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ABSTRACT. 

We prove a basic result for collisionless galactic 
models that collective motion not only introduces Landau 
damping but also intrinsic chaos of typical star dynamics in 
the phase plane when a small perturbative wave disturbance is 
present. The Melnikov method is used; the consequences of 
the chaos and quasilinear diffusion are pointed out. 

INTRODUCTION 

The inverse square gravitational law is responsible for 
long range interactions in gravitationally interacting mass 
bodies and has many interesting consequences; gentle relaxa­
tion and collective interaction are two of them. The under­
standing of wave propagation in a collection of stars is 
based on the collective interaction theory; an interesting 
implication is the collisionless or Landau damping of waves 
whenever they can exist [1-4]. Careful examination of such 
collisionless phenomena could be very rewarding. 

In this paper we reexamine the problem of collective 
interaction in the light of the fact that a collection of 
stellar objects could give rise to chaotic motion as well as 
regular motion just as in any other dynamical system [5],[6]. 
Collective interaction can be associated with a continuous 
spectrum in phase space [7],[9] through the so-called Van 
Kampen Case Siwert modal structure [ 7 ],[ 9],[ 11 ]. Because of 
the recent discovery of its relation to intrinsic chaos [10], 
[11] we find it important to point out that whenever wave 
structure is allowed in a gravitationally interacting stellar 
medium, the dynamics of an individual stellar object in phase 
space should be expected to be chaotic; the chaos itself 
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immediately manifests in the form of quasilinear diffusion 
[2],[4]. 

Only the simplest physical model is considered here since 
the aim is to put on record the basic phenomenon to be expec­
ted; more detailed specific models are left out for future 
studies. Hence, a homogeneous distribution of stellar objects 
is considered and spatial finiteness effects of the distribu­
tion of such objects are not dealt with; the model consider­
ed is as in Chapters 15 § 16 of Ref. 3. The regime of waves 
of shorter wavelengths than Jeans length is of interest; the 
alternate regime gives rise to the collapse of the collection 
of stellar objects not giving rise to chaotic dynamics (see 
last part of this paper). The treatment follows that of a 
similar proof in plasma physics [11] which resulted because 
of application to thermo nuclear fusion. 

The starting point for examining individual star behaviour 
in a collection of similar objects would have been the colli-
sionless Boltzman (Vlasov) equation as is usual in stellar 
dynamics [1-4]. However, since we are interested in the dyn­
amics of a typical stellar object and also since the Lie ope­
rator Ap is enough to determine all required variables in 

the problem at a go, we analyse the dynamics in terms of the 
Dewar equation. The Dewar equation relates the non-autonomous 
hajniltonian (H) and the canonically transformed hamiltonian 
(H) through the generating function F of the canonical trans­
formation. 

H = If - LF» - A;1 H CD 

where g is perturbation parameter measuring the field or den­
sity variation strengths, Lp = i [F, ], is the Poisson brac­
ket operator and the Lie operator is given by, 

AF(g) = exp(i /
g LF(g')dg') (2) 

For small perturbations, an expansion in the perturba­
tion parameter is carried out in a Deprit series [5] and eq. 
(1) splits into an infinite hierarchy of coupled equations 
separated to different orders of g. Our interest here is in 
the linearised form of Eq. (1) and the eigenfunction determina­
tion of the resultant equation. This is equivalent to the 
determination of the eigenspectrum of the linearised Liou-
ville (Valsov) equation for a test star (of mass m) in the 
homogeneous collection in the galaxy. The proof of chaos 
using Melinkov criterion later is in the quasilinear limit. 
The first order perturbation in the original hamiltonian 
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H (= p2/2m) is <f>m where <}> is the gravitational potential 

determined from Poisson equation. 

V2<t> = -4irGm / f d3V (3) 
V 

One can write down an integro-differential equation for F^. 

After integrating out in the momentum space in the perpendi­
cular direction, p, (p_ = (Pi,p)) and Fourier transformation 

in space ( ̂  exp(ik.r) the longitudinal wave motion is dete­
rmined by the following transport equation [7],[8] 

8F1 k 
j± + i J pFj = / n(k,p)kF1 dp. (4) 

This equation being non self-adjoint there is also an 
associated adjoint equation 

8F1 k -
yji • i | P F 1 = n(k,p)k / Fx dp; (5) 

nn, n\ - 4*Gm3 3fo n(k,p) - - ^ - ^ 

The structure of the linearised Dewar equations for the 
generating function F,, Eqs. (4) and (5) is very similar to 

the case of linearised Vlasov equation for the perturbed dis­
tribution function f̂  and the two are closely related (see 
Ref. 11). Indeed, the solutions to the problem can be written 
down by inspection in terms of the Van Kampen - Case-Siewert 
solutions [7-9] for the function f, (x,p,t) as done in Ref.11 

F(k,p,t) - r a . Fvi(k,p)exp(-ikvit) 

+ 00 

+ / A(v)Fv(k,p)exp(-ikvt)dv (6) 
- GO 

can be worked out. The descrete part describes periodic 
orbits while the continuous spectra in the second term des­
cribe chaotic motion as outlined briefly below. In a relax­
ed galaxy with Maxwellian distribution of stars in momentum 
space, there is no descrete spectrum, it is there whenever 
there is free energy in the system. 

The Melnikov integral using the continuous spectrum in 
Eq. (6) (for a relaxed galaxy) is of the form: (see for de­
tails Ref. 11). 
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M(tQ) = gAQ cosh(Yt0) exp(-icato) (7) 

where y is Landau damping rate; w is the angular frequency 
1/2 of oscillations; IDI-ID. = (4TTGP ) is the angular frequency 

of natural collective oscillation of the star collection of 
uniform mass density p and A is not t dependent (see Ref. 

11 for details). Eq.(7) essentially states that if w is real 
M(t ) will pass through zeroes for M' (t ) t 0 and hence a 

homoclinic point is indicated. If u> is pure imaginary there 
will be then no vanishing out only explosion of M(t ) and 
hence there won't be any chaos as indicated by the criterion; 
the galaxy of stars starts instead a collapse. For complex 
u again there could be chaos. 

The above proof of the necessary condition for chaos 
essentially proves the existence of one homoclinic point at 
least (M(t0) = 0) when the stable and unstable manifolds in­
tersect transversely. Because of the Smale-Birkhoff theorem 
C6] then one deduces the existence of an infinity of such 
homoclinic points and hence chaos. 

The result of the chaotic motion is wave induced quasi-
linear diffusion which has particularly been discussed in 
Refs. 1,2 and Ref. 4, Vol. II. In the present case a formal 
quasilinear diffusion equation: 

i H • • f (8) 

where f = A~ f; $ = A~ LHAp ,can be written down (see 

references 10 and 11 for details). 

Apart from the basic assumptions of the problem already 
outlined, the chief of them being that realistic finite 
glaxies have not been considered, the following further lim­
itations should be kept in mind. 

Continuous spectrum in configuration space as well as 
in momentum space can exist if a singular intergo-differen-
tial equation such as Eq. 4 also contains a corresponding 
singular behaviour in the position coordinate just as it is 
singular in momentum space. Indeed, such a spatial singula­
rity does occur again in thecontext of an Alfven wave in an 
inhomogeneous magnetoplasma and has been pointed out in Ref. 
(13). Quasilinear diffusion because of the resultant chaos 
in configuration space apart from along momentum axis can be 
expected to neuteralize the position space inhomogeneity. A 
similar situation should in general be expected in galactic 
dynamics where spatial resonances can occur. Such singula­
rities in gas dynamic models of the galaxy could occur at the 
corotation resonance region or the region of Lindblad reso­
nances. However, dispersive motions of stars and nonlinear 
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effects move in fast enough and may smear out the singular 
behaviour; as such only the transient behavior can show the 
quasilinear diffusion and chaos while steady state models 
may not be able to show the same. Such studies reviewed by 
Toomre [ 14] would be of relevance in this context, (see also 
Lin and Bertin [14] and Ref. 4, Vol. II). 

The existence of intrinsic chaos and quasilinear diffu­
sion can accelerate the process of relaxation of a galaxy to 
a Maxwellian distribution. Emission and absorption of den­
sity waves (see in the plasma context eg. Krall and Trivel-
piece [15]) by star points with random and quasilinear diffu­
sion motions would take place and a steady state balancing of 
these two processes would be very important in determining 
the nature and limits of relaxation of a galaxy. The waves 
because of their collective nature induce chaos; chaotic and 
overall motion of stars contributes to the spectrum of waves 
emitted into the star collection. A dynamic equilibrium 
where chaotic motions play a crucial role in steady state 
relaxed behaviour is then very important. 

The model presented by Eq. (4) here is that of linear 
transport equation. This is a very specialised form of the 
Master equation for irreversible dynamics. If such a Master 
equation could properly be set up, a more general critica-
lity study in the onset of chaos can be described as in Ref. 
16. Finally, it should be mentioned that Eq. (4) or its sol­
utions can also be generalised if more complicated star clu­
sters be found in phase space; the basic diagram methods to 
determine propagators as in Ref. (17) should be kept in mind. 
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