DIRECTED COVERS AND PARACOMPACT SPACES

JOHN MACK

A cover U is directed (is well-ordered, totally ordered) if it is directed (is
well-ordered, totally ordered, respectively) by set inclusion. Specifically U1 is
directed if, given U, V in U, there exists W in U such that U\U V C W.

Directed covers have been used implicitly in numerous theorems dealing
with paracompactness and related properties. In particular, characterizations
of paracompactness in terms of product spaces seem to require the use of
directed covers (3; 11, § 2; or 12). However, the utility of directed covers
has not been fully exploited.

In this note we shall use directed covers to obtain characterizations of
IN-paracompact spaces. The principal result of this paper is given in Theorem
5. A corollary to that theorem is the following: A4 topological space is para-
compact if and only if every directed open cover has a locally finite closed refine-
ment (7).

Here the term cover will mean a collection of sets (not necessarily open)
whose union is the entire space. A topological space X is I-paracompact
(M—an infinite cardinal) if every open cover having power <IN has a locally
finite open refinement. The space is paracompact if it is IN-paracompact for
every infinite cardinal IN.

LEmMA 1. (i) Each countable directed cover contains a well-ordered subcover.
(i1) Each totally ordered cover contains a well-ordered subcover.

Proof. This lemma is a restatement of the well-known fact that each count-
able directed set and each totally ordered set contains a well-ordered cofinal
subset.

The following is essentially due to Alexandroff and Urysohn (1).

THEOREM 2. The following are equivalent for amy topological space S and
any nfinite cardinal M.

(@) X s M-compact.

(b) X is an element of each directed open cover of X having power <IN.

(¢) X is an element of each well-ordered open cover of X having power <M.

Proof. A finite directed cover contains X as an element. Hence (a) implies
(b). Obviously, (b) implies (c). The implication (c) implies (a) is proved
as in (1, Theorem I, on p. 8).
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A collection ¥ of subsets of a topological space is closure-preserving if, for
every subcollection 9B of ¥, the closure of the union is the union of the closures,
ie. d\U{B:B€ B} =\ {cl B: B€ B}. The collection A is o-closure-
preserving if it is the union of a sequence of closure-preserving subcollections
(8).

We shall need the following easily proved lemma (8, Lemma 1).

LeEMMA 3. If an indexed family {U., a € T} is refined by a locally finite
(closure-preserving) family B, there exists a locally finite (a closure-preserving)
indexed family {Va, o € T} such that Vo C Uy} for all « € T and

U1 V7 €8} = U{Vea € T}

Moreover, if each V in B is open (closed) then each V, may be taken to be open
(closed).

THEOREM 4. A topological space X is countably paracompact if and only if
for every countable directed open cover 1 there exists a o-closure-preserving open

cover B such that {cl V: V € B} refines 1.

Proof. According to Lemma 1, a countable directed cover Ul admits a sub-
cover {Uy:n = 1,2,...} such that U, C U,y1. It follows from (5) that if
X is countably paracompact, then there exists an open cover {V,} such that
cl V, C U,. Clearly {V,} satisfies all the requirements for L. Conversely, let
U= {Usun=12,...} be an open cover of X with U, C Upy1. If Il has a
o-closure-preserving open refinement whose closures refine U, then it follows,
using Lemma 3, that there exists an open cover {V,} such that cl V, C U,
for each index n. Hence by (5), X is countably paracompact.

Remark. Using the notation of (9), Theorem 4 can be stated as follows:
X is countably paracompact if and only if every countable directed open cover
has a o-cushioned open refinement.

~

THEOREM 5. For any topological space X and any infinite cardinal I, the
following are equivalent:

(@) X is M-paracompact.

(b) X is countabdly paracompact and every open cover of X having power <IN
has a a-locally finite open refinement.

(c) Every directed open cover of X having power <IN has a locally finite open
refinement.

(d) For every directed open cover W of X having power <IN, there exists a
locally finite open cover B such that {cl V: V € B} refines 1.

(e) Every directed open cover of X having power <IN has a locally finite
closed refinement.

(f) Every well-ordered open cover of X having power <IN has a locally finite
open refinement.
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(g) For every well-ordered open cover W of X having power <M, there exists
a o-locally finite open cover B such that {cl V: V € B} refines 1.

Proof. Clearly (a) and (b) are equivalent; it is also obvious that (a) implies
(c) and that (d) implies (e).

(c) = (d). Let U be a directed open cover having power <. We may
suppose 1l is indexed by a directed set I' (with card I' < M) such that
a < B if and only if U, C Us. By (c) and Lemma 3, there exists a locally
finite open cover & = {G,: @ € T} such that G, C U, for each a € T. Set
W = X\ \Us<acl Gg. Then {W,: @ € T} is a directed open cover for which
cl W, C U, for each a € T. By (c) the cover {W,} has a locally finite open
refinement B. Clearly L has all the properties required in (d). Note that
the above argument also shows that (f) implies (g).

(e) = (f). To prove this, we shall modify the proof of Lemma 1 in (7).
Let { U} be a directed open cover having power <. By hypothesis there is
a locally finite closed cover { F,} such that F, C U, for all a. Let A denote the
collection of all finite sets of indices. For X € A, set Vi = X\ \Ua¢» Fo. Then
{Va: N € A} is a directed open cover having power <I; thus there is a
locally finite closed cover {Hy: A € A} such that Hy C Vi forall X € A. Finally
set Wy = UN\\JI{Hy\: Hy N\ F, = @}. Then {W,} is a locally finite open
refinement of {U,}.

(g) = (b). It follows from Theorem 4 that (g) implies X is countably
paracompact. We shall use transfinite induction to prove the implication for
arbitrary infinite cardinal . Suppose X is f-paracompact for every infinite
cardinal f less than 9 and let U be an open cover of X having power <.
Index U with an initial interval T' of the set of ordinals less than the first
ordinal having power . Then W' = {Ugc, Us: @ € T} is a well-ordered open
cover having power <. By assumption (g), there exists a o-locally finite
open cover B whose closures refine II'. For V € L there exists an index «
such that {Up: B8 < o} covers cl V. Since by the induction hypothesis X is
f-paracompact for I = card @, there exists a locally finite collection Wy of
open subsets of X such that Ly refines Il and covers cl V. Then

(WNV:WeE By, VL
is a o-locally finite open refinement of U.

COROLLARY 6. A topological space is paracompact if and only if every well-
ordered open cover has a locally finite open refinement.

COROLLARY 7. A topological space X is paracompact if and only if every
directed open cover has a locally finite closed refinement.

Note that unlike Lemma 1 of (7), X is not assumed to be regular in Corol-
lary 7.
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THEOREM 8. A Ti-space is M-compact if and only if it is M-paracompact
and countably compact.

Proof. See (2).

A topological space X is pseudocompact if every real-valued continuous

function on X is bounded.

COROLLARY 9. A completely regular Hausdorff space is IN-compact if and
only if 1t 1s M-paracompact and pseudocompact.

Proof. See (4).

Remark. Theorem 8 can be modified to read: X is M-compact if and only
if X is countadly compact and every open cover of X having power <IN has a
point-finite open refinement.

A subset 4 of a topological space X is a zero-set if there exists a real-valued
continuous function f on X such that 4 = f~1(0). The complement of a
zero-set is a cozero-set. A set of A is a generalized F,-set (generalized cozero-set)
if every open set containing 4 contains an F,-set (cozero-set) which con-
tains A.

THEOREM 10. Let YV be a generalized F,-subset of a countably paracompact
space X. If the subspace is Y normal, then it is countably paracompact.

Proof. Let U = {U,} be a countable open cover of Y. For each k&, let
be an open set in X such that V, M\ ¥V = U, and then set G = \UVj;. Since
G is an open subset of X which contains Y, there exists a sequence {F,} of
closed subsets of X such that ¥ C U F, C G. Then for each =,

(Vi k =1,2,...0 U (X\F}

is a countable open cover of X. Hence, for each #, there exists a locally finite
open cover

(W B = 1,2, ...} U {X\Fo}
such that W, C V; for each k. Thus
W= {Wu N[\ Yncn Ful; n=1,2,...; k=1,2,...}
is a countable refinement of 1. Since
(N Ypn Friz m =1,2,...}

is point-finite, B is also point-finite. In a normal space each countable point-
finite open cover has a locally finite open refinement (10). Thus & (and
hence 11) has a locally finite open refinement.

THEOREM 11. Let YV be a generalized F,-subspace of an IN-paracompact space
X. If Y is either countably paracompact or normal, then Y is M-paracompact.
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Proof. A standard argument (7, Proposition 3) can be used to show that
each open cover of ¥ having power <t has a ¢-locally finite open refinement.
If Y is normal, then it is countably paracompact by Theorem 10 and if it is
countably paracompact it is I-paracompact by Theorem 5.

THEOREM 12. Let X be an IM-paracompact space and let ¥V be a subset of X
such that for every open set G containing Y, there exists a sequence { F,} of closed
sets contained in G for which \J int F, D V. Then Y is M-paracompact.

Proof. In view of Theorem 11, it suffices to show that Y is countably para-
compact. This may be done as in Theorem 10. Note that under the hypotheses
given here, the cover B is locally finite as well as being point-finite.

COROLLARY 13. Every generalized cozero subspace of an IM-paracompact space
is M-paracompact.

LemMma 14. Let f be a mapping from a topological space X onto a second space
Y such that f~1(y) is M-compact for every y € Y. If U is a directed open cover
of X having power <M, then f*(U) = {YN\SFEX\U): U € U} s a directed

cover of Y. Moreover, if f is a closed mapping, then f*(U1) is an open cover.

Proof. Let y € Y. Then {UNf1(y): U € U} is a directed open cover
having power <IN, of the M-compact space f~1(y). According to Theorem 2,
there exists U € U such that f~'(y) = f~'(y) N U C U. Thus

PNSXNU) D VNSNS () = {y);

whence f*(U1) covers Y.
The following lemma is implicit in the proof of Corollary 2.3 in (11).

LemwMma 15. Let f be a closed mapping from X onto Y such that f~2(y) is com-
pact for each y € Y. Then the image under f of a locally finite collection of sub-
sets of X 1s locally finite in Y.

THEOREM 16. Let f be a closed continuous mapping from a topological space
X onto a space V.

(@) If f~1(y) is M-compact for each y € Y and Y is M-paracompact, then X
is M-paracompact.

(b) If f~2(y) is compact for each y € Y and X is M-paracompact, then V is
M-paracompact.

Proof. Part (a) follows directly from Lemma 14 while (b) follows from
Theorem 5(e) and Lemma 15.

THEOREM 17. Let X be an M-paracompact space such that each point has a
basic neighbourhood system having power <IN. Then the product of X with an
M-compact space YV is IM-paracompact.
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,

Proof. 1t is easy to show (11, footnote 6) that the projection of X X 1
onto X is a closed mapping. This theorem is then an immediate consequence
of Theorem 16.

COROLLARY 18. The product of a metric space with an M-compact space is
IM-paracompact.

Remark. The special case of Theorem 17 for which X is paracompact and
normal is proved in (11, 4.1).
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