An algebraic derivation of the distribution of rectangular coordinates

By P. L. Hsc.
Communicated by A. C. Aitken.

(Received 20th April, 1940. Read 3rd May, 1940.)
Let $x_{i r}(i=1, \ldots, q ; r=1, \ldots, m ; q \leqq m)$ be random variables which have an elementary probability law $p\left(x_{11}, \ldots, x_{q m}\right)$. Let

$$
s_{i j}=\sum_{r=1}^{m} x_{i r} x_{j r}
$$

The fundamental assumption is that $p\left(\tilde{x}_{11}, \ldots, x_{q m}\right)$ is explicitly a function of the set of $s_{i j}$ alone, so that

$$
\begin{equation*}
p\left(x_{11}, \ldots, x_{q m}\right)=f\left(s_{11}, s_{12}, \ldots, s_{q q}\right) \tag{1}
\end{equation*}
$$

The $\frac{1}{2} q(q+1)$ functions $t_{i j}(i \leqq j)$, defined by the equation

$$
\begin{equation*}
S=T T^{\prime} \tag{2}
\end{equation*}
$$

where

$$
S=\begin{gathered}
s_{11} \ldots s_{1 q} \\
\ldots \ldots . . \\
s_{q 1} \ldots . s_{q q}
\end{gathered}, T=\begin{gathered}
t_{11} 0 \ldots . \ldots 0 \\
t_{12} t_{22} \ldots .0 \\
\ldots \ldots \ldots . \\
t_{1 q} t_{2 q} \ldots . t_{q q}
\end{gathered}, t_{i i} \geqq 0
$$

and T^{\prime} is the transposed matrix of T, are a generalisation of the rectangular coordinates of multivariate normal samples defined and studied by Mahalanobis and others in a joint paper ${ }^{1}$.

We have, directly from (2),

$$
\begin{equation*}
s_{i j}=t_{1 i} t_{1 j}+t_{2 i} t_{2 j}+\ldots+t_{i i} t_{i j} \tag{3}
\end{equation*}
$$

To express the $t_{i j}$ in terms of the $s_{i j}$, we notice from (2) that, for $i \leqq j$,

$$
\begin{aligned}
& s_{11} \quad \ldots . s_{1, i-1} \quad s_{1 j} \\
& { }_{i}, \ldots \ldots \ldots= \\
& s_{i-1,1} \ldots s_{i-1, i-1} s_{i-1, j} \\
& s_{i 1} \quad \ldots s_{i, i-1} \quad s_{i j}
\end{aligned}
$$

[^0]whence, taking determinants,
\[

$$
\begin{align*}
& s_{11} \quad \ldots \ldots s_{1, i-1} \quad s_{1 i} \\
& \ldots \ldots \ldots \ldots \ldots
\end{aligned} \begin{aligned}
& s_{i-1,1} \ldots s_{i-1, i-1} s_{i-1, j} \tag{4}
\end{align*}
$$=t_{11}^{2} ··· t_{i-1, i-1}^{2} t_{i i} t_{i j}
\]

Setting $i=j$ in (4) we have

$$
\begin{gather*}
s_{11} \ldots \ldots s_{1 i} \tag{5}\\
\ldots \ldots \ldots
\end{gather*}=t_{11}^{2} \ldots t_{i i}^{2}
$$

whence

$$
\boldsymbol{t}_{i i}=\begin{array}{ccc}
s_{11} & \ldots & s_{1 i} \tag{6}\\
\ldots & s_{i 1} & \ldots
\end{array} s_{i i}^{1 / 2} .\left|\begin{array}{llll}
s_{11} & \ldots & s_{1, i-1} \\
\ldots & \ldots & \cdots & \cdots
\end{array}\right|
$$

Dividing both sides of (4) by the corresponding sides of (5) and using (6) we obtain

(3) and (7) are the relations connecting the rectangular coordinates $t_{i j}$ and the product moments $s_{i j}$ and have been derived in (M).

In the case where the elementary probability law $p\left(x_{11}, \ldots, x_{q m}\right)$ is a normal one, a geometrical demonstration has been given in (M) of the distribution of the $t_{i j}$. Here we shall give a purely algebraic derivation of the distribution, assuming that (1) holds true.

Theorem. If (1) is true, the elementary probability law of the rectangular coordinutes $t_{i j}$ defined by (2) is

$$
\begin{equation*}
2^{q} \pi^{\frac{1}{2} m q-\lambda q(q-1)}\left\{\prod_{i=1}^{q} \Gamma\left(\frac{1}{2}(m-i+1)\right)\right\}^{-1}\left(\prod_{i=1}^{q} t_{i i}^{m-i}\right) f\left(s_{11}, s_{12}, \ldots, s_{q q}\right) \tag{8}
\end{equation*}
$$

where the arguments of f are to be regarded as the functions (3) of the $t_{i j}$.
Proof. By virtue of (1) we may express the elementary probability as

$$
f\left(s_{11}, s_{12}, \ldots, s_{q q}\right) d x_{11} \ldots d x_{q m}
$$

Let us write more fully as follows:

$$
\left.f\left[\begin{array}{l}
s_{11} \tag{9}\\
s_{12} \\
s_{22} \\
\\
\ldots \ldots \ldots \ldots \\
s_{1 q} \\
s_{2 q}
\end{array}\right] \ldots s_{q q} .\right] d x_{11} \ldots \ldots d x_{q m}
$$

Let the sets of variables $\left(x_{21}, \ldots, x_{2 m}\right), \ldots,\left(x_{q 1}, \ldots, x_{q m}\right)$ be subjected to the same linear transformation below whose coefficients are functions of $x_{11}, \ldots, x_{1 m}$:
where the c 's are so determined as to make (10) an orthogonal transformation. As the Jacobian is 1, we get the result

$$
f\left[\left.\begin{array}{l}
\sum_{r=1}^{m} x_{1 r}^{2} \\
y_{21}\left(\sum_{r=1}^{m} x_{1 r}^{2}\right)^{\frac{1}{2}} \\
\sum_{r=1}^{m} y_{2 r}^{2} \\
\cdots \cdots \cdots \cdots \cdots \ldots \ldots \ldots . \\
y_{q 1}\left(\sum_{r=1}^{m} x_{1 r}^{2}\right)^{\frac{1}{r}} \\
\sum_{r=1}^{m} y_{2 r} y_{q r} \ldots \ldots \sum_{r=1}^{m} y_{q r}^{2}
\end{array} \right\rvert\, d x_{11} \ldots . d x_{1 m} d y_{21} \ldots . d y_{q m} .\right.
$$

If for $x_{11}, \ldots, x_{1 m}$ we substitute spherical coordinates, viz. the radius vector, t_{11}, and $m-1$ angles, $\theta_{12}, \ldots, \theta_{1 m}$, we obtain

$$
t_{12}^{m-1}\left\{\prod_{a=3}^{m}\left(\cos \theta_{1 a}\right)^{a-2}\right\} f \left\lvert\, \begin{aligned}
& \begin{array}{l}
t_{11}^{2} \\
t_{11} y_{21} \\
\sum_{r=1}^{m} y_{2 r}^{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
t_{11} y_{q 1} \\
\sum_{r=1}^{m} y_{2 r} y_{q r} \ldots \ldots \sum_{r=1}^{m} y_{q r}^{2}
\end{array} \\
& -
\end{aligned} t_{11} d \theta_{12} \ldots d \theta_{1 m} d y_{21} \ldots d y_{q m}\right.
$$

Writing $t_{1 i}$ for $y_{i 1}(i=2, \ldots q)$ and

$$
s_{i j}^{\prime}=\sum_{r=2}^{m} y_{i r} y_{j r}(i, j=2, \ldots, q)
$$

we get
$t_{11}^{m-1}\left\{\prod_{a=3}^{m}\left(\cos \theta_{1 a}\right)^{a-2}\right\} \times$
$f\left(\left.\begin{array}{l}t_{11}^{2} \\ t_{11} t_{12} \\ t_{12}^{2}+s_{22}^{\prime} \\ \ldots \ldots \ldots \ldots \ldots . \ldots t_{1 q} \\ t_{11} t_{1 q} \\ t_{12} t_{1 q}+s_{2 q}^{\prime} \ldots \ldots t_{1 q}^{2}+s_{q q}^{\prime}\end{array} \right\rvert\, d t_{11} \ldots d t_{1 q} d \theta_{12} \ldots d \theta_{1 m} d y_{22} \ldots d y_{q m}\right.$.
It is seen that, as far as the y-variables are concerned, we have the same situation that only the product moments $s_{i j}$ figure in the elementary probability law. Hence the same procedure which carries (9) to (11) may be repeated. In doing so we introduce the following variables: $t_{22}, t_{23}, \ldots, t_{2 q} ; \theta_{23}, \ldots, \theta_{2 q} ; z_{33}, z_{34}, \ldots, z_{q m}$, to replace the y 's, and write down the elementary probability:

$$
\begin{aligned}
& t_{11}^{m-1} t_{22}^{m-2}\left\{\prod_{a=3}^{m}\left(\cos \theta_{1 a}\right)^{a-2}\right\}\left\{\prod_{a=4}^{m}\left(\cos \theta_{2 a}\right)^{a-3}\right\} \times
\end{aligned}
$$

$$
\begin{aligned}
& d t_{11} \ldots d t_{1 q} d t_{22} \ldots d t_{2 q} d \theta_{12} \ldots d \theta_{1 m} d \theta_{23} \ldots d \theta_{2 m} d z_{33} \ldots d z_{q m},
\end{aligned}
$$

where

$$
{s^{\prime \prime}}_{i j}=\sum_{r=3}^{m} z_{i r} z_{j r}(i, j=3, \ldots, q) .
$$

Proceeding in this manner we finally obtain

$$
\begin{align*}
& \left(\prod_{i=1} t_{i i}^{m-i}\right)\left\{\prod_{i=1}^{q} \prod_{a=i+2}^{m}\left(\cos \theta_{i a}\right)^{a-i-1}\right\} \times \\
& \bar{t}_{11}^{2} \\
& f{ }^{t_{11} t_{12}} t_{12}^{2}+t_{22}^{2} \\
& t_{-} t_{1 q} t_{12} t_{1 q}+t_{22} t_{2 q} \ldots t_{1 q}^{2}+t_{2 q}^{2}+\ldots+t_{q q}^{2} \\
& d \theta_{12} \ldots d \theta_{q+1, m} d t_{11} d t_{12} \ldots d t_{q q} . \tag{12}
\end{align*}
$$

Now the functions $t_{i j}$ introduced in the proof are precisely the rectangular co-ordinates defined by (2) or (3). For, in each step of transformation from (9) to (12) the change in the arguments of f is
effected by direct substitution. Equating the arguments of f in (9) and (12) we get

$$
s_{i j}=t_{1 i} t_{1 j}+t_{2 i} t_{2 j}+\ldots+t_{i i} t_{i j}
$$

which gives (3).
If from (12) the θ 's are integrated over the following domain:

$$
\begin{array}{ll}
-\pi \leqq \theta_{i a} \leqq \pi & (a=i+1 ; i=1, \ldots, q) \\
-\frac{1}{2} \pi \leqq \theta_{i a} \leqq \frac{1}{2} \pi & (a=i+2, \ldots, m ; i=1, \ldots, q)
\end{array}
$$

the result is the elementary probability law (8). The proof is therefore complete.

One more step leads to the distribution of the product moments $s_{i j}$, as is done in (M). The transformation is given by (7) and the reciprocal transformation by (3), which has the Jacobian

$$
2^{q} t_{11}^{q} t_{22}^{q-1} \ldots t_{q q}
$$

Dividing (8) by this Jacobian and then carrying out the substitution we get the following elementary probability law of the $s_{i j}$:

$$
\left.\pi^{\frac{1}{2} m q-\{q(q-1)}\left\{\prod_{i=1}^{q} \Gamma\left(\frac{1}{2}(m-i+1)\right)\right\}^{-1} \quad \begin{gather*}
s_{11} \ldots \ldots s_{1 q} \tag{13}\\
\\
s_{q 1} \ldots \ldots s_{q q}
\end{gathered}\right|^{\frac{1}{(m-q+1)}} \begin{gathered}
\\
\\
\end{gather*}
$$

The multiplier of $f\left(s_{11}, s_{12}, \ldots, s_{q q}\right)$ in (13) is well known ${ }^{1}$.
The result (12) brings out the following important fact: If $x_{11}, x_{12}, \ldots, x_{q m}$ are all the observational data and if only the rectangular coordinates $t_{i j}$ or the product moments $s_{i j}$ are utilised for statistical purposes, the part of the observational data thus thrown away may be regarded as a set of angles which are distributed independently of the $t_{i j}$ or $s_{i j}$ and whose elementary probability law does not involve any of the unknown parameters that may figure in the elementary probability law of the x 's.
${ }^{1}$ Cf. Wishart and Bartlett, Proc. Camb. Phil. Soc., 29 (1933), 271-6.
153. Chesterton Road, Camrridge.

[^0]: ${ }^{1}$ Mahalanobis, Bose and Roy, Stmkhya, 3 (1937), 1-40. This paper will be referred to as (M).

