A CLASS OF NON-CENTRAL E-FUNCTORS

G. R. CHAPMAN

1. Introduction. We refer the reader to [1, Chapters 1 and 2] for the notions of E-functor and centrality. Let $R_{1} \subseteq R$ be the integral group rings of the groups $G_{1} \subseteq G$. Butler and Horrocks [1, Chapter 26] have shown that on the category \mathbb{C}^{5} of left, unitary R-modules the Hochschild E-functor determined by R_{1} is central. There are no examples of non-central Hochschild E-functors, and our purpose is to establish the existence of a class of such E-functors.

Take G to be finite, non-abelian and let S be the centre of R. Denote by Φ the Hochschild E-functor determined by S. We obtain a necessary condition for the centrality of Φ in terms of the group structure of G. Let G^{*} denote the subgroup of G generated by the commutators of G together with the set $\left\{g^{h(g)}: g \in G\right\}$, where $h(g)$ is the class number of g in G. The main result is

Theorem. If $G / G^{*} \neq\{e\}$, then Φ is non-central.
We note that $G / G^{*} \neq\{e\}$ when G is a non-abelian p-group.
2. Preliminaries. Let Z denote the integers with trivial G-module action, Ext $_{\mathbb{E}}=$ Ext, Tor ${ }^{\mathscr{E}}=$ Tor, and $A, B \in \mathbb{C}$. If $0 \rightarrow L \rightarrow P \rightarrow A \rightarrow 0,0 \rightarrow B \rightarrow$ $Q \rightarrow M \rightarrow 0$ denote, respectively, a Φ-projective representation of A and a Φ-injective representation of B, then we have the exact sequences:

$$
\begin{aligned}
& \ldots \rightarrow \operatorname{Ext}^{1}(P, B) \rightarrow \operatorname{Ext}^{1}(L, B) \xrightarrow{\delta_{1}} \operatorname{Ext}^{2}(A, B) \rightarrow \ldots \\
& \ldots \rightarrow \operatorname{Ext}^{1}(A, Q) \rightarrow \operatorname{Ext}^{1}(A, M) \xrightarrow{\delta_{2}} \operatorname{Ext}^{2}(A, B) \rightarrow \ldots
\end{aligned}
$$

We note that $\operatorname{Ext} \cdot \Phi(A, B)=\operatorname{Im} \delta_{1} ; \Phi \cdot \operatorname{Ext}(A, B)=\operatorname{Im} \delta_{2}[\mathbf{1}$, Chapter 10].
3. Proof of the theorem. We use the result quoted in the preliminaries, with $A=B=Z$ and show that $\Phi \cdot \operatorname{Ext}(Z, Z)=0$, $\operatorname{Ext} \cdot \Phi(Z, Z)=G / G^{*}$, whence the theorem follows. To avoid confusion, in the early stages of the proof B is taken to be a finitely generated, torsion free, G-trivial G-module. We prove that if $0 \rightarrow J \rightarrow R \otimes_{S} Z \rightarrow Z \rightarrow 0$ denotes the standard Φ-projective representation of Z, then $|G| \cdot J=0$. From this, it follows that B is Φ-projective (so $\Phi \cdot \operatorname{Ext}(-, B)=0)$ and that $\operatorname{Ext}^{1}(J, B) \cong \operatorname{Ext}_{z^{1}}\left(Z \otimes_{G} J, B\right)$. We use the last fact to show that Ext $\cdot \Phi(Z, B) \cong \operatorname{Ext}^{1}(J, B)$. When $B=Z$, this is G / G^{*}, and the proof is complete.

Lemma 1. J has exponent $|G|$.
Proof. Let I be the difference ideal of G. Define $f: R \rightarrow R \otimes_{s} Z$ by $f(r)=r \otimes_{S} 1(r \in R)$; then we have the exact commutative diagram of G-modules and G-module homomorphisms:
(a)

Since S is the centre of R, if $s \in S$, then $s \cdot\left(R \otimes_{\mathrm{S}} Z\right)=\epsilon(s) \cdot\left(R \otimes_{s} Z\right)$. Let N_{G} denote the sum of the elements of G. Then $N_{G} \in S$, so $N_{G} \cdot\left(R \otimes_{S} Z\right)=$ $|G| \cdot\left(R \otimes_{\mathrm{s}} Z\right)$. But J is a G-submodule of $R \otimes_{\mathrm{s}} Z$, so $N_{G} \cdot J=|G| \cdot J$.

Now $N_{G} \cdot I=0$, and since J is a G-homomorphic image of $I, N_{G} \cdot J=0$. Thus, $|G| \cdot J=0$, and the lemma is proved.

Note that J is finitely generated, so it is finite.
Lemma 2. B is a Φ-injective.
Proof. Consider the standard Φ-injective representation of B

$$
0 \rightarrow B \xrightarrow{i} \operatorname{Hom}_{S}(R, B) \rightarrow N \rightarrow 0
$$

Since B is G-trivial, $\operatorname{Hom}_{\mathbb{S}}(R, B) \cong \operatorname{Hom}_{Z}\left(Z \otimes_{\mathrm{S}} R, B\right)$, and since S is commutative we can take this to be $\operatorname{Hom}_{Z}\left(R \otimes_{s} Z, B\right)$. As an S-module (and hence as a group) $R \otimes_{S} Z$ is $Z \oplus J$. Now by Lemma 1 , J is finite, so $\operatorname{Hom}_{z}(J, B)=0$ and $\operatorname{Hom}_{S}(R, B) \cong B$. This isomorphism provides a G-splitting map for i.

Lemma 3. $\operatorname{Ext}^{1}(J, B) \cong \operatorname{Ext}_{Z^{1}}\left(Z \otimes_{G} J, B\right)$
Proof. If $0 \rightarrow M \rightarrow F \rightarrow J \rightarrow 0$ is a free presentation of J, we obtain exact sequences:

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}_{G}(J, B) \rightarrow \operatorname{Hom}_{G}(F, B) \rightarrow \operatorname{Hom}_{G}(M, B) \rightarrow \tag{1}\\
& \operatorname{Ext}^{1}(J, B) \rightarrow \operatorname{Ext}^{1}(F, B) \rightarrow \ldots \\
& \ldots \rightarrow \operatorname{Tor}_{1}(Z, F) \rightarrow \operatorname{Tor}_{1}(Z, J) \rightarrow Z \otimes_{G} M \rightarrow Z \otimes_{G} F \rightarrow Z \otimes_{G} J \rightarrow 0
\end{align*}
$$

In the latter sequence, $\operatorname{Tor}_{1}(Z, F)=0$ and if we put

$$
U=\operatorname{Ker}\left\{Z \otimes_{G} F \rightarrow Z \otimes_{G} J\right\},
$$

there arise further exact sequences

$$
\begin{array}{r}
0 \rightarrow \operatorname{Hom}_{Z}(U, B) \xrightarrow{\xi} \operatorname{Hom}_{Z}\left(Z \otimes_{G} M, B\right) \rightarrow \operatorname{Hom}_{Z}\left(\operatorname{Tor}_{1}(Z, J), B\right) \rightarrow \ldots \tag{2}\\
0 \rightarrow \operatorname{Hom}_{Z}\left(Z \otimes_{G} J, B\right) \rightarrow \operatorname{Hom}_{Z}\left(Z \otimes_{G} F, B\right) \rightarrow \operatorname{Hom}_{Z}(U, B) \rightarrow \\
\operatorname{Ext}_{z}^{1}\left(Z \otimes_{G} J, B\right) \rightarrow \operatorname{Ext}_{z}^{1}\left(Z \otimes_{G} F, B\right)
\end{array}
$$

Now, $\operatorname{Ext}^{1}(F, B)=\operatorname{Ext}_{z}^{1}\left(Z \otimes_{G} F, B\right)=0$. Since J is finite (Lemma 1), so are $\operatorname{Tor}_{1}(J, Z)$ and $Z \otimes_{G} J$. However, B is torsion free, which means that $\operatorname{Hom}_{Z}(J, B)=\operatorname{Hom}_{Z}\left(\operatorname{Tor}_{1}(J, Z), B\right)=\operatorname{Hom}_{Z}\left(Z \otimes_{G} J, B\right)=0$. Applying these facts to the sequences (1), (2), and (3) we can construct the exact commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}_{G}(F, B) \rightarrow \operatorname{Hom}_{G}(M, B) \rightarrow \operatorname{Ext}^{1}(J, B) \rightarrow 0 \\
& \mathbb{\|} \\
& 0 \rightarrow \operatorname{Hom}_{Z}\left(Z \otimes_{G} F, B\right) \rightarrow \operatorname{Hom}_{Z}(U, B) \rightarrow \operatorname{Ext}_{Z}^{1}\left(Z \otimes_{G} J, B\right) \rightarrow 0,
\end{aligned}
$$

where the left hand isomorphism is an associativity isomorphism (B is G trivial), and the right hand isomorphism is the composite of an associativity isomorphism and ξ. Hence, Lemma 3 follows.

Lemma 4. $\operatorname{Ext} \cdot \Phi(Z, B) \cong \operatorname{Ext}^{1}(J, B)$
Proof. From the preliminaries, it is sufficient to show that

$$
\operatorname{Ext}^{1}(R \otimes, Z, B)=0
$$

in the exact sequence

$$
\ldots \rightarrow \operatorname{Ext}^{1}(Z, B) \rightarrow \operatorname{Ext}^{1}\left(R \otimes_{S} Z, B\right) \rightarrow \operatorname{Ext}^{1}(J, B) \xrightarrow{\delta_{1}} \operatorname{Ext}^{2}(Z, B) \rightarrow \ldots
$$

Now, $\operatorname{Ext}^{1}(Z, B)=0$, and from Lemmas 1 and $3, \operatorname{Ext}^{1}(J, B)$ is finite, so $\operatorname{Ext}^{1}\left(R \otimes_{\mathrm{S}} Z, B\right)$ is finite. Consider the exact sequences

$$
0 \rightarrow \operatorname{Hom}_{G}(Z, B) \rightarrow \operatorname{Hom}_{G}\left(R \otimes \otimes_{s} Z, B\right) \rightarrow \operatorname{Hom}_{G}(J, B) \rightarrow \ldots
$$

$0 \rightarrow \operatorname{Hom}_{G}\left(R \otimes_{S} Z, B\right) \xrightarrow{[f]} \operatorname{Hom}_{G}(R, B) \rightarrow \operatorname{Hom}_{G}(K, B)$

$$
\rightarrow \operatorname{Ext}^{1}\left(R \otimes_{\mathrm{s}} Z, B\right) \rightarrow \operatorname{Ext}^{1}(R, B) \rightarrow \ldots
$$

In the former, $\operatorname{Hom}_{G}(J, B)=0$, which means that Coker $[f]$ is finite. Thus, $\operatorname{Hom}_{G}(K, B)$ is finite. However, since B is G-trivial and torsion free, Hom ${ }_{G}$ (K, B) is free, whence it is zero. It now follows from the latter exact sequence that $\operatorname{Ext}^{1}\left(R \otimes_{S} Z, B\right)=0$, and Lemma 4 is proved.

Now take $B=Z$. From Lemmas 3 and 4, Ext $\cdot \Phi(Z, Z) \cong Z \otimes_{G} J$. Considering the diagram

we see that $Z \otimes_{G} J \cong I /\left(I^{2}+K\right)$.
From diagram $(a), K=R(I \cap S)$. Let C_{1}, \ldots, C_{k} denote the distinct conjugacy classes of G, and let h_{i}, \hat{c}_{i} denote, respectively, the number of and the sum of the elements in $C_{i}(1 \leqq i \leqq k)$. Then a basis for K is

$$
\left\{\hat{c}_{i}-h_{i}: 1 \leqq i \leqq k\right\} .
$$

Now, the map $\eta: I / I^{2} \rightarrow G / G^{\prime}$ given by $\eta\left((g-1)+I^{2}\right)=g G^{\prime}$ is an isomorphism between the additive group I / I^{2} and the multiplicative group G / G^{\prime}. Since $\eta\left(\left(g_{1}-1\right)+I^{2}\right)=\eta\left(\left(g g_{1} g^{-1}-1\right)+I^{2}\right)$, for all $g, g_{1} \in G$, it follows that $\eta\left(\left(\hat{c}_{i}-h_{i}\right)+I^{2}\right)=\left(g_{i} G^{\prime}\right)^{h_{i}}$, where g_{i} is some element in $C_{i}, 1 \leqq i \leqq k$. Hence, the additive group $I /\left(I^{2}+K\right)$ is isomorphic to the multiplicative $\operatorname{group} G / G^{*}$, where G^{*} is the subgroup of G generated by the commutators of G together with the set $\left\{g_{i}{ }^{h_{i}}: g_{i} \in C_{i}, 1 \leqq i \leqq k\right\}$, and the theorem is proved.

Corollary. If G is a non-abelian p-group, then Φ is non-central.
Proof. From the class equation for G, it follows that $G^{*} \subseteq G^{\prime} \cdot C(G) \cdot G^{p}$, where $G^{p}=\left\{g^{p}: g \in G\right\}$. For a p-group, $G^{\prime} \cdot G^{p}=\phi(G)$, the Frattini subgroup of G, so there exists an epimorphism $G / G^{*} \rightarrow G /\{\phi(G) \cdot C(G)\}$. But $G \neq \phi(G) \cdot C(G)$, since otherwise, G would be abelian. Hence, $G / G^{*} \neq\{e\}$, and the result follows from the theorem.

Reference

1. M. C. R. Butler and G. Horrocks, Classes of extensions and resolutions, Philos. Trans. Roy. Soc. London Ser. A 254 (1961), 155-222.

University of Guelph
Guelph, Ontario

