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1. Introduction

J. C. Kelly [2] introduced the concept of a bitopological space. Lane [3],
Patty [4] and Pervin [5] have continued his work. Our purpose in this paper is to
identify the projective objects in a suitable category of bitopological spaces after
the manner of Gleason [1] and generalize his theorem that in the category of
compact Hausdorff topological spaces, the projective spaces are precisely the
extremally disconnected ones.

We give new definitions of continuity and of separation in bitopological
spaces. These definitions are strictly weaker than the corresponding ones (for
bitopological spaces) in the literature. Precisely, our 'quasi-continuity' is weaker
than Pervin's continuity [5] and our 'quasi-Hausdorff' bitopological space is more
general than a pairwise Hausdorff one [2]. Here we give a definition of 'semi-
compactness' for bitopological spaces. (The reason for the nomenclature will be
clear from the definition.) All these three concepts reduce to the corresponding
conventional concepts, with the prefix 'quasi' or 'semi' removed, when the two
topologies of the bitopological structure coincide and we have just a space with a
single topology. We also generalize the definition of an extremally disconnected
space to bitopological space. Under this setting, we prove the following

MAIN THEOREM. In the category of semi-compact, quasi-Hausdorff bito-
pological spaces and quasi-continuous maps, the projective spaces are precisely the
extremally disconnected ones.

Throughout the following, {X, P, Q) stands for a bitopological space with
topologies P and Q. If we need two bitopological spaces simultaneously we shall
take them as (Xt, />i, 2 J and (X2, P2, Q2).

2. Preliminaries on continuity

2.1. DEFINITION. A subset A of (X, P, Q) is said to be quasi-open if for every
x e A there exists a P-open neighborhood Ux <=. A or a g~open neighbourhood
Vx <= A .

Ill
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2.2. PROPOSITION. Quasi-open sets are precisely the unions of P-open and Q-
open sets.

Proof follows directly from definitions.

REMARK. Every P-open (g-open) set is quasi-open. That arbitrary union of
quasi-open sets is quasi-open follows by 2.2. Finite intersection of quasi-open sets
need not be quasi-open. For example, let X be the real line R. Let P be the topology
with base [a, b) and Q be the topology with base (c, d]. Let a < b < c. Then
(a, b] and [b, c) are quasi-open sets, but (a, b] n [b, c) = {b} is not a quasi-
open set.

2.3. DEFINITION. A quasi-closed set is the complement of a quasi-open set.

REMARK. Every ^-closed (g-closed) set is quasi-closed. Arbitrary intersection
of quasi-closed sets is quasi-closed. Finite union of quasi-closed sets need not be
quasi-closed. Every quasi-closed set is the intersection of a P-closed set and a Q-
closed set.

2.4. DEFINITION. The quasi-closure of A c (X,P, Q) is {P-c\{Aj) n (Q-c\(A)),
where P-cl denotes f-closure and Q-cl denotes g-closure. The quasi-closure of A
is denoted by A.

2.5. PROPOSITION. If A C (X,P, Q), then A is the smallest quasi-closed set
containing A.

Proof follows from definitions 2.1, 2.3 and 2.4.

2.6. DEFINITION. L e t / : (X1,P1, Qy) ->• (X2,P2, Q2). f is said to be quasi-
continuous if the inverse image of every quasi-open set is quasi-open.

2.7. PROPOSITION. Let f:(Xi,P1,Q1)^>- (X2,P2, Qi) be quasi-continuous.
Let G c Xv Thenf(G) <=f(G).

PROOF. Let xe (Pj-c^G) n ^!-cl(G)). Let U be any /^-neighborhood of
/(x)inX2. Since/is quasi-continuous,/" 1{U) is quasi-open in X1 and x e / " 1 ^ ) .
Therefore there exists either a Pt-neighborhood or a gi-neighborhood W of
x such that W cf~l{U). W meets G because x e (iVcl(G) n Qrc\(G)). Hence
/"*(£/) meets G and so U meets/(G). Hence f(x) e P2-cl(f(G)). Similarly
f{x) e Q2-d(f(G)). Thus/(G)

REMARK. Every quasi-continuous map is continuous for the upper bound
topology. The converse need not be true as is shown by the following example.

Let Xt be the real line R and d be a metric defined by d(x, y) = min.
{1, |AT—jv|}. Define conjugate quasi-pseudo-metrics p and q on X± by putting,
for (x, y) e R,

if x > y
&n<iq(x,y) = p(y, x).
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Let Pl and Qx be the topologies on Xt determined by p and q respectively.
Let X2 be the real line R. Define u(x, x) = 0 for each x e R. If x ^ y, define
u(x,y) = 1 if x is rational and u(x,y) — \x— y\l(\ + \x—y\) if x is irrational.
Define v by v(x, y) = u(y, x). Let P2 and Q2 be the topologies on X2 determined
by u and v respectively.

Consider the identity map / : {Xx, Px, Qt) -*• (X2, P2, Q2). I is continuous
in the upper bound topology. / is not quasi-continuous. For, consider the open
interval {a, b) without rational points. It is quasi-open in X2 but is not quasi-
open in Xt.

3. Semi-compact bitopological spaces

3.1. DEFINITION. A c (X, P, Q) is said to be semi-open if it is open in the
upper bound topology of P and Q.

REMARK. Consequently we have the natural notion of a semi-closed set and
of semi-closure.

3.2 DEFINITION. A set A c (X, P, Q) is said to be semi-compact if it is com-
pact in the upper bound topology of .P and Q; in other words A is semi-compact
if and only if, given any covering of A by semi-open subsets of X there exists a
finite subcovering.

REMARK. Every semi-closed (and therefore every /"-closed, Q-closed and
quasi-closed) subset of a semi-compact bitopological space is semi-compact.

3.3. PROPOSITION. The quasi-continuous image of a semi-compact bitopological
space is semi-compact.

PROOF. Let / be a quasi-continuous mapping of a semi-compact space
(XY, Px, QY) onto an arbitrary space (X2, P2, Q2), We shall show that (X2 ,P2,Q2)
is semi-compact.

Let v = (Ux)xeA be a covering of X2, where each Ux is semi-open and so of
the form \JUj (Vx. n WXj) where Vat is-P-open and Waj is g-open. T h e n / ' ^ t / J =
f~l(\Jl.j(y^^Waj))=\J,,j{f-1(Vat)nf-1(WSJ)). VXi is quasi-open, so
f 1(^«i) ' s quasi-open and hence semi-open. Similarly, f~1(Waj) is semi-open.
Hence/" ' ( [ / a ) is semi-open. Therefore {f~1(Ux))xeA is a semi-open covering of
Xt. Since Xx is semi-compact, there exists a finite subset Ax c A such that
( J a g y l l /

- 1 ( £4 ) covers Xx. Therefore \JaeAi Ux is a finite subcovering of v which
covers X2. Therefore X2 is semi-compact.

3.4. DEFINITION. (X, P, Q) is said to be quasi-Hausdorff if given xx # x2

there exist quasi-open sets t / j , U2 such that xt e U^, x2 e U2 and Ut n U2 = 0.

REMARK. Kelly [2] calls (X, P, Q) pairwise Hausdorff if given x t # x2 there
exists a P-open set Ut and a g-open set U2 containing xt and x2 respectively such
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that Ut n U2 = 0. So every pairwise HausdorfF space is also quasi-Hausdorif.
But the converse need not be true. For example, let X be the real line R and d
be a metric defined by d(x, y) = min. {1, \x— y\}. Define, for (x, y) e R, u(x, y) = 0
if x ^ y, = d(x, y) if x > y and v(x, y) = u(y, x).

Let P and g be the topologies on X determined by u and v respectively.
(X, P, Q) is quasi-Hausdorff but not pairwise Hausdorff.

3.5. PROPOSITION. Let (X,P, Q) be a quasi-Hausdorff space. Let U^ and U2

be quasi-open sets such that U^ n U2 = 0. Then TJl n U2 = 0.

PROOF. Let £/t and t/2 be quasi-open sets such that Ut n U2 = 0. We shall
show that Ut n U2 = 0. Suppose Ut n U2 ^ 0. Let j e {/i n t/2 • y 6 C?i implies
every /"-neighborhood and g-neighborhood of y meets U1. But U2 is a quasi-
open set containing y and so there exists either a /"-neighborhood or a Q-neigh-
borhood W of y such that 1^ c £/2. But by hypothesis U2 does not meet Uy, so
W n f i = 0. This contradiction establishes that \Jxr\U2 = 0.

3.6. DEFINITION. Let (A^,/";, Qi) i e / be a family of bitopological spaces. On
the product set X'= H-e/ ̂ i> w e define a bitopological structure (P, Q) by taking
/" as the product topology generated by the Pt s and Q as the product topology
generated by the g ; s.

3.7. PROPOSITION. The natural projection from a product bitopological space
(X,P, Q) on the component spaces {X^Pi, Qi)iei is quasi-continuous.

PROOF. Let J~[, denote the projection from X onto Xt. Let U be any quasi-
open set of A';. Then U = V u W where FisP r open and W'\% (?;-open. f L " 1 ^ ) —

^X{T1{W). Y\7l{V) is P-open and WJ^W) is g-open. Therefore
' s quasi-open in X. Hence Y[i is quasi-continuous.

3.8. PROPOSITION. The product of any arbitrary number of semi-compact
bitopological spaces is semi-compact.

PROOF. Let (A';,/
>

i, 2 ;) l e i be a family of semi-compact spaces. Let T( be the
upper bound topology of Pt and Qt. Let (X, T) = Yliei (-*"<> Ti) be the product
space, and let (X, P, Q) = n>*J (^> ^J* 2>) be the product bitopological space.
Then (X, T) is compact since by definition each (Xi, T() is compact. Since T is finer
than the upper bound topology of P and Q, (X, P, Q) is semi-compact.

3.9. PROPOSITION. Let (A,P1,Q1),(B,P2,Q2) and (C,P3,Q3) be quasi-
Hausdorff spaces. Let / : B -> C and g : A -> C be quasi-continuous maps. Then
D = {(a, 6) : #(a) = f(b)} is a semi-closed subset of 4̂ xfi.

PROOF. Let (AxB,P,Q) be the product space of (A^i^i) and
(B,P2,Q2). Let (a^Aje^X-B)-.*?. Therefore ^ (a j ¥=f(bi) in C. Because
C is quasi-Hausdorff, there exists disjoint quasi-open sets Ux and U2 containing
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g(at) a n d / ( 6 t ) . So, at eg"1^^ and bt ef~l(U2). Since g a n d / a r e quasi-
continuous, g'l(Ui) and/~1(C/2) a r e quasi-open sets in A and B respectively.
Since a quasi-open set is also semi-open, ^ " H ^ i ) xf~1(U2) is a semi-open subset
of A x B.

We shall now show that D n {^" 1 ( t / i ) x /~ 1 ( c / 2 )} = 0- Suppose these two
sets are not disjoint, then let (a2,b2)eD n {g~1(Ut)xf~i(U2)}. (a2,b2)eD
implies g(a2) = f(b2). (a2, b2)e {g~1(Ul)x.f~1{U2)} implies g{a2)eU1 and
f(b2)e U2. So, #(a2) =f(b2)e Ut n £/2 contradicting the fact that Ul and £/2
are disjoint. Therefore {g~l(Ui)'xf~1(U2)} is disjoint from D.

Thus for every point (al,b1)e(AxB) — D there exists a semi-open set dis-
joint from D. Therefore {A x B)~D is semi-open and hence D is semi-closed.

4. Extremally disconnected bitopological spaces

4.1. DEFINITION. (X, P, Q) is said to be extremally disconnected if for every
semi-open set its quasi-closure is quasi-open.

4.2. PROPOSITION. A semi-compact subset of a quasi-Hausdorff bitopological
space is semi-closed.

This is the analogue for bitopological spaces of the classical result that a
compact subset of a Hausdorff space is closed. The proof runs on the same pattern.
We have only to recall that every quasi-open set is semi-open.

However this proposition is not enough for the proof of our main theorem.
So we prove the following

4.3. PROPOSITION. A semi-compact subset of a quasi-Hausdorff bitopological
space which is also extremally disconnected is quasi-closed.

REMARK. The hypothesis of extremally disconnectedness is not necessary for
the conclusion as is shown by the space (X, P, Q) of 3.3 (Remark). A semi-compact
subset here is a closed bounded interval [a, b] which is quasi-closed in X. But we
do not know how to prove the proposition without this extra hypothesis.

PROOF OF THE PROPOSITION. Let A be a semi-compact subset of a quasi-Haus-
dorff space (X, P, Q) which is also extremally disconnected. We shall show that
X— A is quasi-open.

Let seX—A. By proposition 3.5, there exist for each aeA disjoint quasi-
open sets Ua and Va containing a and s respectively such that Ua n Va = 0. The
collection {Ua}aeA is a semi-open covering of A. By compactness of A, there exists
a finite subset A1 c A such that \JaeAl Ua covers A. Thus A c {jaeAl Ua. Let
Ws = f].eAl Vtt. Then f)aeAl Va c f]aeAl Va = Ws. But f)amAl Va is quasi-open
(because (X, P, Q) is extremally disconnected). So Ws contains a quasi-open set
containing s. Also A n Ws c (\JaeAi Ua) n Ws = 0. Thus for each seX-A,
there exists a quasi-open set c Ws such that Ws n A = 0. This proves X— A is
quasi-open. Hence A is quasi-closed.
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5. Generalization of Gleason's lemmas

5.1. LEMMA. Let p : (E, P, Q) -* (A1,Pl, <2i) be quasi-continuous and onto
such that p(E0) ^ A for any proper semi-closed subset Eo c E. Then for any
quasi-open set G c E, p(G) c (A—p(E—G)).

The proof runs on the same lines as that of lemma 2.1 of [1],

5.2. LEMMA. In an extremally disconnected quasi-Hausdorjf bitopological
space, if Ul and U2 are two disjoint quasi-open sets then U^ n U2 = 0.

The proof follows from proposition 3.5 and definition 4.1.

5.3. LEMMA. Let (E,P, Q) be a semi-compact space and (A,Plt Qt) be a
quasi-Hausdorjf and extremally disconnected space. Let p : E -* A be quasi-con-
tinuous, one-one and onto. Then p~l is quasi-continuous.

PROOF. Let F be a quasi-closed subset of E. Then F is semi-compact. Since
p is quasi continuous, p(F) is semi-compact. So, by proposition 4.3, p(F) is quasi-
closed in A. This proves p " 1 is quasi-continuous.

5.4 LEMMA. Let (E, P,Q)be semi-compact and quasi-Hausdorjf, and {A, Px, Q1)
be semi-compact, quasi-Hausdorjf and extremally disconnected spaces. Let
p : E -> A be quasi-continuous and onto. Let p(E0) ¥= A for any proper semi-closed
subset Eo c E. Then pisl — l andp~x is quasi-continuous.

PROOF. In view of Lemma 5.3 we have only to prove that p is one-one. The
proof of this follows on the same lines as that of Lemma 2.3 of [1 ].

5.5. LEMMA. Let (A,P,Q) and (D,P1,Q1) be semi-compact, quasi-Haus-
dorjf spaces. Let Y[ '• D -* A be quasi-continuous and onto. Then D contains a semi-
compact subset E such that \\{E) = A but Y\(Eo) ^ A for any proper semi-closed
subset Eo cz E.

The proof runs along the same lines as that of lemma 2.4 of [1].

6. Proof of the main theorem

Let us first prove that every extremally disconnected semi-compact quasi-
Hausdorff space (A, P, Q) is projective. Let (B, P^Qi) and (C, P2, Q2) be semi-
compact quasi-Hausdorif spaces a n d / : B -> Cand# : A -> C be quasi-continuous
maps and / i s also onto.

9

B~— > C

We have to produce a quasi-continuous map \ji : A -> B such that the above
diagram commutes. Consider AxB and its subset D = {(a,b):g(a) =f{b)}.
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By proposition 3.8, D is semi-closed subset of AxB. By proposition 3.7,
A x B is semi-compact and hence D is semi-compact. Consider the projection
f[i : A xB -> A. Since/is onto, {f(b) :beB} exhausts C and therefore {g(a) :
{a, b) e D) exhausts C which means J\i maps D onto /I. By Lemma 5.5, there
exists a semi-compact subset E c D such that fliC^) = -̂  ^ u t FIiC^o) ^ ^ for
any proper semi-closed subset Eo a E. Let p = J^i-C. p satisfies all the conditions
of Lemma 5.4 and sop" 1 exists and is quasi-continuous. Let

xf, = \[2op-1 :A-^->Ec AxB^-B.

\jj is quasi-continuous. We shall show that \j/ is the required map. Let a e A.
Since p~i(a) e D,

Therefore g = / o \\2 op" 1 = / o i/̂ . This proves one part of the theorem.
Now let us prove that every projective space is extremally disconnected.
Let (X, P, Q) be a projective space. Let G be semi-open subset of X. We

shall show that G is quasi-open. Consider

Y = ((X-G)x {/>}) u {Gx{q}) cz Xx {p, q),

where {p, q} has the bitopological structure (0, {/?}, {p, q}) and (0, {q}, {p,q}).

• X

i

Since X is projective there exists a quasi-continuous map \// : X -* Y such that the
above diagram commutes, where / is the identity map from X into X. Y[ ° i is one-
one on (G x {q}). Therefore i/̂ (x) = (x, q) for all x e G. Since \\i is quasi-continuous
<K*) e (Gx {^})foralU e G. But (G x {q}) <=Gx {q}.Therefore^(G x {q} => G.
Also if JC$ G, •/'(x) = (x,p). So f" ' (Gx {̂ r}) = G. But i/f is quasi-continuous
and (X— G x {p}) is quasi-closed in 7 and so G x {#} is quasi-open in Y. Therefore
G is quasi-open in X.

REMARK. In the second part of the proof of the theorem the quasi-Hausdorff
and semi-compact property of the spaces was not used and so in the category of
all bitopological spaces and quasi-continuous maps every projective space is
extremally disconnected.
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