A CLASS OF NON-CENTRAL E-FUNCTORS

G. R. CHAPMAN

1. Introduction. We refer the reader to [1, Chapters 1 and 2] for the notions of *E*-functor and centrality. Let $R_1 \subseteq R$ be the integral group rings of the groups $G_1 \subseteq G$. Butler and Horrocks [1, Chapter 26] have shown that on the category \mathfrak{G} of left, unitary *R*-modules the Hochschild *E*-functor determined by R_1 is central. There are no examples of non-central Hochschild *E*-functors, and our purpose is to establish the existence of a class of such *E*-functors.

Take G to be finite, non-abelian and let S be the centre of R. Denote by Φ the Hochschild E-functor determined by S. We obtain a necessary condition for the centrality of Φ in terms of the group structure of G. Let G^* denote the subgroup of G generated by the commutators of G together with the set $\{g^{h(g)}: g \in G\}$, where h(g) is the class number of g in G. The main result is

THEOREM. If $G/G^* \neq \{e\}$, then Φ is non-central.

We note that $G/G^* \neq \{e\}$ when G is a non-abelian p-group.

2. Preliminaries. Let Z denote the integers with trivial G-module action, Ext_{\mathfrak{C}} = Ext, Tor^{\mathfrak{C}} = Tor, and A, $B \in \mathfrak{C}$. If $0 \to L \to P \to A \to 0$, $0 \to B \to Q \to M \to 0$ denote, respectively, a Φ -projective representation of A and a Φ -injective representation of B, then we have the exact sequences:

$$\dots \to \operatorname{Ext}^{1}(P, B) \to \operatorname{Ext}^{1}(L, B) \xrightarrow{\delta_{1}} \operatorname{Ext}^{2}(A, B) \to \dots$$
$$\dots \to \operatorname{Ext}^{1}(A, Q) \to \operatorname{Ext}^{1}(A, M) \xrightarrow{\delta_{2}} \operatorname{Ext}^{2}(A, B) \to \dots$$

We note that $\operatorname{Ext} \cdot \Phi(A, B) = \operatorname{Im} \delta_1$; $\Phi \cdot \operatorname{Ext}(A, B) = \operatorname{Im} \delta_2$ [1, Chapter 10].

3. Proof of the theorem. We use the result quoted in the preliminaries, with A = B = Z and show that $\Phi \cdot \operatorname{Ext}(Z, Z) = 0$, $\operatorname{Ext} \cdot \Phi(Z, Z) = G/G^*$, whence the theorem follows. To avoid confusion, in the early stages of the proof B is taken to be a finitely generated, torsion free, G-trivial G-module. We prove that if $0 \to J \to R \otimes_S Z \to Z \to 0$ denotes the standard Φ -projective representation of Z, then $|G| \cdot J = 0$. From this, it follows that B is Φ -projective (so $\Phi \cdot \operatorname{Ext}(-, B) = 0$) and that $\operatorname{Ext}^1(J, B) \cong \operatorname{Ext}_Z^1(Z \otimes_G J, B)$. We use the last fact to show that $\operatorname{Ext} \cdot \Phi(Z, B) \cong \operatorname{Ext}^1(J, B)$. When B = Z, this is G/G^* , and the proof is complete.

Received November 10, 1970

L

LEMMA 1. J has exponent |G|.

Proof. Let *I* be the difference ideal of *G*. Define $f: R \to R \otimes_s Z$ by $f(r) = r \otimes_s 1$ $(r \in R)$; then we have the exact commutative diagram of *G*-modules and *G*-module homomorphisms:

Since S is the centre of R, if $s \in S$, then $s \cdot (R \otimes_S Z) = \epsilon(s) \cdot (R \otimes_S Z)$. Let N_G denote the sum of the elements of G. Then $N_G \in S$, so $N_G \cdot (R \otimes_S Z) = |G| \cdot (R \otimes_S Z)$. But J is a G-submodule of $R \otimes_S Z$, so $N_G \cdot J = |G| \cdot J$.

Now $N_G \cdot I = 0$, and since J is a G-homomorphic image of I, $N_G \cdot J = 0$. Thus, $|G| \cdot J = 0$, and the lemma is proved.

Note that *J* is finitely generated, so it is finite.

LEMMA 2. B is a Φ -injective.

Proof. Consider the standard Φ -injective representation of B

$$0 \to B \xrightarrow{i} \operatorname{Hom}_{S}(R, B) \to N \to 0.$$

Since *B* is *G*-trivial, $\text{Hom}_S(R, B) \cong \text{Hom}_Z(Z \otimes_S R, B)$, and since *S* is commutative we can take this to be $\text{Hom}_Z(R \otimes_S Z, B)$. As an *S*-module (and hence as a group) $R \otimes_S Z$ is $Z \oplus J$. Now by Lemma 1, *J* is finite, so $\text{Hom}_Z(J, B) = 0$ and $\text{Hom}_S(R, B) \cong B$. This isomorphism provides a *G*-splitting map for *i*.

LEMMA 3. Ext¹ $(J, B) \cong \operatorname{Ext}_{Z^1} (Z \otimes_G J, B)$

Proof. If $0 \to M \to F \to J \to 0$ is a free presentation of J, we obtain exact sequences:

(1)
$$0 \to \operatorname{Hom}_{G}(J, B) \to \operatorname{Hom}_{G}(F, B) \to \operatorname{Hom}_{G}(M, B) \to$$

 $\operatorname{Ext}^{1}(J, B) \to \operatorname{Ext}^{1}(F, B) \to \dots$
 $\dots \to \operatorname{Tor}_{1}(Z, F) \to \operatorname{Tor}_{1}(Z, J) \to Z \otimes_{G} M \to Z \otimes_{G} F \to Z \otimes_{G} J \to 0$

 $\mathbf{2}$

E-FUNCTORS

In the latter sequence, $Tor_1(Z, F) = 0$ and if we put

$$U = \operatorname{Ker} \{ Z \otimes_G F \to Z \otimes_G J \},\$$

there arise further exact sequences

(2)
$$0 \to \operatorname{Hom}_{Z}(U, B) \xrightarrow{\xi} \operatorname{Hom}_{Z}(Z \otimes_{G} M, B) \to \operatorname{Hom}_{Z}(\operatorname{Tor}_{1}(Z, J), B) \to \dots$$

(3) $0 \to \operatorname{Hom}_{Z}(Z \otimes_{G} J, B) \to \operatorname{Hom}_{Z}(Z \otimes_{G} F, B) \to \operatorname{Hom}_{Z}(U, B) \to$
 $\operatorname{Ext}_{Z^{1}}(Z \otimes_{G} J, B) \to \operatorname{Ext}_{Z^{1}}(Z \otimes_{G} F, B)$

Now, Ext¹ (F, B) = Ext_z¹ ($Z \otimes_G F, B$) = 0. Since J is finite (Lemma 1), so are Tor₁ (J, Z) and $Z \otimes_G J$. However, B is torsion free, which means that Hom_z (J, B) = Hom_z (Tor₁ (J, Z), B) = Hom_z ($Z \otimes_G J, B$) = 0. Applying these facts to the sequences (1), (2), and (3) we can construct the exact commutative diagram

$$\begin{array}{c} 0 \to \operatorname{Hom}_{\mathcal{G}} \left(F, B \right) \to \operatorname{Hom}_{\mathcal{G}} \left(M, B \right) \to \operatorname{Ext}^{1} \left(J, B \right) \to 0 \\ \| \mathcal{U} & \| \mathcal{U} \\ 0 \to \operatorname{Hom}_{Z} \left(Z \otimes_{\mathcal{G}} F, B \right) \to \operatorname{Hom}_{Z} \left(U, B \right) \to \operatorname{Ext}_{Z^{1}} \left(Z \otimes_{\mathcal{G}} J, B \right) \to 0, \end{array}$$

where the left hand isomorphism is an associativity isomorphism (*B* is *G*-trivial), and the right hand isomorphism is the composite of an associativity isomorphism and ξ . Hence, Lemma 3 follows.

LEMMA 4. Ext
$$\cdot \Phi(Z, B) \cong \operatorname{Ext}^1(J, B)$$

- -

Proof. From the preliminaries, it is sufficient to show that

$$\operatorname{Ext}^{1}\left(R \otimes_{S} Z, B\right) = 0$$

in the exact sequence

$$\ldots \to \operatorname{Ext}^{1}(Z, B) \to \operatorname{Ext}^{1}(R \otimes_{S} Z, B) \to \operatorname{Ext}^{1}(J, B) \xrightarrow{\mathfrak{d}_{1}} \operatorname{Ext}^{2}(Z, B) \to \ldots$$

Now, $\text{Ext}^1(Z, B) = 0$, and from Lemmas 1 and 3, $\text{Ext}^1(J, B)$ is finite, so $\text{Ext}^1(R \otimes_S Z, B)$ is finite. Consider the exact sequences

$$0 \to \operatorname{Hom}_{G}(Z, B) \to \operatorname{Hom}_{G}(R \otimes_{S} Z, B) \to \operatorname{Hom}_{G}(J, B) \to \ldots$$

$$0 \to \operatorname{Hom}_{G} (R \otimes_{S} Z, B) \xrightarrow{[f]} \operatorname{Hom}_{G} (R, B) \to \operatorname{Hom}_{G} (K, B)$$
$$\to \operatorname{Ext}^{1} (R \otimes_{S} Z, B) \to \operatorname{Ext}^{1} (R, B) \to \dots$$

In the former, $\text{Hom}_{G}(J, B) = 0$, which means that Coker[f] is finite. Thus, $\text{Hom}_{G}(K, B)$ is finite. However, since B is G-trivial and torsion free, $\text{Hom}_{G}(K, B)$ is free, whence it is zero. It now follows from the latter exact sequence that $\text{Ext}^{1}(R \otimes_{S} Z, B) = 0$, and Lemma 4 is proved.

Now take B = Z. From Lemmas 3 and 4, Ext $\cdot \Phi(Z, Z) \cong Z \otimes_G J$. Considering the diagram

$$0$$

$$\downarrow$$

$$I^{2}$$

$$\downarrow$$

$$0 \rightarrow K \rightarrow I \rightarrow J \rightarrow 0$$

$$\downarrow$$

$$I \rightarrow Z \otimes_{G} I \rightarrow Z \otimes_{G} J \rightarrow 0$$

$$\downarrow$$

$$\downarrow$$

$$0 \qquad 0$$

we see that $Z \otimes_G J \cong I/(I^2 + K)$.

From diagram (a), $K = R(I \cap S)$. Let C_1, \ldots, C_k denote the distinct conjugacy classes of G, and let h_i , \hat{c}_i denote, respectively, the number of and the sum of the elements in $C_i(1 \leq i \leq k)$. Then a basis for K is

$$\{\hat{c}_i - h_i: 1 \leq i \leq k\}.$$

Now, the map $\eta: I/I^2 \to G/G'$ given by $\eta((g-1) + I^2) = gG'$ is an isomorphism between the additive group I/I^2 and the multiplicative group G/G'. Since $\eta((g_1 - 1) + I^2) = \eta((gg_1g^{-1} - 1) + I^2)$, for all $g, g_1 \in G$, it follows that $\eta((\hat{c}_i - h_i) + I^2) = (g_iG')^{h_i}$, where g_i is some element in C_i , $1 \leq i \leq k$. Hence, the additive group $I/(I^2 + K)$ is isomorphic to the multiplicative group G/G^* , where G^* is the subgroup of G generated by the commutators of G together with the set $\{g_i^{h_i}:g_i \in C_i, 1 \leq i \leq k\}$, and the theorem is proved.

COROLLARY. If G is a non-abelian p-group, then Φ is non-central.

Proof. From the class equation for G, it follows that $G^* \subseteq G' \cdot C(G) \cdot G^p$, where $G^p = \{g^p: g \in G\}$. For a *p*-group, $G' \cdot G^p = \phi(G)$, the Frattini subgroup of G, so there exists an epimorphism $G/G^* \to G/\{\phi(G) \cdot C(G)\}$. But $G \neq \phi(G) \cdot C(G)$, since otherwise, G would be abelian. Hence, $G/G^* \neq \{e\}$, and the result follows from the theorem.

Reference

 M. C. R. Butler and G. Horrocks, *Classes of extensions and resolutions*, Philos. Trans. Roy. Soc. London Ser. A 254 (1961), 155–222.

University of Guelph Guelph, Ontario