χi > 0, i = 1, 2. The global existence remains open for the
fully parabolic case as far as the author knows, while the existence of global solution
was known for the parabolic-elliptic reduction with the second equation replaced by
0 = Δv − v + u1 + u2 or 0 = Δv + u1 + u2. In this paper, we prove that there exists
a global solution if the initial masses satisfy the certain sub-criticality condition. The
proof is based on a version of the Moser–Trudinger type inequality for system in two
dimensions.
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1. Introduction

Chemotaxis is a common phenomenon in mathematical biology. Since Keller and
Segel [14] suggested a mathematical chemotaxis model for chemotactic aggregation
of the cellular slime mold Dictyostelium discoideum in the early 1970s, a large
number of theoretical (mathematical) models, including the chemotactic movement
of multi populations along with multiple stimuli in the environment, have been
proposed by many researchers (see [12]). In this paper, a chemotaxis system for two
populations interaction via the same chemical signal will be considered as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu1 = κ1Δu1 − χ1∇ · (u1∇v), x ∈ Ω, t > 0,

∂tu2 = κ2Δu2 − χ2∇ · (u2∇v), x ∈ Ω, t > 0,

vt = Δv − v + u1 + u2, x ∈ Ω, t > 0,

ui(x, t = 0) = ui0(x), v(x, t = 0) = v0(x), i = 1, 2, x ∈ Ω,

(1.1)
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where ui denotes the population density for the i-th population, and v represents
the chemical signal concentration. κi > 0 is the diffusion coefficient for the i-th
population and the chemotactic coefficient χi > 0 measures the strength of the
chemical signal with respect to ui. Here the domain Ω is

either the whole space R
2 or a disk Ω = BR(0) ⊂ R

2 with some R > 0. (1.2)

When Ω is the above bounded domain, the system (1.1) is supplemented with
homogenous Neumann boundary condition

∂ui/∂ν = ∂v/∂ν = 0, i = 1, 2. (1.3)

For a two-dimensional domain, one of the most interesting and important ques-
tion for the chemotaxis system in both biological and mathematical contexts is
to determine critical mass phenomenon, namely, the behaviour of the solutions is
only dependent on the initial mass of the system. This mass threshold phenomenon
was exactly confirmed in the well-known Keller–Segel chemotaxis model for one
population:⎧⎪⎨⎪⎩

∂tu1 = κ1Δu1 − χ1∇ · (u1∇v), x ∈ Ω, t > 0,

vt = Δv − v + u1, x ∈ Ω, t > 0,

u1(x, t = 0) = u10(x), v(x, t = 0) = v0(x), x ∈ Ω.

(1.4)

Let m1(u10;D) = ‖u10‖1 =
∫

D
u10(x) dx for D ⊂ R

2. Consider (1.4) with bound-
ary condition (1.3) in a bounded domain Ω ⊂ R

2. An application of the
Moser–Trudinger inequality to (1.4) ensures that the solution exists globally in
time provided m1(u10; Ω) < 4πκ1/χ1 for arbitrary smooth domain or m1(u10; Ω) <
8πκ1/χ1 for radial domain [21]. Conversely, if m1(u10; Ω) > 8πκ1/χ1, then there
exists a blow-up solution in finite time [10]. Similar to [10], there also exists a
blow-up solution for (1.4) for Ω = R

2 whenm1(u10; R2) > 8πκ1/χ1. However, it was
shown in [3] that the solution with m1(u10; R2) < 8πκ1/χ1 exists globally over time
under the following conditions u10 log(1 + |x|2) ∈ L1(R2) and u10 log u10 ∈ L1(R2).
While these additional initial data conditions have been completely removed in
[15] by terms of the Moser–Trudinger inequality. Moreover, the critical case
m1(u10; R2) = 8πκ1/χ1 was also studied in [15], the solutions exist globally or
the blow-up set of solutions equals R

2. Because chemicals diffuse much faster than
population then it is feasible to study a simple parabolic-elliptic version of (1.4),
i.e., the second parabolic equation is replaced with an elliptic form

0 = Δv − v + u1, or 0 = Δv + u1, if Ω = R
2,

or

0 = Δv − v + u1, or 0 = Δv − μ+ u1, if Ω ⊂ R
2 is a bounded domain,

where μ := ‖u10‖1/|Ω|. We refer the readers to the papers [2, 11, 13, 17–19] for
a similar and satisfactory analytical description about the critical mass for these
situations in two dimensions. The above results show that 8πκ1/χ1 is the critical
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mass for (1.4), and determines that the solutions exist globally or blow up if Ω
satisfies (1.2).

For multi-population chemotaxis system, a natural question arises: do there exist
critical numbers such that whenever the initial masses for populations are smaller
than them then the solution will exist globally, whereas the masses are larger then
the solution will blow up? Espejo et al. [5, 7–9] consider a simplified parabolic-
elliptic version of two-population system likes⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu1 = κ1Δu1 − χ1∇ · (u1∇v),
∂tu2 = κ2Δu2 − χ2∇ · (u2∇v),
0 = Δv + u1 + u2, if x ∈ Ω = R

2, or
0 = Δv − μ′ + u1 + u2, if x ∈ Ω ⊂ R

2 is a disk,

(1.5)

where μ′ := (‖u10‖1 + ‖u20‖1)/|Ω|. The proof of blow-up solutions is based on a
suitable adaptation of the moments technique [5, 7]. To see the known results
for the global existence, based on the expression for v in terms of u1 and u2

through the fundamental solution or the Green function associated to the Laplace
operator, the main tool used in the paper by Espejo et al. is the logarithmic
Hardy–Littlewood–Sobolev (HLS) inequality for system (see [4, 22, 23]): the
function

Φ(ρ) =
∑
i∈I

∫
R2
ρi log ρi dx+

1
4π

∑
i,j∈I

ai,j

∫∫
R2×R2

ρi(x) log |x− y|ρj(y) dxdy

(1.6)
over the class

ΓM (R2) =
{

ρ = (ρ1, . . . , ρn) : ρi � 0,
∫

R2
ρi| log ρi|dx <∞,∫

R2
ρi dx = Mi,

∫
R2
ρi log

(
1 + |x|2)dx <∞, ∀ i ∈ I

}
is bounded from below if and only if ΛI(M) = 0 and{

ΛJ (M) � 0, ∀ ∅ 	= J ⊂ I,
if ΛJ (M) = 0 for someJ , then ai,i + ΛJ\{i}(M) > 0, ∀i ∈ J , (1.7)

where I := {1, 2, . . . , n}, M := {M1, . . . ,Mn} ∈ (R+)n, A := (ai,j)n×n is a n× n
symmetric matrix with nonnegative elements, i.e., ai,j � 0, i, j ∈ I, and the
quadratic polynomial is given by

ΛJ (M) := 8π
∑
i∈J

Mi −
∑

i,j∈J
ai,jMiMj , ∀J ⊂ I, J 	= ∅.

While replacing the −(1/2π) log |x− y| in (1.6) by the Green function GΩ(x, y) for
the Laplace operator, then another version of the HLS inequality for system is given
when Ω is a bounded domain (see [23, theorem 5]). Here we summarize the main
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results for (1.5) obtained by Espejo et al. through above methods for convenience
(see [5, 8]): the system admits a globally bounded solution if

m1 <
8πκ1

χ1
, m2 <

8πκ2

χ2
, (m1 +m2)2 < 8π

(
κ1m1

χ1
+
κ2m2

χ2

)
, (1.8)

on the other hand, the solution blows up if m1,m2 satisfy any of the inequalities

m1 >
8πκ1

χ1
, m2 >

8πκ2

χ2
, (m1 +m2)2 > 8π

(
κ1m1

χ1
+
κ2m2

χ2

)
,

where mi = mi(ui0; R2) = ‖ui0‖1, i = 1, 2. Similar results for Dirichlet boundary
problem (1.5) was obtained in [25] by Wolansky. Hence in the plane, the critical
curve of initial masses for (1.5) had been achieved.

However, there is still no available result for the parabolic-parabolic chemotaxis
system (1.1) as far as the authors know. In this work, we will show that any solution
of the system (1.1) exists globally in time under the sub-criticality condition (1.8).
The main tool for the analysis is a version of the Moser–Trudinger inequality for
system in a bounded domain Ω ⊂ R

2 [4, 22], that is, for ∀ ρi ∈ H1
0 (Ω), i ∈ I,

Ψ(ρ) =
1
2

∑
i,j∈I

∫
Ω

ai,j∇ρi · ∇ρj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jρj

⎞⎠dx

⎞⎠ (1.9)

is bounded from below if and only if (1.7) holds, where the matrix A = (ai,j)n×n is
a positive definite matrix with nonnegative elements, see [23, theorem 5(i)].

We list two basic facts about the solution of (1.1). In the case that Ω is a bounded
domain, the boundary condition (1.3) should be added. The first one is the formal
conservation of the total mass:

m1 = ‖u1(t)‖L1(Ω) = ‖u10‖L1(Ω), m2 = ‖u2(t)‖L1(Ω) = ‖u20‖L1(Ω) for all t > 0,

due to the integration (1.1)1 and (1.1)2 over the domain, respectively. For v,
integrating over the domain yields that

‖v(t)‖L1(Ω) = e−t‖v0‖L1(Ω) + (1 − e−t)
(‖u10‖L1(Ω) + ‖u20‖L1(Ω)

)
for all t > 0.

(1.10)

Secondly, the system (1.1) always admits a unique nonnegative (local) solution
under some mild assumptions on the nonnegative initial data if Ω = R

2 or Ω ⊂ R
2

is a bounded domain with smooth boundary. This fact can be proved by using some
similar arguments as in one-population chemotaxis model [6, 21]. However we omit
the proof for simplicity since our main interest is to find optimal conditions on
the initial data, which guarantee the local solution to be global one. Through this
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paper, we assume that the initial data satisfies

ui0 ∈ L1(Ω) ∩ L∞(Ω), v0 ∈ L1(Ω) ∩H1(Ω), i = 1, 2, if Ω = R
2, (1.11)

or

ui0 ∈ C0(Ω̄), v0 ∈ C1(Ω̄), i = 1, 2, if Ω ⊂ R
2 is a bounded domain. (1.12)

Let Tmax > 0 be a maximal existence time of (u1, u2, v) to (1.1). The first result
states that

Theorem 1.1. Let Ω = BR(0) ⊂ R
2 with R > 0. Assume that nonnegative func-

tions ui0(x), i = 1, 2, and v0(x) satisfy (1.8) and (1.12). Then there exists a unique
triple (u1, u2, v) of non-negative bounded function which solves (1.1) with boundary
condition (1.3) globally, i.e., Tmax = ∞.

Now, we would like to extend the global result of bounded domain to the whole
space. More precisely,

Theorem 1.2. Let Ω = R
2. Assume that nonnegative functions ui0(x), i = 1, 2, and

v0(x) satisfy (1.8) and (1.11). Then Tmax = ∞.

The paper is organized as follows. In § 2, compared with (1.9), we give another
version of the Moser–Trudinger inequality for system if ρi ∈ H1(Ω), i ∈ I. The
third section is dedicated to the global existence in bounded domain. Section 4 is
contributed to show the solution exists globally in the whole space.

2. Preliminaries

In this section, let us recall the following well-known Moser’s inequality given by
[16] as

1
2

∫
Ω

|∇ρ|2 dx− 8π log
(∫

Ω

exp ρdx
)

� −C, ∀ρ ∈ H1
0 (Ω),

where Ω ⊂ R
2 is a domain with finite Lebesgue measure. In [22, theorem 3] or [23,

theorem 5(i)], there exists an analogous inequality for system defined on a bounded
domain of R

2.

Lemma 2.1. Let I = {1, . . . , n}, and let M = (M1, . . . ,Mn) ∈ (R+)n. Assume that
A = (ai,j)n×n is a positive definite matrix with nonnegative elements. Then for any
ρ = (ρ1, . . . , ρn) ∈ (H1

0 (Ω))n,

1
2

∑
i,j∈I

∫
Ω

ai,j∇ρi · ∇ρj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jρj

⎞⎠dx

⎞⎠
is bounded from below if and only if{

ΛJ (M) � 0, ∀ ∅ 	= J ⊂ I,
if ΛJ (M) = 0 for some J , then ai,i + ΛJ\{i}(M) > 0, ∀i ∈ J .
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Inspired by [21, theorem 2.1], for radially symmetric functions we extend the
Moser–Trudinger inequality for system to the Sobolev space H1(Ω) with trace
boundary.

Lemma 2.2. Let Ω = BR(0) ⊂ R
2 with R > 0, and let A = (ai,j)n×n be a pos-

itive definite matrix with nonnegative elements. Then for nonnegative w =
(w1, . . . , wn) ∈ (H1(Ω))n and η > 0, then there exists a constant C(η) such that

1
2

∑
i,j∈I

∫
Ω

ai,j∇wi · ∇wj dx+ η
∑

i,j∈I
ai,jMi

∫
Ω

|∇wj |2 dx

+
2
|Ω|

∑
i,j∈I

ai,jMi

∫
Ω

wj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj

⎞⎠dx

⎞⎠ � C(η)

if and only if{
ΛJ (M) � 0, ∀ ∅ 	= J ⊂ I,
if ΛJ (M) = 0 for someJ , then ai,i + ΛJ\{i}(M) > 0, ∀i ∈ J .

Proof. We only consider nonnegative w ∈ (C1(Ω̄))n because C1(Ω̄) is dense in
H1(Ω). Define

zi(x) := wi(x) − wi(R), i ∈ I.

Thanks to z = (z1, . . . , zn) ∈ (H1
0 (Ω))n, lemma 2.1 implies that

1
2

∑
i,j∈I

∫
Ω

ai,j∇zi · ∇zj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎞⎠ � −C (2.1)

holds if and only if{
ΛJ (M) � 0, ∀ ∅ 	= J ⊂ I,
if ΛJ (M) = 0 for some J , then ai,i + ΛJ\{i}(M) > 0, ∀i ∈ J . (2.2)

It is clear that

log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎤⎦
= log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,j(wj(x) − wj(R))

⎞⎠dx

⎤⎦
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= log

⎡⎣exp

⎛⎝−
∑
j∈I

ai,jwj(R)

⎞⎠∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj(x)

⎞⎠dx

⎤⎦
= log

⎡⎣exp

⎛⎝−
∑
j∈I

ai,jwj(R)

⎞⎠⎤⎦ + log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj(x)

⎞⎠ dx

⎤⎦
= log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj(x)

⎞⎠dx

⎤⎦−
∑
j∈I

ai,jwj(R).

Then

∑
i∈I

Mi log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj(x)

⎞⎠dx

⎤⎦
=
∑
i∈I

Mi log

⎡⎣∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎤⎦ +
∑

i,j∈I
ai,jMiwj(R). (2.3)

Now we proceed to estimate the boundary value wj(R). Fixed r0 ∈ (R/2, R) such
that

wj(r0) � 2
r0R

∫ R

R/2

wj(ρ)ρdρ

� 1
πr0R

∫
Ω

wj(x) dx =
R

r0|Ω|
∫

Ω

wj(x) dx �
2‖wj‖L1(Ω)

|Ω| ,

then from

wj(R) = wj(r0) +
∫ R

r0

w′
j(ρ) dρ,

applying Hölder’s inequality and Young’s inequality with η > 0, then it yields that

wj(R) � wj(r0) +

(∫ R

r0

ρ−1 dρ

)1/2 (∫ R

r0

|w′
j(ρ)|2ρdρ

)1/2

� wj(r0) +

(∫ R

R/2

ρ−1 dρ

)1/2 (∫ R

R/2

|w′
j(ρ)|2ρdρ

)1/2

� wj(r0) +
(

log 2
2π

)1/2

‖∇wj‖L2(Ω)

� η‖∇wj‖2
L2(Ω) +

2‖wj‖L1(Ω)

|Ω| +
log 2
8πη

.
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By (2.3), we have

∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj(x)

⎞⎠ dx

⎞⎠
�
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎞⎠ + η
∑

i,j∈I
ai,jMi‖∇wj‖2

L2(Ω)

+
∑

i,j∈I
ai,jMi

[
2‖wj‖L1(Ω)

|Ω| +
log 2
8πη

]
.

Observing that ∑
i,j∈I

∫
Ω

ai,j∇wi · ∇wj dx =
∑

i,j∈I

∫
Ω

ai,j∇zi · ∇zj dx,

it implies that

1
2

∑
i,j∈I

∫
Ω

ai,j∇wi · ∇wj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj

⎞⎠dx

⎞⎠
� 1

2

∑
i,j∈I

∫
Ω

ai,j∇zi · ∇zj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎞⎠
−

∑
i,j∈I

ai,jMi

[
η‖∇wj‖2

L2(Ω) +
2‖wj‖L1(Ω)

|Ω| +
log 2
8πη

]
.

After a simple arrangement, we finally have

1
2

∑
i,j∈I

∫
Ω

ai,j∇wi · ∇wj dx+ η
∑

i,j∈I
ai,jMi

∫
Ω

|∇wj |2 dx

+
2
|Ω|

∑
i,j∈I

ai,jMi

∫
Ω

wj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jwj

⎞⎠dx

⎞⎠
� 1

2

∑
i,j∈I

∫
Ω

ai,j∇zi · ∇zj dx−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jzj

⎞⎠dx

⎞⎠
− log 2

8πη

∑
i,j∈I

ai,jMi.

Therefore, this lemma has been proved by (2.1)–(2.2). �

As a consequence of lemma 2.2, we have
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Lemma 2.3. Let I = {1, 2}, Ω = BR(0) ⊂ R
2 with R > 0, and let A = (ai,j)2×2 be

a positive definite matrix with nonnegative elements. Then for nonnegative w =
(w,w) ∈ (H1(Ω))2 and η > 0, then there exists a constant C(η) such that∑

i,j∈I
ai,j

(
1
2

+Miη

)∫
Ω

|∇w|2 dx+
2
|Ω|

∑
i,j∈I

ai,jMi

∫
Ω

w dx

−
∑
i∈I

Mi log

⎛⎝∫
Ω

exp

⎛⎝∑
j∈I

ai,jw

⎞⎠ dx

⎞⎠ � C(η)

if and only if{
ΛJ (M) � 0, ∀ ∅ 	= J ⊂ I,
if ΛJ (M) = 0 for some J , then ai,i + ΛJ\{i}(M) > 0, ∀i ∈ J .

3. The bounded domain

The global existence of solution to (1.1) in a bounded domain Ω = BR(0) ⊂ R
2 will

be considered in this section. The proof of theorem 1.1 will be divided into several
lemmas.

3.1. Free energy functional

The free energy functional

F [u1, u2, v] :=
κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx−
∫

Ω

(u1 + u2)v dx

+
1
2

∫
Ω

|∇v|2 dx+
1
2

∫
Ω

v2 dx

plays an important role in the analysis of the global existence.

Lemma 3.1. Consider the local smooth solution (u1, u2, v) to (1.1), subject to initial
data (u10, u20, v0). Then

d
dt

F [u1, u2, v] +
∫

Ω

v2
t dx = − 1

χ1

∫
Ω

u1 |κ1∇ log u1 − χ1∇v|2 dx

− 1
χ2

∫
Ω

u2 |κ2∇ log u2 − χ2∇v|2 dx.

Proof. Multiplying (1.1)i by κi log ui − χiv, i ∈ {1, 2}, respectively, we see that∫
Ω

(u1)t (κ1 log u1 − χ1v) dx = −
∫

Ω

u1 |κ1∇ log u1 − χ1∇v|2 dx (3.1)

and ∫
Ω

(u2)t (κ2 log u2 − χ2v) dx = −
∫

Ω

u2 |κ2∇ log u2 − χ2∇v|2 dx. (3.2)
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Testing (3.1) by 1/χ1 and (3.2) by 1/χ2, respectively, it is easy to obtain that

d
dt

(
κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx−
∫

Ω

(u1 + u2)v dx
)

+
∫

Ω

(u1 + u2)vt dx

= − 1
χ1

∫
Ω

u1 |κ1∇ log u1 − χ1∇v|2 dx− 1
χ2

∫
Ω

u2 |κ2∇ log u2 − χ2∇v|2 dx,

where we have used the fact that (d/dt)
∫
Ω
ui dx = 0. Notice that∫

Ω

(u1 + u2)vt dx =
∫

Ω

(vt − Δv + v)vt dx

=
∫

Ω

v2
t dx+

1
2

d
dt

(∫
Ω

|∇v|2 dx+
∫

Ω

v2 dx
)
.

Hence

d
dt

(
κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx−
∫

Ω

(u1 + u2)v dx

+
1
2

∫
Ω

|∇v|2 dx+
1
2

∫
Ω

v2 dx
)

+
∫

Ω

v2
t dx

= − 1
χ1

∫
Ω

u1 |κ1∇ log u1 − χ1∇v|2 dx− 1
χ2

∫
Ω

u2 |κ2∇ log u2 − χ2∇v|2 dx,

which implies that we have finished the proof of this lemma. �

A simple fact from lemma 3.1 yields an upper bound for F .

Lemma 3.2. Assume that (u1, u2, v) is a local smooth solution to (1.1) in Ω ×
(0, Tmax) with initial data (u10, u20, v0) satisfying (1.12). Then

F [u1, u2, v] � F [u10, u20, v0].

3.2. An upper bound for the entropy

In two-dimensional case, the natural way to prove the global existence of solutions
to chemotaxis system is to give a bound for the entropy ‖ui log ui‖L1(Ω), i = 1, 2.
From lemma 3.2, this can be actually achieved if the term∫

Ω

(u1 + u2)v dx. (3.3)

can be controlled by the entropy. To see this, we derive a general form as follows.
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Lemma 3.3. Let αi, κi, χi > 0, i = 1, 2. For any nonnegative functions φi ∈ L1(Ω) ∩
L logL(Ω), ψ ∈ L∞(Ω) satisfying mi =

∫
Ω
φi dx > 0, i = 1, 2, it holds that

α1

∫
Ω

φ1ψ dx+ α2

∫
Ω

φ2ψ dx

� κ1

χ1

∫
Ω

φ1 log φ1 dx+
κ2

χ2

∫
Ω

φ2 log φ2 dx+
κ1m1

χ1
log

[∫
Ω

exp
(
χ1α1

κ1
ψ

)
dx

]
+
κ2m2

χ2
log

[∫
Ω

exp
(
χ2α2

κ2
ψ

)
dx

]
+

κ1

eχ1
+

κ2

eχ2
. (3.4)

Proof. It follows from the Jensen’s inequality that

α1

∫
Ω

φ1ψ dx− κ1

χ1

∫
Ω

φ1 log φ1 dx

=
κ1

χ1

[∫
Ω

φ1

(
χ1α1

κ1
ψ − log φ1

)
dx

]

=
κ1m1

χ1

⎡⎣∫
Ω

φ1

m1
log

exp
(

χ1α1
κ1

ψ
)

φ1
dx

⎤⎦
� κ1m1

χ1
log

⎡⎣∫
Ω

exp
(

χ1α
κ1
ψ
)

φ1
· φ1

m1
dx

⎤⎦
=
κ1m1

χ1
log

[∫
Ω

exp
(
χ1α1

κ1
ψ

)
dx

]
− κ1m1

χ1
logm1

� κ1m1

χ1
log

[∫
Ω

exp
(
χ1α1

κ1
ψ

)
dx

]
+

κ1

eχ1
, (3.5)

where we have used the fact that m1 =
∫
Ω
φ1 dx, and x log x > −1/e for all x > 0.

Similarly, given any α2 > 0 we also have

α2

∫
Ω

φ2ψ dx− κ2

χ2

∫
Ω

φ2 log φ2 dx � κ2m2

χ2
log

[∫
Ω

exp
(
χ2α2

κ2
ψ

)
dx

]
+

κ2

eχ2
.

Putting the above inequalities together, it yields (3.4). �

Lemma 3.4. Let (u1, u2, v) be the local smooth solution to (1.1), subject to ini-
tial data (u10, u20, v0) satisfying (1.12). Assume that κi > 0, χi > 0 and mi =∫
Ω
ui0 dx, i = 1, 2, fulfill

m1 < 8πκ1/χ1, m2 < 8πκ2/χ2, (m1 +m2)2 < 8π (κ1m1/χ1 + κ2m2/χ2) .
(3.6)
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Then there exists α1 > 1 and α2 > 1 such that

α1

∫
Ω

u1v dx+ α2

∫
Ω

u2v dx

� κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx+
1
2

∫
Ω

|∇v|2 dx+ C

for some C > 0.

Proof. In view of (3.6), we can choose small ε > 0 such that

8π > m1

[
χ1

κ1
+ ε

(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε),

8π > m2

[
χ2

κ2
+ ε

(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε),

(3.7)

and

8π
(
κ1m1

χ1
+
κ2m2

χ2

)
>

[
(m1 +m2)2 + ε

(
κ1

χ1
m2

1 +
κ2

χ2
m2

2

)(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε).

(3.8)

Choose α1 > 0 and α2 > 0 in lemma 3.3 as

α1 = α2 =: 1 + ε.

Denote

M1 =
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε), M2 =

κ2m2

χ2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε),

a11 =
χ1

κ1

[
χ1
κ1

χ1
κ1

+ χ2
κ2

+ ε

]
, a12 = a21 =

χ1χ2
κ1κ2

χ1
κ1

+ χ2
κ2

, a22 =
χ2

κ2

[
χ2
κ2

χ1
κ1

+ χ2
κ2

+ ε

]
,

(3.9)

then it is clear that a11 + a12 = χ1α1/κ1, a21 + a22 = χ2α2/κ2 and

A =
[
a11 a12

a21 a22

]
is a positive definite matrix. Fixed a positive constant η > 0 small enough such that

η � ε

2(ε+ 1)

χ1
κ1

+ χ2
κ2

χ1M1
κ1

+ χ2M2
κ2

. (3.10)
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Since we have

Λ{1}(M) = 8πM1 − a11M
2
1 = M1 (8π − a11M1)

=
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

[
8π − a11

κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

]
=
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

×
[
8π −m1

(
χ1

κ1
+
χ2

κ2

)[
χ1
κ1

χ1
κ1

+ χ2
κ2

+ ε

]
(1 + 2ε)

]
> 0,

Λ{2}(M) = 8πM2 − a22M
2
2

=
κ2m2

χ2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

×
[
8π −m2

(
χ1

κ1
+
χ2

κ2

)[
χ2
κ2

χ1
κ1

+ χ2
κ2

+ ε

]
(1 + 2ε)

]
> 0,

Λ{1,2}(M) = 8π(M1 +M2) − a11M
2
1 − (a12 + a21)M1M2 − a22M

2
2

= 8π
(
κ1m1

χ1
+
κ2m2

χ2

)(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

− a11

[
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

]2

− (a12 + a21)
[
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

]
×
[
κ2m2

χ2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

]

− a22

[
κ2m2

χ2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

]2

= 8π
(
κ1m1

χ1
+
κ2m2

χ2

)(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

−
[
1 +

κ1

χ1

(
χ1

κ1
+
χ2

κ2

)
ε

](
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)2m2

1

− 2m1m2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)2
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−
[
1 +

κ2

χ2

(
χ1

κ1
+
χ2

κ2

)
ε

](
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)2m2

2

=
(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε)

{
8π

(
κ1m1

χ1
+
κ2m2

χ2

)
−
[
(m1 +m2)2 + ε

(
κ1

χ1
m2

1 +
κ2

χ2
m2

2

)(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε)

}
> 0

by (3.7) and (3.8), applying lemma 2.3, then there exists a positive constant C > 0
such that

M1 log
[∫

Ω

exp [(a11 + a12)v] dx
]

+M2 log
[∫

Ω

exp [(a21 + a22)v] dx
]

=
κ1m1

χ1

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε) log

[∫
Ω

exp
(
χ1α1

κ1
v

)
dx

]
+
κ2m2

χ2

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε) log

[∫
Ω

exp
(
χ2α2

κ2
v

)
dx

]

�

⎛⎝ 2∑
i=1

2∑
j=1

aij

(
1
2

+Miη

)⎞⎠∫
Ω

|∇v|2 dx+
2
|Ω|

⎛⎝ 2∑
i=1

2∑
j=1

aijMi

⎞⎠∫
Ω

v dx+ C

= (1 + ε)

[
2∑

i=1

(
1
2

+Miη

)
χi

κi

]∫
Ω

|∇v|2 dx

+
2
|Ω|

(
χ1M1

κ1
+
χ2M2

κ2

)
(1 + ε)

∫
Ω

v dx+ C,

which together with (3.10) implies that

κ1m1

χ1
log

[∫
Ω

exp
(
χ1α1

κ1
v

)
dx

]
+
κ2m2

χ2
log

[∫
Ω

exp
(
χ2α2

κ2
v

)
dx

]

� 1
2

∫
Ω

|∇v|2 dx+
2(1 + ε)

|Ω|(1 + 2ε)

χ1M1
κ1

+ χ2M2
κ2

χ1
κ1

+ χ2
κ2

∫
Ω

v dx+ C

� 1
2

∫
Ω

|∇v|2 dx+
2
|Ω| max{M1,M2}

∫
Ω

v dx+ C.

Then lemma 3.3 tells that

α1

∫
Ω

u1v dx+ α2

∫
Ω

u2v dx

� κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx+
1
2

∫
Ω

|∇v|2 dx

+
2
|Ω| max{M1,M2}

∫
Ω

v dx+ C,

which proves the lemma by (1.10). �
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Lemma 3.5. Under the same assumptions in lemma 3.4, then there exists C > 0
such that

‖u1 lnu1‖L1(Ω) + ‖u2 lnu2‖L1(Ω) � C.

Proof. Lemma 3.1 asserts that

F [u1, u2, v] � F [u10, u20, v0]

in the sense that

κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx+
1
2

∫
Ω

|∇v|2 dx+
1
2

∫
Ω

v2 dx

�
∫

Ω

(u1 + u2)v dx+ F [u10, u20, v0]. (3.11)

According to the choices of α1 > 1 and α2 > 1 in lemma 3.4, we may find C > 0
such that

α1

∫
Ω

u1v dx+ α2

∫
Ω

u2v dx � κ1

χ1

∫
Ω

u1 log u1 dx+
κ2

χ2

∫
Ω

u2 log u2 dx

+
1
2

∫
Ω

|∇v|2 dx+ C,

which yields that

(α1 − 1)
∫

Ω

u1v dx+ (α2 − 1)
∫

Ω

u1v dx � C

by (1.10) and (3.11). From (3.11), this in turn shows that there exists C > 0 such
that ∫

Ω

u1 log u1 dx+
∫

Ω

u2 log u2 dx � C. �

Proof of theorem 1.1. Assume that (u1, u2, v) is a local classical solution of (1.1)
over (0, Tmax) with the following blow-up criterion: either Tmax = ∞, or if Tmax <
∞, it should satisfy:

‖u1(·, t)‖L∞(Ω) + ‖u2(·, t)‖L∞(Ω) → ∞, as t→ Tmax.

A version of the Gagliardo–Nirenberg inequality in two-dimensional bounded
domain shows that for each ε > 0, there exists a positive constant Cε > 0 such
that (see [21, lemma 3.5], [24, lemma A.5])

‖φ‖3
L3(Ω) � ε‖∇φ‖2

L2(Ω)‖φ log |φ|‖L1(Ω) + Cε‖φ‖3
L1(Ω) + Cε, ∀ φ ∈ H1(Ω). (3.12)

By means of (3.12) and lemma 3.5, we follow a similar argument in [21, lemma 3.6]
to find C > 0 such that

‖u1(·, t)‖L2(Ω) + ‖u2(·, t)‖L2(Ω) � C, ∀ t ∈ (0, Tmax).

By the well-known Moser–Alikakos iteration procedure [1], the solutions of (1.1)
must be uniformly bounded for all t ∈ (0, Tmax), that is, Tmax = ∞. �
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4. The whole space

The proof of global existence for the whole space R
2 also relies on the

Moser–Trudinger inequality for system given in lemma 2.1. Similar to the bounded
domain case, it is possible to control (3.3) by the entropy. For this purpose, we have

Lemma 4.1. Consider a local solution (u1, u2, v) to (1.1) in R
2 × (0, T ) with T > 0,

subject to initial data (u10, u20, v0) satisfying (1.11). Suppose that mi =
∫
Ω
ui0 dx,

i = 1, 2, fulfills

m1 < 8πκ1/χ1, m2 < 8πκ2/χ2, (m1 +m2)2 < 8π (κ1m1/χ1 + κ2m2/χ2) .
(4.1)

Then there exists ε > 0 such that∫
R2

(u1 + u2)v dx � κ1

χ1(1 + ε)

∫
R2

(u1 + 1) log(u1 + 1) dx

+
κ2

χ2(1 + ε)

∫
R2

(u2 + 1) log(u2 + 1) dx

+
1

2(1 + ε)

∫
R2

|∇v|2 dx+ C, t > 0,

for some C > 0.

Proof. Inspired by lemma from [15, lemma 2.1] for a single-species chemotaxis
system, we use the similar argument to deal with multi-species scenario on the base
of the Moser–Trudinger inequality for system. For any initial data (u10, u20, v0)
satisfying (1.11), we

m̃ = ‖u10‖L1(R2) + ‖u20‖L1(R2) + ‖v0‖L1(R2).

Choose ε > 0 small enough and s > 0 large enough, then the assumption (4.1)
ensures that

8π > (m1 + m̃/s)
[
χ1

κ1
+ ε

(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε),

8π > (m2 + m̃/s)
[
χ2

κ2
+ ε

(
χ1

κ1
+
χ2

κ2

)]
(1 + 2ε),

(4.2)

and

8π
[
κ1

χ1
(m1 + m̃/s) +

κ2

χ2
(m2 + m̃/s)

]
>

{
(m1 +m2 + 2m̃/s)2

+ε
[
κ1

χ1
(m1 + m̃/s)2 +

κ2

χ2
(m2 + m̃/s)2

](
χ1

κ1
+
χ2

κ2

)}
(1 + 2ε). (4.3)

Let

ṽ(x, t) = max{v(x, t) − s, 0}, ∀(x, t) ∈ R
2 × (0, T ),
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and

Ω(t) =
{
x ∈ R

2 : v(x, t) > s
}
, ∀t ∈ (0, T ).

Note that the Lebesgue measure of Ω(t) denoted by |Ω(t)| is finite, because (1.10)
and

s · |Ω(t)| � ‖v(t)‖1 � ‖u10‖L1(R2) + ‖u20‖L1(R2) + ‖v0‖L1(R2) = m̃, ∀ t ∈ (0, T ),

imply that

|Ω(t)| � m̃/s, ∀ t ∈ (0, T ). (4.4)

Moreover, we see that∫
R2

(u1 + u2)v dx =
∫

Ω(t)

(u1 + u2)(ṽ + s) dx+
∫

R2\Ω(t)

(u1 + u2)v dx

�
∫

Ω(t)

(u1 + u2)ṽ dx+ s (‖u10‖1 + ‖u20‖1) .

A similar computation as (3.5) and utilizing (4.4), we obtain that

αi

∫
Ω(t)

(ui + 1)ṽ dx

� κi

χi

∫
Ω(t)

(ui + 1) log(ui + 1) dx

+
κi(mi(t) + |Ω(t)|)

χi
log

[∫
Ω(t)

exp
(
χiαi

κi
ṽ

)
dx

]

− κi(mi(t) + |Ω(t)|)
χi

log(mi(t) + |Ω(t)|)

� κi

χi

∫
Ω(t)

(ui + 1) log(ui + 1) dx

+
κi(mi + m̃/s)

χi
log

[∫
Ω(t)

exp
(
χiαi

κi
ṽ

)
dx

]
+ C, (4.5)

where αi > 1, mi(t) =
∫
Ω(t)

ui dx � mi, i = 1, 2, and

C =
κi(mi + m̃/s)

χi
log(mi + m̃/s).

Without loss of generality, we assume that |Ω(t)| > 1, otherwise we may take Ω̃(t)
such that |Ω̃(t)| > 1 and Ω(t) ⊂ Ω̃(t). Define M1,M2 > 0 as

M1 =
κ1

χ1
(m1 + m̃/s)

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε),

M2 =
κ2

χ2
(m2 + m̃/s)

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε).
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Let A = (ai,j)2×2 be a positive definite matrix with elements from (3.9) and α1 =
α2 = 1 + ε. According to (4.2)–(4.3), we have

ΛJ (M ) > 0, ∀J ⊂ I = {1, 2}, J 	= ∅,

then applying lemma 2.1 to see that

M1 log

[∫
Ω(t)

exp [(a11 + a12)ṽ] dx

]
+M2 log

[∫
Ω(t)

exp [(a21 + a22)ṽ] dx

]

=
κ1

χ1
(m1 + m̃/s)

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε) log

[∫
Ω(t)

exp
(
χ1

κ1
(1 + ε)ṽ

)
dx

]

+
κ2

χ2
(m2 + m̃/s)

(
χ1

κ1
+
χ2

κ2

)
(1 + 2ε) log

[∫
Ω(t)

exp
(
χ2

κ2
(1 + ε)ṽ

)
dx

]

� 1
2

⎛⎝ 2∑
i=1

2∑
j=1

aij

⎞⎠∫
Ω(t)

|∇ṽ|2 dx =
1
2

(
χ1

κ1
+
χ2

κ2

)
(1 + ε)

∫
Ω(t)

|∇ṽ|2 dx.

Then we have the following inequality

κ1

χ1
(m1 + m̃/s) log

[∫
Ω(t)

exp
(
χ1α1

κ1
ṽ

)
dx

]

+
κ2

χ2
(m2 + m̃/s) log

[∫
Ω(t)

exp
(
χ2α2

κ2
ṽ

)
dx

]

� 1 + ε

2(1 + 2ε)

∫
Ω(t)

|∇ṽ|2 dx � 1
2

∫
Ω(t)

|∇ṽ|2 dx.

Inserting the above into (4.5) yields that

(1 + ε)
∫

Ω(t)

(u1 + 1)ṽ dx+ (1 + ε)
∫

Ω(t)

(u2 + 1)ṽ dx

� κ1

χ1

∫
Ω(t)

(u1 + 1) log(u1 + 1) dx

+
κ2

χ2

∫
Ω(t)

(u2 + 1) log(u2 + 1) dx+
1
2

∫
Ω(t)

|∇ṽ|2 dx+ C

for all t ∈ (0, T ), so we have∫
R2

(u1 + u2)v dx �
∫

Ω(t)

(u1 + u2)ṽ dx+ s (‖u10‖1 + ‖u20‖1)

�
∫

Ω(t)

(u1 + 1)ṽ dx+
∫

Ω(t)

(u2 + 1)ṽ dx+ s (‖u10‖1 + ‖u20‖1)
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� κ1

χ1(1 + ε)

∫
Ω(t)

(u1 + 1) log(u1 + 1) dx

+
κ2

χ2(1 + ε)

∫
Ω(t)

(u2 + 1) log(u2 + 1) dx

+
1

2(1 + ε)

∫
Ω(t)

|∇ṽ|2 dx+ C

� κ1

χ1(1 + ε)

∫
R2

(u1 + 1) log(u1 + 1) dx

+
κ2

χ2(1 + ε)

∫
R2

(u2 + 1) log(u2 + 1) dx

+
1

2(1 + ε)

∫
R2

|∇v|2 dx+ C, ∀ t ∈ (0, T ).

This lemma is complete. �

The following proposition could be regarded as an analogue of the result for
one-single Keller–Segel chemotaxis model (see [20, proposition 4.1]).

Lemma 4.2. Consider a local solution (u1, u2, v) to (1.1), subject to initial data
(u10, u20, v0) satisfying (1.11). Then

d
dt

G[u1, u2, v] +
∫

R2
v2

t dx

= −χ1

∫
R2
u1

∣∣∣∣∇(
κ1

χ1
log(u1 + 1) − v

)∣∣∣∣2 − χ2

∫
R2
u2

∣∣∣∣∇(
κ2

χ2
log(u2 + 1) − v

)∣∣∣∣2
− χ1

∫
R2

∣∣∣∣∇(
κ1

χ1
log(u1 + 1) − 1

2
v

)∣∣∣∣2 − χ2

∫
R2

∣∣∣∣∇(
κ2

χ2
log(u2 + 1) − 1

2
v

)∣∣∣∣2
+
χ1 + χ2

4

∫
R2

|∇v|2 dx, (4.6)

where

G[u1, u2, v] =
κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx+
κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx

−
∫

R2
(u1 + u2)v dx+

1
2

∫
R2

|∇v|2 dx+
1
2

∫
R2
v2 dx.

Proof. We adopt the similar arguments as lemma 3.1 to prove this lemma. Mul-
tiplying (1.1)i by κi/χi log(ui + 1), i = 1, 2, and integrating over R

2, it induces
that

κi

χi

∫
R2

(ui + 1)t log(ui + 1) = −κ
2
i

χi

∫
R2

|∇ui|2
ui + 1

dx

+ κi

∫
R2

ui

ui + 1
∇ui · ∇v dx, i = 1, 2.
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Moreover, we have

d
dt

[
κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx+
κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx

−
∫

R2
(u1 + u2)v dx

]
+
∫

R2
(u1 + u2)vt dx+

∫
R2

(u1 + u2)tv dx

= −κ
2
1

χ1

∫
R2

|∇u1|2
u1 + 1

dx− κ2
2

χ2

∫
R2

|∇u2|2
u2 + 1

dx

+ κ1

∫
R2

u1

u1 + 1
∇u1 · ∇v dx+ κ2

∫
R2

u2

u2 + 1
∇u2 · ∇v dx,

where we use the fact that (d/dt)
∫

R2(ui + 1) dx = 0, i = 1, 2. Since∫
R2

(u1 + u2)vt dx =
∫

R2
(vt − Δv + v)vt dx

=
∫

R2
v2

t dx+
1
2

d
dt

(∫
R2

|∇v|2 dx+
∫

R2
v2 dx

)
and ∫

R2
(u1 + u2)tv dx = χ1

∫
R2
u1|∇v|2 dx+ χ2

∫
R2
u2|∇v|2 dx

− κ1

∫
R2

∇u1 · ∇v dx− κ2

∫
R2

∇u2 · ∇v dx

hold out, then it is obvious that

d
dt

(
κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx+
κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx
)

− d
dt

(∫
R2

(u1 + u2)v dx+
1
2

∫
R2

|∇v|2 dx+
1
2

∫
R2
v2 dx

)
+
∫

R2
v2

t dx

= −κ
2
1

χ1

∫
R2

|∇u1|2
u1 + 1

dx− κ2
2

χ2

∫
R2

|∇u2|2
u2 + 1

dx− χ1

∫
R2
u1|∇v|2 dx

− χ2

∫
R2
u2|∇v|2 dx

+ κ1

∫
R2

2u1 + 1
u1 + 1

∇u1 · ∇v dx+ κ2

∫
R2

2u2 + 1
u2 + 1

∇u2 · ∇v dx

= −χ1

∫
R2
u1

∣∣∣∣∇(
κ1

χ1
log(u1 + 1) − v

)∣∣∣∣2 − χ2

∫
R2
u2

∣∣∣∣∇(
κ2

χ2
log(u2 + 1) − v

)∣∣∣∣2
− χ1

∫
R2

∣∣∣∣∇(
κ1

χ1
log(u1 + 1) − 1

2
v

)∣∣∣∣2 − χ2

∫
R2

∣∣∣∣∇(
κ2

χ2
log(u2 + 1) − 1

2
v

)∣∣∣∣2
+
χ1 + χ2

4

∫
R2

|∇v|2 dx.

Therefore, we have finished the proof of this lemma. �

https://doi.org/10.1017/prm.2022.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.88


2126 K. Lin

Lemma 4.3. Consider a local solution (u1, u2, v) to (1.1) in R
2 × (0, T ), subject to

initial data (u10, u20, v0) satisfying (1.11). Under the same assumptions in lemma
4.1, then there exists a positive constant C > 0 such that∫

R2
(u1 + 1) log(u1 + 1) dx+

∫
R2

(u2 + 1) log(u2 + 1) dx � C, ∀t ∈ (0, T ), (4.7)

and ∫ t

0

∫
R2
v2

t (s) dxds � C, ∀t ∈ (0, T ). (4.8)

Proof. Invoking the definition of G and lemma 4.1, we firstly obtain

G[u1, u2, v] =
κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx+
κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx

−
∫

R2
(u1 + u2)v dx+

1
2

∫
R2

|∇v|2 dx+
1
2

∫
R2
v2 dx

� κ1ε

χ1(1 + ε)

∫
R2

(u1 + 1) log(u1 + 1) dx

+
κ2ε

χ2(1 + ε)

∫
R2

(u2 + 1) log(u2 + 1) dx

+
ε

2(1 + ε)

∫
R2

|∇v|2 dx+
1
2

∫
R2
v2 dx+ C, ∀ t ∈ (0, T ). (4.9)

Moreover, lemma 4.1 ensures that there exist ε > 0 and C > 0 such that∫
R2

(u1 + u2)v dx � κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx+
κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx

+
1

2(1 + ε)

∫
R2

|∇v|2 dx+ C, ∀ t ∈ (0, T ).

Reversely, it implies that

1
2

∫
R2

|∇v|2 dx = G[u1, u2, v] − κ1

χ1

∫
R2

(u1 + 1) log(u1 + 1) dx

− κ2

χ2

∫
R2

(u2 + 1) log(u2 + 1) dx− 1
2

∫
R2
v2 dx+

∫
R2

(u1 + u2)v dx

� G[u1, u2, v] +
1

2(1 + ε)

∫
R2

|∇v|2 dx+ C.

Hence, one can see that∫
R2

|∇v|2 dx � 2(1 + ε)
ε

G[u1, u2, v] +
2(1 + ε)C

ε
.
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Combining it with (4.6) yields that

d
dt

G[u1, u2, v] +
∫

R2
v2

t dx � (1 + ε)(χ1 + χ2)
2ε

G[u1, u2, v]

+
(1 + ε)(χ1 + χ2)C

2ε
, ∀ t ∈ (0, T ).

Using Gronwall’s inequality to above inequality, it means that

G[u1, u2, v](t) +
∫ t

0

∫
R2
v2

t dxds � C̃, ∀ t ∈ (0, T ).

Then we obtain (4.7)–(4.8) by terms of (4.9). �

Proof of theorem 1.2. Prove by contradiction. Under the assumptions in theorem
1.2, suppose that there exists a solution (u1, u2, v) of (1.1) which blows up at finite
time T <∞. Lemma 4.3 tells us that there exists C > 0 such that∫

R2
(u1 + 1) log(u1 + 1) dx+

∫
R2

(u2 + 1) log(u2 + 1) dx+
∫ t

0

∫
R2
v2

t (s) dxds � C.

Based on the following inequality in two-dimensional domain

‖φ‖3
L3(R2) � ε‖∇φ‖2

L2(R2)‖(φ+ 1) log(φ+ 1)|‖L1(R2) + Cε‖φ‖3
L1(R2), ∀ φ ∈ H1(R2),

we have

‖u1(·, t)‖L2(R2) + ‖u2(·, t)‖L2(R2) � C, ∀ t ∈ (0, T )

by a similar argument in [20, proposition 5.1]. However, through the standard
theory of the parabolic regularity, it is straightforward to show that the solution
(u1, u2, v) remains in L∞(R2) for all t ∈ (0, T ]. It is a contradiction with the blow-up
criteria, which implies the solution (u1, u2, v) exists globally in time. �
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