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FIXED POINTS OF AUTOMORPHISMS 
OF FREE PRO-/? GROUPS OF RANK 2 

WOLFGANG N. HERFORT, LUIS RIBES AND PAVEL A. ZALESSKII 

ABSTRACT. Let /? be a prime number, and let F be a free pro-/? group of rank two. 
Consider an automorphism a of F of finite order m, and let F\Xf(a) = {x G F | a(x) = 
x} be the subgroup of F consisting of the elements fixed by a. It is known that if m is 
prime to p and a = idp, then the rank of Fix/r(a) is infinite. In this paper we show that 
if m is a finite power pr of/?, the rank of Fix/r(a) is at most 2. We conjecture that if the 
rank of F is n and the order of a is a power of/?, then rank(Fix/r (a)) < n. 

Introduction. Let/? be a prime number, F a free pro-/? group of finite rank n, and 
a a (continuous) automorphism of F. Denote by ¥\xF(oc) the subgroup of F consisting 
of those elements which are fixed by a. In [11] it is proved that if the order of a (as 
an element of the group Aut(F)) is not divisible by /?, then either a is the identity au­
tomorphism or otherwise ¥ixF(a) is a free pro-/? group of infinite rank. That result is 
somewhat surprising, taking into account the well-known related fact in the context of 
abstract groups (cf. [5], [1], where it is shown that if O is an abstract free group of finite 
rank and a G Aut(O), then rankFix^a) < rankO). One feels that this "pathological" 
situation is due to the fact that a is not in the category of pro-/? groups, i.e., the group 
generated by a is not a pro-/? group. Theorem 4.3 in [11] provides a method to construct 
free pro-/? groups F of finite rank, and automorphisms a of F of order a power of/?, such 
that the rank of ¥ixF(a) is at most the rank of F. Now, F can be thought of as a pro-/? 
completion of an abstract free group O. In Theorem 1.1 in this paper we show that an 
automorphism of finite/?-power order of the abstract group O, induces an automorphism 
of F of the same order; moreover the group of fixed points of such an automorphism has 
finite rank. This suggests that if both F and the group generated by a are in the category 
of pro-/? groups, then one should expect a result that reflects the situation in abstract free 
groups. We are now ready to state a formal conjecture. 

CONJECTURE. Let F be a free pro-p group of finite rank n, and let a be an automor­
phism of order pr (0 < r < oo). Then the rank of the free pro-p group ¥ixf(a) is at 
most n. 

Recall that one says that the order of a is/?00 if the topological subgroup of Aut(F) 
generated by a is isomorphic to Zp, the group of/?-adic integers. 

In this paper we prove this conjecture in the case when F has rank n = 2 and a has 
finite order. 
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We show that \fn — 2 and a has finite order/?r, then a is trivial unless/? is 2 or 3 (cf 
Theorem 6.7). Most of the paper is concerned with the case/? = 2. When/? = 3 we show 
that, up to conjugation, there is only one automorphism of order 3, as in the abstract case. 
In this case the subgroup of fixed points is trivial (cf Theorem 6.5). 

It turns out that one can reduce the proof of the conjecture for/? = 2, to the case when 
the order of a is 2. The strategy for the proof is then as follows. First we consider the 
induced automorphism à on the abelianized quotient F/F' of F. It is easy to describe the 
different possibilities for a. The important fact is that, if one chooses a convenient basis 
for the free abelian pro-2 group F/F', then â interchanges the elements of such a basis, 
or it fixes some of them and inverts the others (Lemma 2.5). Then we study the lifting of 
such a basis to F. One of the main results of this paper is that there exists a basis of F such 
that a inverts as many elements of that basis as â does for the corresponding basis of F/F' 
(Theorem 3.1). Another key result of the paper is that if a is any involutory automorphism 
of a free pro-/? group with basis {*,}>}> and a(y) = y~l, a(x) = x (mod Ff), then a 
cannot fix any nontrivial element of the normal closure of y in F (Theorem 5.3), and 
consequently the rank of Fix f (a) is bounded by 1. 

In Theorem 6.7 we collect all the information about fixed points of automorphisms of 
finite/?-power order of a free pro-/? group of rank 2. 

1. Notation and automorphisms induced from abstract groups. Throughout the 
paper/? stands for a prime number. A pro-/? group is a projective limit of finite /?-groups, 
and we think of it as a topological group. For general facts about pro-/? groups one may 
consult [ 17], [4], [ 14]. If G is a pro-/? group, we use d(G) to denote the smallest cardinality 
of a set of generators of an abstract dense subgroup of G. In this paper all homomorphisms 
among pro-/? groups are assumed to be continuous, and all subgroups of pro-/? groups are 
assumed to be closed. The commutator and Frattini subgroups of G are denoted by G' 
and G*, respectively. If 7 is a subset of a pro-/? group G, the normal closure of Y in G is 
denoted by Y°\ and if Y consists of the element y only, we write instead (y)G. If a is an 
automorphism of a pro-/? group G, we use the notation 

CG(OC) = Fixc(a) = {x G G | a(x) — x}. 

If Xis a finite set, let O be the free abstract group on X. Then the free pro-/? group onX 
is F — lim O/N, where N runs through the set of those normal subgroups whose index in 

O is a finite power of/?. The rank of Fis \X\. The free pro-/? group of rank 1 is the additive 
group of the/?-adic integers, for which we use the standard notation ~Lp. For properties 
of free pro-/? groups, as well as the concept of freeness on a (pointed) topological space, 
one may consult [6]. If F is a free pro-/? group on a space X, then F/F* is a topological 
vector space over the field ¥p with/? elements, withXas a topological basis; we also refer 
to F/F* as a free pro-/? group onX in the variety of abelian pro-/? groups of exponent/?. 

If G\,..., Gn are pro-/? groups, their free pro-/? product G = G\ LI • • • LI Gn is the 
coproduct of the groups G\,..., Gn in the category of pro-/? groups. For basic properties 
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of free pro-/? products, as well as the concept of free products indexed by a topological 
space, one may consult [7] and [8]. 

If R is a commutative pro-/? ring (for example Zp or ¥p ) and G is a pro-/? group, the 
completed group algebra i?[[G]] is the topological algebra limR[G/U], where U runs 

through the open normal subgroups of G, and R[G/U] is the usual group algebra. For 
properties of ^[[G]], one may consult [12]. 

Let à be an automorphism of the abstract free group O. Then â induces in a natural 
way a (continuous) automorphism a of its pro-/? completion F. In our first result we 
establish a straightforward consequence for free pro-/? groups of a theorem of J. L. Dyer 
and G. P. Scott that they prove for abstract groups. 

THEOREM 1.1. Let O be a free abstract group of finite rank and F its pro-p comple­
tion. Let â be an automorphism o/O of finite order pn, and let a be the automorphism of 
F induced by â. Then F — Fix/r(a) LI L, for some pro-p subgroup L ofF. In particular, 
rank(Fix/r(a)) < rank(F). 

PROOF. Note that F'\xF{a) < FixF(ap). Therefore by induction it suffices to prove 
the result when n = 1. Consider the holomorph T = O x (â). By Theorem 1 in [3], F 
admits a decomposition as a free product of abstract groups F = (*F\) * A, where A is 
a free abstract group and for each \,F\ = Z //?Z x A^ for some free abstract group AA. 
Let G be the pro-/? completion of F. One easily vérifies that 

G = Fx(a) = LJ(Z//?Zx//A)L[//, 
A 

where H and H\ are the pro-/? completions of A and Ax respectively. By Theorem A' 
in [9], (a) must be conjugate to one of the Z//?Z appearing in the above free pro-/? 
product decomposition of G, and therefore we may assume that (a) is in one of those 
free factors, say Z//?Z x H\. Now by Theorem B' in [9], the centralizer of a in G is 
Z//?Z x H\ = (a) x H\. So F'\xF{a) — ((x) x H\) D F, which is a free pro-/? factor of 
F by the main theorem in [2]. • 

REMARK 1.2. Theorem 1.1 is valid in a more general setting. Specifically, let C be 
non-empty class of finite groups closed under taking subgroups, quotients and extensions 
with abelian kernel. Let â be an automorphism of the free abstract group <P such that 
(a) E C. Denote by F the pro-C completion of O. Then Fixf(a) is a free pro-C factor 
ofF. 

2. Preliminary results. 

LEMMA 2.1. Let G — G\ U G2 be the free pro-p product of pro-p groups G\, G2. Let 
a be an automorphism of G of finite order pn with a(G/) = G [for i— 1,2. Then 

CG(oc) = (CGl(a),CG2(a)) ^ CG |(a)[]CG 2(a). 
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PROOF. First assume that G\ and G2 are both finite. Let K denote the Cartesian kernel 
of G, i.e., K is the kernel of the homomorphism 

</>: G, LI G2- G{xG2, defined by <j>{x) = j j * ' * j £ * | ^ 

CLAIM 1. CK{a) = ([gug2]\gl G CGi(a)\{l},i= 1,2). Put* := {[gug2] \ gi G 
Gt \ {1}, / = 1,2]. Note that X is a free set of generators for K (cf. Theorem 3.4 in [ 15]). 
Clearly a acts on Xas a permutation. HenceXadmits a partition into a-orbits, i.e., one 
can find a subsets Ç X, so that 

X = (J a/(Xx)UXo9 XlnX0 = fè9 
7=0 

whereX0 := CY(ÛT) = {[gi,g2] | gi G CG|. (<*)>* = 1,2}. 
Next observe that the holomorph H := Kx (a) admits the free pro-/? product decom­

position 

H=((<x)xF(X0j)UF<Xi\ 

where F(Xo) and F(Xi ) denote the free pro-/? group on Xo and Jf 1 respectively. 
For, define a homomorphism 

r; : L = ((a) x F(Ab)) LJ ̂ (*i) - ^ K x (a) 

by 

r/(a) = a, and 

?7(x)=x i fxG^oUXi. 

The normal subgroup of L generated by F(XQ) and F(X\ ) is 

P"-\ 

J 
-0 

(F(X)\\F(Xx))
a I 1 = 0 , . . . , / - l ) = F ^ L l ' l I W ) = F(X)^K. 

Therefore, r; is an isomorphism. 
From Theorem 3 in [9] we infer that 

CK(a) = F(X0). 

This proves Claim 1. 
It is clear from the definition of K that 

CG(a) < CGfa)CGl(a)K. 

Therefore g G CG(a) has the form g — g\g2k with g/ G CGj(a) and k G K. Then 

gig2^ = g = «(g) = a(gi)a(g2)a(T) = gig2a(£) 
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implies k — a(k), i.e., 

CG(a) < CGl(a)CGl(a)CK(a) < (CGl(a),CC2(a)), 

by Claim 1. The latter group can be seen to be isomorphic with CGl (a) LI CGl (a) by 
applying Lemma 5.3 in [10], and so the lemma is proved for finite groups G\, G2. 

We turn to the general case. Since a is of finite order, the groups G/ contain a-invariant 
open normal subgroups forming a basis of neighbourhoods of the identity. Pick open 
normal a-invariant subgroups Ni < G,, / = 1,2. Let N denote the normal closure of 
N\ U N2 in G = G\ IIG2 and let 7r#: G —> G/N stand for the canonical projection. For 
an element g G CG(a) the canonical isomorphism 

G/N^G]/N]\jG2/N2 

and the first part of the proof yield the fact that 

*N(g) £ ({CGl/Nl(a)9CG2/N2(a))). 

It now follows that 
g G (CGl((x)9CG2(a)). 

This shows that CG(a) < (CGl(a), CGl(a)). The reverse inclusion is trivial and the 
isomorphism with CGl (a) II CGl(a) again follows from Lemma 5.3 in [10]. • 

REMARK. One easily extends the result to an infinite number of free factors, or even 
to a free product of factors indexed by some boolean space. 

LEMMA 2.2. Let G := Tp]\Fbe the free pro-p product ofthep-adic integers with a 
pro-p group F. Let a be an automorphism of G and assume that the normal closure of F 
in G does not contain nontrivial fixed points of a. Then CG{a) is procyclic. 

PROOF. Let F° denote the normal closure of F in G and define 7r to be the canonical 
projection from G onto G/F6. Then 

CG(a) <* CG(a)/CG(a) H F° = C G ( a ) / ^ / / ^ -> G/F* = Zp. m 

LEMMA 2.3. Let G := A\ II • • • 1 1 ^ be a free pro-p product of isomorphic pro-p 
groups At. Let a G Aut(G) be the automorphism that sends A/ to Ai+\ (where 1 < i < p 
andp + 1 is identified with I) in the canonical way. Then CG(a) = {1}. 

PROOF. It is enough to remark that the holomorph r := G x (a) is isomorphic to 

so that Theorem B in [9] implies 

Cr(a) = (a). 

Therefore a has no non-trivial fixed points in G. • 
Next we turn to some result on linear algebra that will be needed later. 
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LEMMA 2.4. Let F be afield, and V = F x • • • x F the n-dimensional F-vector 
space ofn-tuples of elements ofF. Ifv = (a\,..., an), w = (b\,...,b„) are in V, let 
v-w — EJLi dibi be their standard bilinear product. Suppose thatf: V —-> V is a function 
such thatfiy) • v ^ Ofor every 0 ^ v G V. Then the linear span of the set 

f(V) = \f(y) \vev} 

isV. 

PROOF. Let WbQ the linear span of/(F). If W ^ V, then choose u ^ 0 in V such 
that W - u = 0. If follows that/(w) • u = 0, a contradiction. • 

LEMMA 2.5. Let Zp be the ring ofp-adic integers. Let A G GL(2, Tp) be a matrix 
with Ap = 1. Then 

(i) Ifp — 2 and A ^ 1, then A must be conjugate to precisely one of the following 
matrices 

- 1 0 ' 0 1 "1 0 " 
0 - 1 •> 1 0 ' 0 - 1 

(ii) Ifp = 3 and A ^ 1, then A must be conjugate to 

(Hi) Ifp > 3, then A — 1. 

PROOF, (i) First observe that 
0 

are not conjugate in GL(2, Z2) 

since they are not conjugate in GL(2, Z/2Z). Let M = Z2 ® Z2 be the free abelian pro-2 
group of rank 2, and let a be an automorphism with a2 = 1. It suffices to prove that 
there is a basis {m\, m{\ of M such that either (a) a(m\) ~ m2 (and then a(ra2) — m\), 
or (b) oc(m\) — ±m\ and oc(m2) = ±W2. To prove this consider a basis {n\, «2} of M. 

CASE 1. a(«i) 7̂  «1 (mod 2M) or a(«2) 7̂  «2 (mod 2M). Hence {n\,a(n\)} or 
{«2, <*(«2)} respectively, is a basis of M. Then we get the alternative (a) above. 

CASE 2. <*(«/) = «/ + 2^/ for some /z/ e M (i = 1,2). Since a2 = 1, it follows that 
a ^ ) = — hi. Hence a{nt + hi) = nt + hi. Next observe that {«1 + h\,ni + ^2,^1,^2} 
generate M, and, since M is pro-2, there are two elements in that set which form a basis 
for M. It is easily checked that any such basis leads to one of the cases in (b). 

(ii) Let M — Z3 ® Z3 be the free abelian pro-3 group of rank 2, and let a be an 
automorphism of order 3. It suffices to prove that there is a basis {WM , #22} of M such that 
a(m\) = W2 and a{mi) = —m\ —mj. First observe that in GL(2, Z/3Z) there is only one 

. Therefore one may choose m \ G element of order 3 up to conjugation, namely 

M, such that m\ and mi — a(m\) form a basis of M. Say a(mi) = am\ + bm^ia, b G Z3). 
The matrix of a with respect to this basis is 

[0 a] 
1 b\' 
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Since a3 = 1, det(a) = 1, and so a — — 1. 
Now, m\ = a3(m\) = am2 + b(am\ + bm2). So ab = 1, and a + £2 = 0. Therefore 

6 = - l . 
(iii) Let M — Tp 0 Zp be the free abelian pro-/? group of rank 2. Let a G GL(2, Zp) 

be of order p. Consider the induced automorphism â on M/pM. Then the matrix of â 
with respect to a certain basis has the form 

1 1 
0 1 

Choose a vector z ^ Oof M/pM such that d(z) = z. Then for any x in M/pM, 
â(x) = x + qz, with ^ G Z//?Z. Next choose io G M such that a(jt0) 7̂  JCO. Then 
a(xo) = xo + zo, where zo ^ pM but zo is fixed by a modulo pM. Then 

a2(xo) = xo + zo + a(zo) = xo + 2z0 + x\, where xj G pM\ 

a3(xo) = xo + 3zo + 3xi + z\, where z\ G pM; 

and in general, 

(1) Xo = (/(Xo) = Xo + lP\z0 + r (Xi + r )Z! + • 

Notethatfor/?>3 

1/ \ 2 / \3 

^jx1 + r jz 1 +-- -Gp 2 M. 

Since (fyzo G pM\p2M, the expression (1) leads to a contradiction. Hence there is 
no automorphism a of order p. • 

3. Lifting inverted elements. 

THEOREM 3.1 (LIFTING THEOREM). Let G be a free pro-2 group of finite rank n = 
d\ +di, where d\ and d2 are non-negative integers. Let a G Aut(G) be an automorphism 
of order 2 of G, and assume that the automorphism induced by a on the free abelian 
pro-2 group GjG' has with respect to a certain basis *B ofG/G', the matrix form 

h 0 >| 
0 -hj' 

where I\ and I2 denote the identity matrices of degree d\ and d2 respectively (if d\ — 0, 
A — —h). Then G admits a decomposition as a free pro-2 product G — G\ IIG2, with 

(i) rank G/ = dt (i — 1,2), and 
(ii) G2 admits a free basis X such that a(x) = x_1 for x G X. 

PROOF. Lift the ordered basis ® of Gj G' to an ordered basis *B of G, and let F\ and 
F2 denote the subgroups of G generated by the first d\ and the last d2 elements of $, 
respectively. Furthermore denote by 

T:= G x (a) 
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the holomorph. 
We first describe the idea of the proof. In T we shall exhibit d2 involutions fy 

(j = 1,. . . ,d2), which are neither pairwise conjugates in Y nor conjugates of a. The 
elements /3,-or G T, (j = 1,. . . ,d2) will turn out to be contained in G already and will 
serve as the set X of the theorem. 

Put N := (G*,F\). Let S r (EG) denote the collection of maximal open subgroups 
H ^ G in T (H0 in G) which contain N and with a $ H. 

We give the proof after establishing the following claims: 
1. F/G' * [(F, /F[) x (F2/F

f
2)] x (a), where a(f2F

f
2) = -f2F'2 for/2 G F2. 

2. The Frattini groups P and G* satisfy r* = G*. 
3. For each Ho G EG there is exactly one H G S r with Ho = HdG. 
4. L e t / / G S r . Then 

H/Gf = (F{/F[ x F 2 / F 7 ) x C 2 , 

where the generating element CGC2 acts on (F2/F'2) by inverting the elements. 
Moreoverd(/ /)>d(G)+l. 

5. Let / / G S r . Then / / contains an involution /3//. 
6. PutyH := /?//<*. Then>>// G G\Hand a(y//) = j / ^ 1 . 
7. The set {/3// | H G S r } contains d2 linearly independent elements modulo P . 

For 1. This fact follows immediately from the block form of the matrix A. 
For 2. Note that T' = [G(a)9 G(a)] < G*[G, a]. Also, if g G G, then (gocf = 

g ^ a ] G G*[G,a]. Therefore, it follows that T* < G*[G,a\. Finally, 
by hypothesis, [G, a] < G*. Thus r* = G*. 

For 3. By Claim 2, T* < TV. Let H0 G SG. Then //0 > N > P . Observe that 
Ho/N has codimension 2 in the vector space T/N, and in fact 

r/H0 = (G x (a) ) / / / 0 ^ (G///0) x (a) ^ C2 x C2. 

Pick g G G \ Ho. Let / / > //o be a maximal (open) subgroup of T. 
Clearly the only possibilities for H are / / = (//o,g), / / = (#0, a ) ar*d 
/ / = (Ho,ga). If in addition one requires that HOG = Ho and a $ H, 
one must have / / = (Ho,ga). 

For 4. Put//0 := GH//. Note that G7 < 7/0. Pickg/, G G \ / / then gHa G / / \ G . 
Since H ^ G one can choose g// G F2 and so 

(gHOcf = gH<x(gH) = 1 mod G7 

holds. This finally implies that 

H/Gf^(Fl/F\ x F 2 / F 7 ) x C 2 , 

where the generator gnoc of C2 acts on F2/F'2 by inverting the elements. 
Altogether we found 

/ / / G 7 ^ r / G 7 . 
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This together with the simple observation d(H) > d(H/Gf) implies 

d(H)>d(r/G')>d(r/GT). 

Finally note that d(T/ G*) = d(F\) + d(F2) + 1 = d{G) + 1 yields the desired estimate for 
the generation rank of//. 

For 5. If not then //must be torsion-free. Since Ho is a free pro-2 subgroup of in­
dex 2 in H it turns out that H is a free pro-2 group (cf. p. 413 in [ 16]). Then 
Ho is a subgroup of index 2 in both Hand G, and therefore an application 
of the Schreier formula (cf. [2]) yields 

d(G) = d(H). 

Therefore Claim 4 yields a contradiction. 
For 6. Since F/G = (a) and G is torsion-free, it is clear that y H is in G. Assume 

y H = PHOC G GDH then a = yJ^^H G / / contradicts the choice of//. 
Clearly the elements j / / get inverted by a. 

For 7. Consider the vector space V — G/N over F2 (the field with two elements). 
Define a bilinear product v • w on V as follows: fix a basis for F, and if 
(a\,..., <z</2) and (Z?i,..., b^) are the coordinates of v and w with respect 
to that basis, set 

/=1 

For g G G\N, denote by Vg the subspace of V consisting of the vectors 
orthogonal to gN. Let Hg be the unique subgroup of G containing N with 
Vg — Hg/N, and observe that Hg £ S^. By Claim 3 there exists Hg G 5 r 

such that HgnG — Hg. Choose /3g = f3fj G T as in Claim 5. By Claim 6, 
/3gaeG\Hg. Thus (gN) • (/JgQrW) 7̂  0.*Define a function 

/ : F \ { 0 } ^ K \ { 0 } 

by/feAO = PgaN. By Lemma 2.4 the set {/3gaN \ g e G\N} contains 
di linearly independent elements. It follows that the set 

{Pgar\geG\N} 

contains d2 linearly independent elements, and thus so does the set 

{/3gr\geG\N}. 

In order to finish the proof, pick a linearly independent set mod T* of involutions /?/ 
(/ = 1,... ,di). Note thatyi := /3/a are linearly independent mod T* = G* (see Claim 1). 
PutX:= {yt\ i= 1,.. .,d{\. By Claim 6 a inverts the elements of X and by Claim 7 X 
is a linearly independent set mod G*. • 

Before we state a consequence of Theorem 3.1, we need the following auxiliary result. 
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LEMMA 3.2. Let C and C/ be groups of order 2 generated by a and /3/ (/ = 1,.. •, n) 
respectively. Consider the free pro-2 product 

c = c, LI-LI C]jc, 

and let H — (/3\ a , . . . , (3na). Then 
(i) H is a free pro-2 group of rank n. 

(ii) G = HxC. 

PROOF. First observe that H < G, for {fraf = a/3/ = 03/a)"1, and {^afj = 
(f3jOc)(fiiOcyx (fijCty~x. Hence (ii) follows (for a $ H\ otherwise G would be generated 
by n elements). Next note that /3/ $ H and a $ H (otherwise H — G, but d{H) < n and 
d(G) = n + 1). Therefore, if a G G, one has (fr)anH= (a)aHH= 1. It follows from 
the Kurosh subgroup theorem for pro-2 products of pro-2 groups (cf [2]) that H is a free 
pro-2 group. Finally, rank H = n, for otherwise, d(G) < n + 1. • 

THEOREM 3.3. Let F be the free pro-2 group on n generators, a G Aut(F) of order 
2 and assume that a inverts the elements of F modulo the commutator-subgroup. Then 
there exists a finite subset Y C F so that Y is a free set of generators of F and for y G Y, 
a(y) = y~l. Moreover, a has no nontrivial fixed points in F. 

PROOF. From Theorem 3.1 one deduces the existence of the subset Y with the desired 
properties. Next, in the semidirect product T — F y\ (a) for y G F pick elements (5{y) — 
y a. By Lemma 3.2, 

r = («)U(U(/î(y)>)-

The set of fixed points for a inside F coincides with (a) as was shown in [9] Theorem B. 
Therefore a cannot have nontrivial fixed points inside F. m 

COROLLARY 3.4. Let F be a free pro-2 on a boolean space U, and let a G Aut(F) 
be of order 2. Assume that for each u G U one has a(u) = u~x. Then a has no nontrivial 
fixed points in F. 

PROOF. Let fA£ be a basis of open neighbourhoods N of 1 consisting of a-invariant 
open normal subgroups of F. Then (cf. [6], Proposition 1.7) 

F = lim FN, 

where FN is the free pro-2 group on the finite set UN/N. Let aN be the automorphism of 
F,v that inverts the elements of UN/N. Then 

a — lim ayy. 

Let/ G F, and \etfy denote the image off in F^ under the canonical projection F —» FM-
Clearly a(f) —f, implies that aN(f^j) =fy for each N G fA£. By Theorem 3.3, a^if^) — 
fu if and only \ffN = 1. Thus a(f) = / only iff = 1. • 
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4. The structure of a certain frattini quotient. Let F = F(x,y\,... ,yn) be a free 
pro-p group of rank n + 1 with basis {x,y\9... 9yn}. Denote by T (respectively, Yi9 i — 
1,...,«) the normal subgroup of F generated by y\,... ,yn (respectively yi). Then {cf. 
[6], Theorem 2.1) Y is a free pro-/? group on the space {yf \ i = 1,...,«; A G Tp} 
(respectively, Yt is a free pro-/? group on the space {y* | A G Zp}). Therefore T = U^i H 
(free pro-/? product). Let T* and r* (/ = 1,...,«) be the Frattini subgroup of T and 
Tz respectively. There is a natural action of the subgroup (x) of F on Y/Y* and YiJY* 
(i — 1,...,«) by conjugation. These actions turn Y/Y* and Tz/T* into F/7[[(x)]]-modules, 
and we have an isomorphism of Fp[[(x)]]-modules 

r/n^r,/ne...er„/r^ 
We shall now describe the structure of Yf/Y* as an F/7[[(x)]]-module. 

LEMMA 4.1. T//r* w isomorphic to fp[[(x)]] as an Fp[[(x)]]-modules. 

PROOF. Consider the subgroup Ft (i = 0,1,2,...), defined recursively as follows: 

Fo = F, Fr+\ = F%l[Fr, FJ. It is easily checked that these subgroups constitute a basis for 

the open neighbourhoods of 1 in F. Put r| r ) = r,- n Fr, (r = 0,1,...). Then {r|r)T* / r* | 

r = 0,1,...} is a basis of open neighborhoods of the identity in the group Yj/Y*. For 

r — 0,1,2, . . . , define 

CLAlMl. The subset {y|x_1)r* | r = 0,1,...} of Yt/Y* converges to 1. For, observe 
thatyf_1)' = \yf'X)r ,x]modT*, and by an easy induction argument [yf -1 ) ,x] G Y{p 

(t,r = 0, 1,...) ift>r. 

CLAIM 2. The subset {yf_1) Y* \ r — 0,1,...} of Yt/Y* is linearly independent over 
¥p. Observe first that (yf ~ i r r* | r = 0 , 1 , . . . , /) = (yf r* | r = 0,1,2, . . . , / ) , for any 
natural number /. Therefore it suffices to show that the subset {yfY* \ r = 0 , 1 , . . . , t} 
is linearly independent. To see this choose a natural number/ such that t <p'. Partition 
the basis {y* | A G Zp} of T, using the cosets ofpTp in Zp. Then there exists an 
epimorphism of pro-/? groups 

0:r l--^F=F(Zp / /y"Zp) 

(where F = F(Z/?//?
/Z/?) is the free pro-/? group on the finite set Tp/ptlp) that sends y* to 

A + pTp. Observe that according to the choice of j , </>(yf ) ^ <t>iyf) if r ^ s 
(r,s, G {0,1,2, . . . , t}). Since F is free pro-/? of finite rank, the elements of a basis of 
F are linearly independent modulo F*. It follows that </>(y/), </>(y*),..., </>(yf ) are linearly 
independent modulo F*. Since </>(T*) = F*, one deduces that yi9y\9... ,yf are linearly 
independent modulo Y*, as desired. This ends the proof of Claim 2. 

Now note that 

r,7n = iimr,/rwr;. 
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Therefore, according to the above observation, every element of T//r* can be repre­
sented formally as 

where at G Fp. Thus Ti/T* can be identified, as a pro-/? group, with the additive group 
of the ring of formal power series 

on x — 1 with coefficients in Fp. One knows that this ring is topologically isomorphic 
with F/7[[(x)]] (cf. [12] Proposition 3.1.4, p. 63). Thus H / r * can be identified with the 
additive group of Fp[[(x)]]. Finally, it is clear that the action of F/?[[(x)]] on T//r* in­
duced by conjugation by x, corresponds under this identification, with multiplication in 
¥p[[(x}]]. 

The following consequence is now clear. 

COROLLARY 4.2. The Fp[[(x)]]-module T/r* is isomorphic to 

M=Vp[[(x)]]x...xFp[[(x)]]. 

Under this isomorphism, (a\,..., an) G M, where at G F/?[[(x)]], corresponds to 

/ : • • • / „ • 

Moreover, conjugation ofya
{
1 — -y^" by an element a G F/?[[(x)]], corresponds to the 

product (a i , . . . ,an)a in M. 

REMARK 4.3. As pointed out above F/7[[(x)]] is isomorphic as a topological ring, 
to the ring of formal power series Fpjjr}}, under the correspondence x \—> T + 1. It 
follows then that Fp[[(x)]] is a local ring with unique maximal ideal (x — l)Fp[[(x)]] = /. 
Moreover, every ideal of F/?[[(x)]] is a power of/, and hence every non-zero ideal of 
Fp[[(x)]] has finite index in F^[[(x)]]. 

Next we describe the additive structure of the ideals of F/?[[(x)]]. 

The next lemma is a well-known result, although we do not have a specific reference 
for it. 

LEMMA 4.4. Let G be apro-p group, and let IG be the augmentation ideal ofFp[[G]] 
generated (as an ideal) by {g — 1 | g G G}. Then, le is in fact freely generated by the 
pointed topological space BQ — {g — 1 | g G G} with distinguished point 0, as an 
abelian pro-p group of exponent p. 

PROOF. Express G as a projective limit of finite /^-groups G = lim G/. Then IG = 

\imIG. and BG — limZ?G;. So we may assume that G is finite. Then Fp[[G]] = F^[G], and 

the result is obvious. • 
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LEMMA 4.5. Let k G Fp[[(x)]] \ {0}. Then the closed ideal generated by k, (k) = 
kfp[[(x)]], is afreepro-p abelian group of exponent p on the pointed topological sub-
space L with distinguished point 0, where 

( x^ — 1 Ï 

PROOF. First observe that L is actually a well-defined subspace of Fp[[(x}]]. Indeed, 
let {«/}^j be a sequence of natural numbers converging to A in Zp; then 

^ £ ^ = l + x + - . . + ^ - !
 GF^[[(JC)]]. 

One easily checks that {1 + JC + • • • + x"~l}™{ is a Cauchy sequence, and then we can 
define 

— ^ = lim(l+x+---+jc /"-1), 
X — 1 /—KX) 

which is an element of Fp[[(x)]]. Since Fp[[(x)]] = F^{{T}} as topological rings (cf. 
[12], Proposition 3.1.4, p. 63), we deduce that Fp[[(*)]] has no zero divisors. Therefore 
(k) is isomorphic to (x— 1)FP[[(JC)]] = /as abelian pro-/? groups. Thus it suffices to prove 
that / is freely generated by {xx — 1 | À G Zp}. This is the content of Lemma 4.4. • 

5. Fixed points of involutions. In this section we shall prove that the subgroup of 
fixed points of an automorphism a of finite 2-power order of a free pro-2 group of rank 2, 
has rank at most 2. Before we reach this theorem, we need still some auxiliary results. 

LEMMA 5.1. Let </>: F\ —> F2 denote a homomorphism offreepro-p groups. Assume 
that the induced homomorphism between the Frattini quotients (j)*:F\ jF\ —> F2jF\ is 
an isomorphism. Then (f> is an isomorphism. 

PROOF. Let 

denote the canonical projections of F, onto the Frattini quotient for i — 1,2. Using the 
facts that Ker(7T2) = F\ and that </>* is an isomorphism one deduces from 7r2</> = 4>*ir\ : 

0(F,)^ = Tri-WCF,) = TT^VVKF,) = 7r2-
1(F2//^) = F2. 

Therefore 
F2 = </>(F1)̂ 2 = </>(F1) 

implies that </> is an epimorphism. 
Since F\ and F2 are free the short exact sequence 

Ker(</>) --> Fi -^ F2 
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is a split extension and therefore one can find an injective homomorphism ty'.Fi —* F\ 
with 

<i>{m))=f2 

for/2 e F2. Put 

then Ker0 Pi F = {1} and FKer</> = F\. Since <j>* is an isomorphism we conclude 
Ker<j> <F\. Therefore FF\ = F\, and hence F' — F\,i.e.,(f) is an isomorphism. • 

COROLLARY 5.2. Let F be a free pro-p group, U a closed subset of F (respectively, 
such that 1 G U). Assume that U is naturally homeomorphic to the subspace UF* /F* of 
F/F*, and that F/F* is free, in the variety of abelian pro-p groups of exponent p, on the 
space (respectively, on the pointed space) UF* /F*. Then F is a free pro-p group on the 
space (respectively, the pointed space) U. 

PROOF. Let F denote the free pro-p group on the space U. Then, clearly the canonical 
homomorphism F —* F/F*, induces a homeomorphism U —•> UF* /F*, and UF* /F* is 
a basis for the free pro-p group F/F* of exponent/?. Then the natural homomorphism 

F —> F that sends w G U C Fto u £ U C F induces an isomorphism F/F* —» F/F*. 
Then by Lemma 5.1, </> is an isomorphism. • 

THEOREM 5.3. Let F — F(x,y) be a free pro-2 group of rank 2 on the basis {x,y}. 
Let a be an automorphism of F of order 2 such that a(y) = y~l and a(x) = kx, where 
k G F1 (F1 is the commutator subgroup ofF). Then the normal closure T = (y)F of y in 
F does not contain any non-trivial fixed points under a, i.e., ¥ixf(a) D (y)F = 1. 

PROOF. The idea of the proof is to construct a topological basis U of the free pro-p 
group r such that a(u) = u~\ifu € U. Then the result would follow from Corollary 3.4. 

By Theorem 2.1 in [6] 

Aez2 

For/ G F and À G Z2, define 

c(\,f) = a(xrxfx\ 

Observe that if a(f) = f~\ then a(c(\,fj) = c{\,f)~x. Therefore a(c(\,yj) = 

C(À,J>) , and a(c(A,£)) = c(X,k)~\ since by assumption a(y) = y~\ and it is easily 
checked that a(k) = k~][a(x) — kx and a2 — 1 implies x = a(k)kx, i.e., a(k)k — 1]. 
Consider the subspaces of T: 

K= {c(X,k)\ X GZ2} 

and 
Y={c(X9y)\ AGZ2}. 
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Note that K and Y are compact, and that Y is generated by KU Y, for c(X +1, k) l c(\,y) = 

CASE 1. k G r*.Thenc(A,j;) = / A (mod r*), and clearly if A, A' G Z2 with A ^ A7, 
then c(X,y) ^ c(A'5iy) (mod P ) . Therefore according to Lemma 5.2 7 is a basis for T. 
So in this case we may put U = Y. 

CASE 2. k $Y*. Then for a natural number n we have 

C(„ + 1, jfc) = ( f o ) - " - 1 ^ 1 = jfc-*-*2--*" = Jt"*TT. 

Write A = lim/_KX>(w/ + 1) in Z2, where each nt is a natural number. Then 

c(A,*) = i f c - ^ . 

Using the notation of Corollary 4.2, say that 

k~x=f 

for some K G FP[[(JC)]]. Thus c(A, &) corresponds to ^ff « in F/T*. 
Observe that since & ̂  F \ we have « ^ 0. Therefore by Lemma 4.5, the pointed 

space {^fj-tt | A G Z2} with distinguished point 0, is a basis for the ideal (K) of F2[[(x)]] 
considered as a pro-2 group of exponent 2. It follows that the pointed space 

K = {c(\,k)\\ez2} 

is a free basis for the subgroup of T that K generates (cf. Lemma 5.2). On the other hand 
(K) has finite index in F2[[(x)]], since n ^ 0 (cf. Remark 4.3). As pointed out above, AU7 
generates Y. Thus there exists a finite subset {c\,..., cr} of Y such that {c\,..., cr} U K 
is a basis for Y. So U = {c\,..., cr} U K satisfies the desired properties. • 

THEOREM 5.4. Let F = F(x,y) be a free pro-2 group of rank 2, and let a be an 
automorphism of F of finite order 2. Then the subgroup ¥\Xf(a) of the elements of F 
fixed by a is of rank at most 1. 

PROOF. The proof consists of a case by case study of the possible automorphisms â 
induced by a on the abelianized group F/F'. According to Lemma 2.5 one may choose 
a suitable basis $ = {b\, 62} of F/F' such that â is of one of the following types (we 
identify â with its matrix form with respect to the basis (B). 

CASE 1. 

Hi ?)• 
Then â is the identity automorphism of F/F1. Now, by Theorem 5.8 in [13], 

Kerf Aut(F) -* AutiF/F*)) 

is a torsion-free group. Since a is in this kernel and its order is 2, this case is not possible. 
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CASE 2. 

Hi -M-
By Theorem 3.1, there exists a basis {x,y} of F such that a(y) = y~l and a(x) = kx, 

where k G F1'. From Theorem 5.3 we deduce that the normal closure (y)F oïy in F does 
not contain non-trivial fixed elements of a. Finally, this implies according to Lemma 2.2, 
that the subgroup of fixed points of a in F is cyclic. 

CASE 3. 

d = (~o1 -°i)-
Then by Theorem 3.1, there exists a basis {x,y} of F such that a(x) = x_1 and a(y) = 

y~x. Consider the free pro-2 product of three groups of order two: 

G=</3|)U(ft)U(«). 

By Lemma 3.2, 

G= ((3\a,(32a) x (a) 9* F x a. 

Then 
FixF(a) ^ CcXcx) H ((3ia,(32a). 

Now, by Theorem B' in [9], CG(OC) = (a). Thus Fix^a) = 1. 

CASE 4. 

à = {°\ I)-
Let {x,y} be any basis of F. Then a(x) = 7/: where k G F ;. Putj^ = _y&. Then (x,jp) = 

F, and therefore {x, j } is a basis of F. Moreover, since a2 — 1, a(y) = o^(x) = x. Thus 
by Lemma 2.3, Fix/r(a) = 1. • 

6. The conjecture for the case rank(F) = 2. In this section we classify the sub­
groups of fixed points of automorphisms of finite order of a free pro-/? group of rank 2. 
We begin with a series of results that will lead to a description of the structure of an 
extension of a free pro-3 group of rank 2 by a group of order 3. 

Let F be a free pro-3 group of rank 2, a an automorphism of F of order 3, and let 
r = F x (a) be the holomorph. 

LEMMA 6.1. (i) The action of a on F jF* is nontrivial. 
(ii) The minimal number of generators d(T) ofV is 2. 

PROOF. Observe that the automorphism induced on FjF' by a is not trivial (cf. [13], 
Theorem 5.8). Hence it follows from Lemma 2.5 that there is a basis {c\,C2J of F/F* 
such that a(c\) = c2, a(c2) = —c\ - c2. It follows that T/T* = C3 x C3. 
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LEMMA 6.2. Let L be a subgroup of F of index 3. Then ifd(L) > 3, L has torsion. 

PROOF. Suppose L is torsion-free; then L is a free pro-3 group since it contains the 
free pro-3 subgroup FC\L of finite index (F : FHL) — 3 (cf p. 413 in [16]). Therefore 
by Schreier's formula {cf [2]), d(L) = d(F) = 2. Hence if d{L) > 3, L has torsion. • 

LEMMA 6.3. Let if be an automorphism of the I'^-vector space V of dimension 3, 
with Jordan form 

"1 0 0" 1 1 0" 
0 1 0 , or 0 1 0 

.0 0 1. .0 0 1. 

Consider the group G — V X ((f). Then d(G) > 3. 

PROOF. Obvious. • 

PROPOSITION 6.4. Let T = F xi (a) be as above. Then V has a subgroup L of index 
3 such that d(L) > 3 and a <£ L. 

PROOF. Consider the quotient r/T** of T modulo its second Frattini subgroup. If T 
is a subgroup of F, we shall denote by f its image in T/T**. It sufficies to prove that T 
has a subgroup Lof index 3 such that d(L) > 3 and a ^ Z. Since d(F) — 2, (r : r*) = 32; 
hence (F : P ) = 3, and so rank(r*) = 4 by Schreier's formula (cf [2]). It follows that f * 
is a four-dimensional F3 -vector space \F\ = 35 and |f | = 36. Next we describe the action 
of F on f *. Throughout the proof we shall use the additive notation for the operation in 
f * whenever convenient. Let/ GF\f*. Then/acts on f * as a nontrivial automorphism 
if of order 3. There are three possible Jordan normal forms for the matrix of f, say with 
respect to the basis vi, V2, V3, V4: 

- 1 1 0 0 - 1 
0 1 0 0 
0 0 1 0 r 

. . . -0 0 0 1J 

In fact the second and third possibilities are not valid. For if the matrix is O3, then 
F' = (vi),F* = (vi,/3); and therefore (F : F*) > 33 since |F| = 35, contradicting the 
fact that d(F) — 2. On the other hand if the matrix of (f is O2, then/3 G Cent(F) = 
(vi, v3) = F'. Now, F* = (f3)Ff = P, and consequently |f*| = 32. So \F/F*\ = 33, 
again contradicting the fact that d(F) = 2. 

Therefore the matrix of if is ®i. It follows that F7 = (vj, V2) and F* = (vi,V2,/3). 
Since \Ff\ — 32 and (F : F*) — 32, we have that F* =£ Ff. Therefore we can assume 
V4 = / 3 . Clearly F'DCen^F) = (vi ). Since f is a nonabelian 3-group and F' is a normal 
subgroup of f, it follows that F' H Cent(f ) ^ 1, and thus F7 H Cent(f ) = (vi ). Next 
we claim that/ and otfoC1 form a basis of F It suffices to check that their images in 
F /F* form a basis, or equivalently, that/ ^ a / a - 1 (mod F*) (note that a/a"1 ^ / 2 

(mod F*) since a has order 3). Now f /F* = F/F* xi (a), where the action of a on 
F/F* is nontrivial by Lemma 6.1. Since the order of F/F" is 33, one gets that Cent(f /F*) 

O, 

1 1 u u 
0 1 1 0 
0 0 1 0 
0 0 0 1 

Oi = 

1 1 u ui 
0 1 0 0 
0 0 1 1 J 
0 0 0 1. 

Oh 
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is cyclic of order 3, and therefore Cent(f /F*) = f*/F*. Since/ G F / f *,/ is not fixed 
by a in f / F \ as desired. 

Pu t / —fji = af\a~x, and define* such that af2a
-1 = xf{xfex. Then ( a - 1 / ) 3 = 

a~lf\a~{f\a~lf\ — a~xf\aaf\a~xf\ = xf^f^Mx — x. Remark that by Lemma 2.5(ii), 
x G F'. We now distinguish two cases. 

CASE 1. x G Cent(f ). 

Observe thatx = tw\, for some t G F3. Put wi = v\,W2 — V2, W3 = / / f l,w>4 = V4 = 
yf. Note that/2/f1 fi F* = (wi,W2,W4). Thus {wi, W2, w3,W4} is a basis of f*. Observe 
thatF' = (w\,W2). 

Next we compute the matrices of (p and a with respect to this new basis. Clearly, 
(f(w\) = wi, <̂ (w2) = wi +W2 andip(\V4) = W4. Suppose <p{w-$) = awi +6W2+CW3+É/W4, 
where a,b,c,d G F3. Since F / F ' is abelian, W3 = / i w ^ - 1 = yiwi,) = 0V3 + dw4 

(mod F'\ and so c = 1, d — 0. Thus the matrix of </? is 

,0 = 

To compute the matrix of a note first that a(w\) = wi, for as pointed out before 
w\ = vi is in the centre off. Since (w\,W2) / (w\) is a minimal normal subgroup of 
T/(w\), it is central, and therefore one has afV?) = w2 + rwi, where r G F3. Now, 

1 1 a On 
0 1 b 0 
0 0 1 0 
0 0 0 1. 

a(w3) «(/î/rv-1 

= x — W4 + (—W3 — Z7W2 — awi) — W3 = (t — a)wi — 6W2 + W3 — W4. 

And finally, 

a(w4) = a/fa"1 = />3 = (w3/)3 = W3/I w3 / w3/ w3/i w3/p ̂ / T * ̂ 3/1 

= W3 + aw\ + Z?W2 + W3 + W4 + c (̂awi + bw2 + W3) = ôwi + w4. 

Hence the matrix of a with respect to the basis w\,W2, W3, W4 is 

A = 

Consider t/(w\). Then ( a - 1 / ) 3 = x = 1 (mod (wj)). The matrices O and A indi­
cate that the centralizers of <p and a in t/(w\) contain the images of w>2 and w4. One 
deduces that oCxf\ also centralizes the images of W2 and W4. Then the Jordan normal 
form of the action induced by a~xf\ on f * / (x) is 

either 

r l r t — a bi 
0 1 -b 0 
0 0 1 0 

.0 0 - 1 1-

1 0 0- "1 1 0" 
0 1 0 , or 0 1 0 

_o 0 1. .0 0 1. 
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It follows from Lemma 6.3 that for L = (a lf\ )f *, d(L) > 3. Finally note that a £ Z, 
for otherwise L = f. 

CASE 2. x £ Cent(f ). 

Define a new basis w\, H>2, H>3, W4 off* as follows. Put wj = vj or —v\ depending on 
whether (f(x) = x + vi or ip(x) — x — v\ respectively; put W2 = x; W4 = V4 = (/J )3; w3 = 
y^/i-1. Note that F' — (w\,W2) andF* = (wi,W2,W4). By Lemma 6.1, w3 —MxX fi F*. 
Thus wi,H>2, W3, W4 is a basis of f*. Next we compute the matrices of <p and a with 
respect to this new basis. Clearly, <p(w\) = w\,ip(w2) — w\ + W2 and <£(M>4) = W4. 
Suppose (p(ws) = aw 1 + bwi + cw^ + dw4, where a, b,c,d G F3. Since F / F ' is abelian, 
W3 =f\ W3fl~

l = <p(w3) = CW3 + dw4 (mod F'), and so c = 1, d = 0. Thus the matrix of 
<£ is 

<D = 

1 1 a 0 
0 1 ft 0 
0 0 1 0 
0 0 0 1 

Since f is a finite 3-group and F' is normal in f, F' D Cent(f) ^ 1; since F' = 
(H>I, W2), F' n Cent(F) = (wi). Hence F' n Cent(f) = (w\). Therefore a(w\) = w\. 
Since (a~lf\)3 — x — n>2, orxf\ centralizes w>2. So a{wi) — ̂ piy^i) — w\ + W2. Next 

a(wî) = a(/i/r,)a-1 =*/rVr7r' =*/rWirWir ' 

— W2 — W4 + (—W3 — 6w>2 — awi) — W3 = — aw\ + (1 — 6)H>2 + W3 — W4. 

Finally, 

a(w4) = offer1 =J% = O3/1)3 = W3/1W3/1 = wa/iwa/p'yf/T1^ 
= W3 + tfWi + Z?W2 + W3 + W4 + (̂ ((3Wi + bW2 + W3) = b\V\ + W4. 

So the matrix of a is 

Then 

®A = 

- 1 
1 
0 
0 

^ = 

1 - 6 
1 
1 

- 1 

1 1 
0 1 
0 0 
0 0 

b 
0 
0 
U 

—a 
\-b 

1 
- 1 

b 
0 
0 
1J 

^ 0 = 

- 1 
1 
0 
0 

b 
1 
1 

- 1 

b 
0 
0 
1J 

Note f/f* is abelian and so A<3) = dvL Therefore 1—6 = 6, and so 6 = —1. It 
follows that 

1 1 a On 
0 1 — 1 0 
0 0 1 0 1 

L0 0 0 1-

O 
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Next compute 

So in f/(wi), [/T1^ -1] = ~w2 = ~x- Hence (/ia)3 = f\af\af\a = 
f\af\a~xa~xfa — ffixf^xfex = 1, sincex centralizes t/(w\). 

Remark that the centralizers of (/> and a in f / (w\ ) contain the images of w2 and vv4. 
One deduces that/i a also centralizes the images of W2 and W4. Then the Jordan normal 
form of the action induced byf a on f * / (W4) is 

M 0 0' 1 1 0" 
0 1 0 , or 0 1 0 

.0 0 1. .0 0 1. 

It follows from Lemma 6.3 that for L = (f\a)r*,d(L) > 3. Finally note that a fi L, 
for otherwise L — T. m 

THEOREM 6.5. Let F be afreepro-3 group of rank 2. Let a be an automorphism of 
F of order 3. Then the holomorph Y — F x (a) is afreepro-3 product (a) 11(7), where 
7 is an element of order 3. 

PROOF. By Proposition 6.4 and Lemma 6.2 there exists a subgroup L of index 3 in T 
such that a £ L and there is an element 7 G l of order 3. Then a and 7 generate T, since 
r = r*(or,7). Consider the free pro-3 product (a) U(7) and the natural epimorphism. 

Let K = ker(p). Recall that the torsion element of (a) II(7) must be conjugate to 
either an element from (a) or (7) (cf. [9], Theorem 1). It follows that K is torsion-lice 
(in fact it is free). Since F has index 3 in T, p~x(F) has index 3 in {a) 11(7), and by the 
main theorem in [2], p~x(F) is free pro-3 of rank 2. Observe that the restriction a of p 
to p~x(F) is an epimorphism a: p~x(F)->F^ p~x(F)/K n p~x(F). Since p~x(F) and F 
are free pro-3 groups of rank 2, it follows that a is an isomorphism (cf Proposition 7.6 
in [14]). Thus K Pi p~x(F) — 1. We deduce that K is finite, and since it is torsion-free, it 
must be trivial. • 

COROLLARY 6.6. Let F be a free pro-3 group of rank 2. Let a be an automorphism 
of F of order 3. Then ¥'\Xf(a) = 1 

PROOF. Let a(x) — x, for some x G F. Thenx centralizes a in (a) 11(7). Thus 
x G (a) by Theorem B' in [9]. Hence x = 1. • 

In the following result we put together all the information about the subgroup of fixed 
points of automorphisms of finite order for free pro-/? groups of rank 2. 
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THEOREM 6.7. Letp be a prime number, F afreepro-p group of rank 2, and a a non 
trivial automorphism of F of finite order m. Then 

(i) Ifp fm, then Fixf(a) is afreepro-p group of infinite rank; 
(ii) Ifp — 2, and m is even, then the rank ofF\xF{a) is at most 1 ; 

(Hi) Ifp — 3, and m is a multiple of 3, then FixF(a) = 1; 
(iv) Ifp > 3, there is no automorphism of F whose order is a multiple of p. 

PROOF, (i) This is the content of Theorem 3.2 in [11]. 
(ii) and (iii) Let/? be 2 or 3, and assumep divides m. Then amlp has order/?. Ob­

serve that FixF(a) < F\xF(amlp), and therefore the results follow from Theorem 5.4 or 
Theorem 6.5. 

(iv) One knows that the kernel of Aut(F) —* Aut(F/F') = GL(2, Zp) is torsion-free 
(cfi Theorem 5.8 in [12]). Thus the result is a consequence of Lemma 2.5(iii). • 

This theorem settles the conjecture that we stated in the introduction for the case 
rank(F) = 2, and automorphisms of order a finite power of p. Theorem 6.7 could mislead 
the reader into thinking that the conjecture can be extended to all automorphisms whose 
order is a multiple of p. Next we present an example to show that such an extension is 
not possible. 

EXAMPLE 6.8. Let F — F(x,y,z) be the free pro-2 group of rank 3. Consider the 
automorphisms a and (3 of F defined a follows: 

a(x)=x, a(y)=y, a{z) = z~x- f3(x) = y, f3(y)=x-
ly~\ ${z) = z. 

Then a has order 2, (3 has order 3, and a/3 = (3a. Hence the order of the automorphism 
a/3 is 6. Then FixF(af3) = FixF(a) D FixF(f3), by Lemma 2.4 in [11]. By Lemma 2.1, 
Fix/7(a) = (x,y). Again by Lemma 2.1, FixF(/3) = Fix^(/3)ll(^). Therefore, 
FixF(af3) — Fix^(/3), which has infinite rank by Theorem 6.7(i). 

We end this paper with a result about free pronilpotent groups of rank 2 that follows 
immediately from Theorem 6.7. 

THEOREM 6.9. Let F be a free pronilpotent group of rank 2, and let a be an auto­
morphism of F of finite order. For a prime number p, denote by Fp the p-Sylow subgroup 
ofF. Then the following conditions are equivalent. 

(i) The rank ofFixF(a) is finite. 
(ii) FixF(a) is cyclic; 

(iii) The restriction ap of a to Fp is the identity mapping ifp > 5, and ifp = 2or3, 
then ap is either the identity mapping or the order ofap is divisible by p. 
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