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ABSTRACT. We have derived in an explicit form the equations of motion 
for two spherically-symmetric non rotating bodies in the slow motion 
approximation. The equations include relativistic corrections of order 
(v/c) 2 , (v/c) 1* and (v/ c ) 5 to the newtonian equations of motion. It is 
shown that the equations depend on the only parameter characterizing 
each body, namely on its relativistic mass, regardless of its internal 
structure and degree of compactness. This means that the equations can 
also be applied to bodies with a strong internal gravity, such as neu­
tron stars and black holes. It is shown that in the (v/c) 2 and (v/c) 1* 
approximations the equations can be derived from a Lagrangian. The La­
grangian is given in an exact form. The integration of the equations of 
motion is performed by the method of osculating elements. The formulae 
for secular change of the semi-major axis and eccentricity coincide pre­
cisely with the standard ones whose derivation is based on a calculation 
of the energy flux in the outgoing gravitational waves. 

1 . INTRODUCTION 

The detailed description of the motion of the gravitating bodies with 
all relativistic corrections taken into account, including radiation 
reaction force, has now acquired not only a theoretical, but also a prac­
tical" meaning. This is accounted for by a persistent raising of precision 
of astronomical observations and discovery of such systems as the double 
pulsar PSR 1913+16 (Hulse and Taylor, 1975). The present techniques allow 
to measure the periodic and secular corrections to the Newton equations 
of motion of the order of (v/c) 2 (see Will, 1981 ; Kislik et al., 1980 
and Weisberg and Taylor, 1984) as well as the secular radiation correc­
tions to the order (v/c) 5 (Weisberg and Taylor, 1984) where v is a cha­
racteristic velocity of the bodies. It seems possible that the effect 
caused by terms of order (v/c) 1* may be measured in a near future (Sha­
piro, 1979). The progress of astronomical observations stimulates the 
development of rigorous relativistic theories of motion of celestial 
bodies. 

An isolated pair of masses is a simple model for which the relati­
vistic theory of motion up to terms of order (v/c) 5 inclusively can be 
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developed. On the other hand this model provides an adequate approxima­
tion to most of the real double star systems. 

The motion of a pair of masses with the radiative reaction force 
included has been a subject of a large number of works. The early papers 
on the gravitational radiative damping (Peters and Mathews, 1963 and Pe­
ters, 1964) have been based on the application of the Einstein formula 
for the gravity wave flux. The method of continuation of a radiative 
solution to the close-by zone has also been applied (Burke, 1971 and 
Misner et al., 1 973). However, both these methods are not capable of des­
cribing the motion in full details, since they ignore the conservative 
relativistic corrections (such as a "perihelion shift") and they give 
information only about secular terms in the radiative approximation. 
Moreover, for some authors these methods seem doubtful (Ehlers et al., 
1976). 

The other approach to the problem of radiative damping is based on 
a solution of the relativistic hydrodynamic equations by successive ap­
proximations (see Chandrasekhar et al., 1965, 1969, 1970 ; Kerlik, 1980 ; 
Futamase, 1983 ; Anderson and Decanio, 1975). This approach gives relati­
vistic corrections of order ( v / c ) 2 , (v/c) 1* and (v/c) to the equations 
of motion of a fluid element. However, these equations describe the mo­
tion of an element of a fluid and not a bod v as a whole. 

One can distinguish three different ways in obtaining the equations 
of motion (eq.m.) for a body as a whole. These are : 

- The Einstein-Infeld-Hoffman method (EIH) : Einstein et al., 1938. 
- The method of asymptotic expansions (AE) : Demianski and Grish-

chuk, 1974 ; D fEath, 1975a and b ; Kates, 1980 ; Thorne and Hartle,1984 ; 
Zhang, 1984. 

- The method of the post-Newtonian approximations (PNA) : Fock,1959. 
One should also mention the works by Dixon (1979), Ehlers and Ru­

dolph (1977) and Schattner (1979). However, it is not yet clear how to 
apply the latter method to concrete astronomical objects. 

According to the EIH method one treats the bodies as singularities 
of the gravitational field and derives their eq.m. from the vacuum Eins­
tein equations. In order to simplify the calculations one can introduce 
the energy-momentum tensor containing delta-functions (Infeld, 1954). 
This leads to a necessity of regularizing the integrals, which diverge 
at the world lines of the sources. In the early papers the regularizing 
procedure has not been well defined. However, some information on the 
relativistic corrections was extracted in (v/c)^(Carmeli, 1965 ; Ohta 
et al., 1974) and (v/ c ) 5 (Carmeli, 1965, Infeld and Michalska-Trautman, 
1969) approximations. Later, the regularizing procedure was substantial­
ly improved by Damour et al.(1981) and Damour (1983). Unfortunately, 
there is no proof that the different regularizing procedures lead to the 
same eq.m. in (v/c) 1* and (v/c) 5 approximations. 

The AE method is based on matching the solution valid in near-field 
and far-field zones of the sources. By this method the eq.m. are derived 
in (v/c) 2 approximation. For higher approximations this method is not 
yet developed properly. 

The PNA method deals explicitely with the energy-momentum tensor of 
bodies consisting of the hydrodynamic fluid. The iteration scheme for 
solving the Einstein equations is developed in Chandrasekhar (1965,1966 
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1970), Anderson and Decanio (1975), Futamase and Shutz (1983) as well as 
Ehlers (1980). The eq.m. for a body as a whole are obtained by integra­
ting the hydrodynamic equations over the whole body (Fock, 1959 ; Papa-
petrou, 1951 ; Brumberg, 1972 ; Petrova, 1949 ; Petrova and Sandina, 
1974 ; Breuer and Rudolph, 1981a,b ; Papapetrou and Linet, 1981 ; Spyrou 
1977, 1978 ; Caporali, 1980 ; Kopejkin, 1985). This method is technical­
ly simpler than the EIH and AE methods but it assumes that the motion of 
the bodies is slow and the gravitational field is weak everywhere out­
side and inside the bodies. It will be shown below that, in fact, the eq. 
m. do not depend on the condition of weakness of the field inside the 
bodies, i.e. the parameter which characterizes the compactness of the bo­
dies does not enter the eq.m. . This fact implies the validity of the 
PNA method for a wide class of objects, from ordinary stars to black ho­
les . 

The aim of this paper is to derive and solve the relativistic eq.m. 
for the isolated bodies with the same degree of completeness which is 
accepted in ordinary celestial mechanics. We analyse the motion of a 
pair of spherically-symmetric non-rotating bodies. All relativistic cor­
rections up to terms of order (v/c) 5 inclusively are taken into account. 
We are using the PNA method whose main features are described in § 2. The 
limitations on the dimensionless parameters which characterize the system 
are discussed in § 3. The eq.m. including the radiation reaction force 
are derived in § 4. In § 5 we show that the eq.m. in (v/c) 2 and (v/c) 1* 
approximations can be presented in the form of the Euler-Lagrange equa­
tions. The explicit expression for the Lagrangian is given and the quan­
tities conserved in these approximations are obtained. The rate of chan­
ge of these quantities in the next (v/c) 5 approximation is also derived. 
In § 6 we solve the equations of motion by using the method of the oscu­
lating elements. The exact form of the parameters of the Keplerian orbit 
is found including secular terms caused by the gravitational radiation. 
Thus, by applying the PNA method, we have obtained the full celestial 
mechanical description of a double system which can consist either of 
extended bodies or compact bodies such as neutron stars or black holes. 

2. THE PNA METHOD 

Let us assume that the bodies consist of a fluid with the energy-momentum 
tensor : 

T A 6 = ( M + p) u a u e - p g a B , JJ = p (c* + II) 

(greek indices have the values 0,1,2,3 ; Latin indices, 1,2,3. A coma 
denotes an ordinary derivative and a semicolon - covariant derivative. 
Latin indices are moved with the help of the unity matrix <$ik) • Here p 
denotes the rest mass density in the comoving frame, p is the isotropic 
pressure connected with p by an equation of state p = p(p), u a = dx^/ds 
is the 4-velocity of a fluid element, IT is the internal energy density 
satisfying the thermodynamic equation d II + p d (1/p) = 0 . The gravitatio­
nal field is decribed by quantities : 
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ag ; — a$ aB Y = v-g g - n 
where g ° ^ is the metric tensor and ri°^ = diag( 1 ,-1 ,-1 ,-1) .The harmonic 
frame is chosen, i.d. : 

Y a g = 0 

In this frame the full set of the Einstein equations takes the form 
(Anderson and Decanio, 1975) : 

• Y
a 3 = 16TTG /C* A a 3 , Q = n M V 3 y 8 v 

(2.1) 
A ° * = (- g)(T a 3

+t a B)-cVl6TT G ( Y

a V V - Y a yY 6 V) 
, y v 

cxfS 
where t is the Landau-Lifshitz (1975) pseudotensor. 

The formal solution of (2.1) is : 

y a 3 = 16ir G/ck Q _ 1 A a 3 (2.2) 

By expanding the retarded time t f = t - (x-y) c" 1, one reduces (2,2) to: 

Y a B [ x , t l = 4G/c * I ( H ) k / k ! L AU^/dtk) (2.3) 
k = 0 k 1 

where I (f)[x,t] = / d 3y f(y,t)(x - y ) \ 
R 3 

and R 3 means integration over the whole space. In (2.3) the time deriva­
tive is left under the sign of the integral according to the suggestion 
by Ehlers (1930). This prevents all the metric coefficients up to the 
(v/c) 6 approximation from the appearance of the divergent integrals (Ker-
lick, 1980 ; Futamase, 1983 ; Futamase and Schutz, 1983 ; Breuer and Ru­
dolph, 1981 a,b). ^ a g 

Let us begin the calculations from y = 0 in the r.h.s. of (2.3). 
By three successive iterations one obtains the metric components expan­
ded in powers of 1/c (Anderson and Decanio, 1975) : 

g = 1 + c" 2 g + c"^g + c 5 A + c 6 g + c A + 0(c" 8) °oo £oo foo coo foo -,oo 2 4 5 6 7 

y . = c 3 g . + c~ 5g . + c~ 6A . + 0 ( c - 7 ) 3oi xoi °oi ,oi 
3 D D 

(2.4) 

where 

= n-i + c g M + c Hg., + c ^A., + 0 ( c ) 3ik 'ik °ik |ik ^ik 

'00 = - 2U , 
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g o o = 2U* - 4 $ + X , t t . 
4 

for 4 w i 

fik" " 2 u 6 i k 

U = GI_ 1(u) 

* = G I . ^ u v 2 + uU + 3/2p) 

X = 1/2TT 1^(11) 

W\ = G I . ^ u v 1 ) 

i i / o v = u /u 

The remaining coefficients in the (2.4) are also presented as the inte­
grals from the, as yet unknown, functions u(x,t), v 1(x,t) and the coef­
ficients themselves. Their functional form can be found in Anderson and 
Decanio (1975) and in Breuer and Rudolph (1981,a,b). 

The hydrodynamic equations of motion : 

T « e T«6 r a Tyv y av 

after substitution^T ny calculated from (2.4) get the form (Breuer and 
Rudolph, 1981,a,b) : 

^'t = " ( ^ v k ^ k + c ~ 2 k + c ~ h q + C " 5 s + 0 ( c " 6 ) 

(uv.), t = - 0 . k , k + c" 2k. + c^q.* c- 5s. + 0(c" 6) (2.5) 

G. k - ,v.v k + P 6 . k + 1/8TTG{2U,.U,k-6ik(U,n)2} 

where k,q, s ,k£ ,q^, s^ are f unctionals of u , v^ and their derivatives. 
In what follows it is convenient to use the invariant rest-mass 

density p* = pu° /-g, instead of JJ. For p* one has the exact equation 
of continuity (Fock, 1959) : 

P * , T + (P* v k ) , k = 0 (2.6) 

In addition, for any sufficiently smooth function f(x,t), the following 
useful formula is valid : 
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•£r f P* f(x.t)d'x = / p* -£r f(x,t)d 3x 
at V a V a dt 

where d/dt = 9/3 t + v d/d x and V f l means integration over the volume 
of a body "a". In all formulae we replace u by p* (see Kopejkin, 1985 
for more details). The replacement of u by p* is accompanied by the ex­
pansion of U, W£, x , $ , II in powers of 1/c (Brumberg, 1972 or Kopejkin, 
1985). For example : 

U = U + C - 2 U + c ^ U + 0(c~ 6) 
0 2 4 

Further, one replaces u by p* in the equations (2.5). As a result 
one obtains (Kopejkin, 1985 ; Grishchuk and Kopejkin, 1983) : 

(p* v i ) > t
 + (P* v i v

k > , k + P , i " P * U ' i + 

+ c" 2k. + c ~ V + c- 5s. = 0(c" 6) ( 2 - 7 ) 

1 n i l 
where k £ , q £ , S £ are functionals of p*, v 1 and their derivatives. 

The eq.m. for the center of mass of a body (defined below) are deri­
ved by integrating (2.7) over the volume of the body. In this way one 
describes the motion of the body as if it moves in ordinary flat space-
time with respect to the Cartesian coordinates x = ( x x , x 2 , x 3 ) . From this 
point of view one may treat the PNA method as a power expansion of an 
exact field theory with the field variables y a^(x",t), p(x,t), v^(x,t) 
given in the flat background space-time. A presentation of the general 
relativity as an exact field theory in an arbitrary background space-
time can be found in Grishchuk et al., 1984. 

Let us recall the characteristics of the various approximations : 
(v/c)° (OPNA) : Newtonian approximation 
(v/c) 2 (1PNA) : post-Newtonian approximation 
(v/c) 1* (2PNA) : post-post-Newtonian approximation 
(v/c) 5 (2 1/2 PNA) : radiative approximation. 

3.RESTRICTIONS ON THE DIMENSIONLESS PARAMETERS 

In what follows we consider a double system composed of bodies with the 
characteristic mass M, the linear size L and with the distance between 
them R. One can introduce three small dimensionless parameters : 

e 1 = v/c ^ (GM/c 2R) 

e 2 = ( G M / c 2 L ) 1 / 2 

£ 3 = L/R 

(e-j describes the slowness of the orbital motion, £ 2 shows the weakness 
of the internal gravity and £3 indicates the smallness of the sizes of 

https://doi.org/10.1017/S0074180900147941 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147941


EQUATIONS OF MOTION FOR ISOLATED BODIES 25 

the bodies as compared with the distance between them). 
We assume that the bodies maintain their spherically-symmetric shape 

and do not rotate at least with the accuracy which is needed for deriva­
tion of the eq.m. in (2-1/2PNA). This assumption establishes a certain 
relation between parameters E] and £3 which we discuss below. 

It is known that the shape of a body "a" is slightly deformed by the 
gravitational field of a neighboring body "b". In order of magnitude 
this tidal deformation is (Alexander, 1973) : 

( A L / L ) T I D > = K ( L / R ) 3 

where K depends on the elasticity of the body "a" (usually, K = 10~ 3 to 
10""l).The deformed body "a" acts on the body "b" with the additional 
force 

Ftid. s K ( L / R ) 5 G M 2 / R 2 

On the other hand, the expected radiation-reaction force evaluated from 
(2.7) is : 

Frad. = ( v / c ^ G t f / R 2 

So we have to assume that Ftid. « F r a d > which yields the relation : 

e 3 « K " i / s . e-, (3.1) 

According to Brumberg (1972) an initially non-rotating body may 
acquire a rotation in 1PNA with the angular velocity 0 ) £ n =(v/c) 2(GM / R 3 ) ^ 2 . 
The rotation of the body deforms its shape and creates an additional 
force F r o t # However, it can be shown that F r o t > « F r a (j , if (3.1) is 
satisfied. The rotation gives also rise to additional forces resulting 
from spin-orbit and spin-spin interactions between the bodies. However, 
these forces are even smaller than F r o t Thus, if (3.1) is fulfilled, we 
can safely regard the bodies as spherically-symmetric and non-rotating. 

We did not discuss any restrictions on the parameter €2* This is 
because £2* a s it will be seen below, does not enter the eq.m. in the 
considered approximations. 

4. THE EQUATIONS OF MOTION 

Let us define the rest mass of the body "a" (a = 1,2) by the relation : 

M = / p* d 3 x 
a v a 

Due to (2.6), M a is constant, i.e. dM a/dt = 0. The coordinates of the 
center of mass x^ are defined by the formula : 

M x i = ( p * xid 3x 
a a v 

a 

https://doi.org/10.1017/S0074180900147941 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147941


26 L. P. GRISHCHUK AND S. M. KOPEJKIN 

The velocity of the center of mass v* , its acceleration a\ and the 
higher derivatives of x^ are defined by : 

Ma va" = M a D X I / D T = / P * V I D 3 X > 

M a 1 = M dvj/dt = f p* dvi/dt d 3 x a a a a J 

V a 

M ad kx^/dt = / p* d k x 1 / d t k d 3 x (k = 3,4,...) 

Restrictions on £<j and £3 imposed in §3 permit us to confine atten­
tion to such motions where each fluid element of the body " a n moves with 
the same speed as the center of mass of that body. In other words, we 
assume that each body is spherically-symmetric and static in the frame 
of reference connected with the center of mass of that body. For this 
reason one can take vi from under the sign of the integral over V a and 
replace v 1 with v*. This significantly simplifies the derivation of the 
virial theorem in 1PNA which can be derived by multiplying equations 
(2.7) by Ri = x 1-x^ and further integrating them over V a . The virial 
theorem is used in the subsequent rearrangements (see §3 from Kopejkin, 
1985). 

Now we can proceed directly to the derivation of the eq.m. for the 
center of mass. Let us integrate (2.7) over V a . When calculating the 
integrals which determine the eq.m. of the body f l a M one decomposes the 
potentials U, W£, X , $ into two parts : the internal part governed by 
the body "a" itself, and the external part produced by the body "b". One 
makes sure that all the terms describing the interaction of the elements 
of the body "a" between themselves cancel in the eq.m, of that body 
(Breuer and Rudolph, 1981b ; Kopejkin, 1985). The external part of the 
potentials is expanded in powers of L/R. When doing this one uses various 
expansions and formulae from §5 of Kopejkin (1985). 

In 2PNA and 2 1/2PNA the quantities y a $ contain the "metric generates 
metric" terms, i.d. the integrals over the whole space from the non­
linear combinations of metric coefficients of the preceding approxima­
tions. These terms complicate the derivation of the eq.m., especially in 
2 PNA. 

In the course of the tedious computations of these terms, we have 
extensively used the rule for differentiating generalized homogeneous 
functions (Gel'Fand and Shilov, 1959) and the formula for calculating 
integrals over the whole space from the products of the functions R a = 
|x-x a| and R^ = |x-x^| (see Damour, 1983 and, for more details, Kopejkin, 
1985). In the 2 1/2 PNA, the integrals are not so complicated and are 
computed similarly to 1PNA (Kopejkin, 1985 and Grishchuk and Kopejkin, 
1983). The final form of the equations of motion is as follows (same 
references) : 

m a 1 = F 1 + c ^ F 1 + c ^ F 1 + C T V + 0(c" 6) (4.1) 
0 2 4 5 
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where F 1 = -(Gmm 1/R 2)N^, 

F 1 = - j m v 2 a i - m(va)v 1 + (Gmm'/R) (Z a' 1 - 3a 1) + 
2 

+ (Gmm f/R 2){N L(-|v 2- 2 v t 2 + 4(vv T) + | ( N v f ) 2 + | R(Na') + 

+ Gm/R + Gm !/R) + 3(Nv)v x - 3(Nv f) v 1 + 

+ 3(Nv')v f i - 4(Nv) v ? i } 

F^ - --g- mv a ~ mv 2 (va)v + 

+ Gmm 1 {-^Ra'1 - ^ ( N a ^ N 1 + 2(Nv)a ? i - ( N v ! ) a ? i -

- ^ ( N v ' X N a ^ N 1 - 2(va ,)N 1 + 2 ( v , a , ) N 1 + - ( N a ^ v 1 -

- 4 ( N a f ) v ? 1 + ^ ( N a ^ a 1 - -^-(Na ?)a ! l + 
1 2 4 

+ a , 2 N L - | ( N a , ) 2 N 1 } + 

+ (Gmm ?/R){a 1(- 1 v 2 + 2 v f 2 + 4 ( w T ) + | (Nv 1) 2) + a'^yv 2 + I 2 4 

+ 4^ v' 2 - 6 ( w f ) + 4(Nv)(Nv f) -21 (Nv f) 2) + 
2 4 

+ v^-y-Cva') - - ^ ( v ' a 1 ) -|(Nv)(Na f) + f ( N v f ) ( N a f ) -

- 7(va) + 4(v Ta)) + v ? 1 ( ~ 2(va T) + -y-(v'af) + 2(Nv)(Na f)-

- | ( N v ! ) ( N a f ) + 4(va) - 4(v fa)) + N 1 (|(Nv1) (v 1 a f) -

- 4(Nv ?)(va !) - | ( N v ! ) 2 ( N a T ) + | v 2 ( N a T ) - 2(vv')(Na f) + 

+ | v t 2 ( N a f ) - - 2v'k - 2 ( v v ? ) 2 - v 2 v f 2 - - y ( N v T ) k + 

+ 4(vv ,)v 1 2 + 2 ( w ! ) v 2 - e C v v ' X N v 1 ) 2 + | v f 2 ( N v f ) 2 + 

+ yv* (Nv 1) 2)} + 4 

+ ( ( W / R 2 ) { v 1 ( | ( N v 1 ) 3 + 7 ( N v t ) ( w ! ) - 5 v f 2 ( N v f ) - | ( N v ) ( N v f ) 2 + '2 

+ 2(Nv)v' 2 + ^-(Nv)v2 - y(Nv !)v 2 - 4(Nv)(w T)) + 
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+ v ! i ( - -|(Nv ?) 3 - 4(Nv')(vv f) + 5 v f 2 ( N v f ) + 6(Nv)(Nv f) 2 -

- 4(Nv)v' 2 - 2(Nv)v 2 + | ( N v ? ) v 2 + 4(Nv)(vv T))} + 

+ (G 2 m 2 m T / R 2 ) { - 4 a 1 + Z a
f i + N x(-4v 2 - Z V

T 2 + 7(vv T) - 2(Nv f) 2) + 

+ 8(Nv)v i - S C N v ^ v 1 - 7(Nv)v ! l + 8 ( N v T ) v ? 1 } + 

+ (G 2 m m ? 2 / R 2 ) { ^ - a 1 + Z a ' x + N X(-(Na)- |v 2 - 4v' 2 + 8(vv T) -

- 4(Nv)(Nv T) + 2(Nv) 2)+ 7(Nv)v 1 - 7(Nv f)v 1 -

- 6(Nv)v ? 1 + 7 ( N v T ) v f 1 } + 

+ (G 3mm7R l f)(- | m 2 - | m' 2 - 9 iran^N1 

F 1 = ( G m 2 m , 2 ) / ( m + m T ) 2 { ~ R 2 + ((RR) - j(RR)) R^+ -y(RR)R. + 

+ (3(R "R ) + Y <R R ) + § <R R))R£ + ( | ( R T ) + 

+ Y - (R R ) + | I (R R ))R £} + 

+ (Gm 3 M V(m+m f) 2) {ZZR2 X + 5(RR) R̂  + (7(RR) + - Y (RR)) R̂  + 

+ 3(RR)Ri + (- | ( R R) + 1 (R'R ))R. + 

+ (- | 1 ( R R ) - ^Z(R*R ) )R I } 

We denoted the quantities belonging to the body "b" by a prime (so 
that m a=m, im^m* , etc.) and N x = Ri/R, R 1 = x* - x£, R = | x a-x^ | . 

One should pay attention that we have introduced a new (relativis­
tic) mass m a according to the definition : 

m = Jd 3x (p*+c-2(p*II -Zp * U ) + c-^Z P* u 2 o n ^ P * U Q - 3pU )) + 0(c~ 6) 
a V a 0 1 o a 2 o a 0 oo a 0 a 

where ga is the part of q only over V a . Note that dm a/dt = 0. This ex­
pression for m a is an expansion of the Tolman mass of the isolated body 
(Landau and Lifshitz, 1975) in powers of • Thus, the compactness para­
meter e 2 is completely incorporated in the definition of the mass and 
does not appear in a direct way in the eq.m.(4.1). This indicates that 
the equations (4.1) can be equally well applied to the extended bodies 
and the compact bodies such as neutron stars or black holes. 
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If one eliminates the higher time derivatives from (4.1) one obtains 
the reduced eq.m. which coincide precisely.with those derived by Damour 
(1983) by EIH method. The expression for w a s derived by Breuer and Ru­
dolph (1981b). F 1 and F 1 with higher time derivatives excluded were com­
puted by Damour (1983) ,some terms of j?i were found by Linet (1981), and 
the full expression for F 1 by Damour (1983). Schafer (1982) has obtai­
ned Fi in a non-harmonic frame of reference. The l.h.s. of (4.1) is gi­
ven in Breuer and Rudolph (1981) and Damour (1983). 

5. THE LAGRANGIAN, THE CONSERVATION LAWS AND THE BALANCE EQUATIONS. 

The eq.m. up to the order (v/c) 1* have the form of the Euler-Lagrange 
equations : 

3C/3X 1 - OC/Bv 1 ) + 4r 2 OC/3a £ ) = 0 a dt a dt 2 a 

The explicit expression for the Lagrangian £ is as follows : 

C(z,v,a) = C(z,v) + c" 2 C(z,v) + c _ 1 + £(z,v,a) (5.1) 
0 2 4 

where z 1 = , z 1 1 = x£ and : a ' b 

C(z,v) = Z(4nv 2 + -iGmm'/R) 
0 1 l 

C(z,v) = Z ̂ nv" + E ̂ ' { f v 2 - I ( w ' ) - {(Nv ) (Nv') - ^ } 

C(z,v,a) = Z -rLnv 6 + I Gmm T{ 44 R(aa ?) - 4z R(Na) (Na T) + 4 lb lb lb 

+ (Na)(-gv'2 - l( N v ' ) 2 ) - |(av')(Nv') } + 

+ Z ̂ S ' d v k + 4|v 2v' 2 - 2v 2(vv') + -k v v ' ) 2 -R o 1 o o 

- |(Nv) 2v' 2 + |(Nv)(Nv')(w') + -^-(Nv) 2 (Nv*) 2) + 

+ Z G 2 g m ' (2v 2 + ^ v ' 2 - | ( w ' ) + ^ ( N v ' ) 2 ) + 

+ Z ̂  (^n2 + ]m' 2 + 3mm' ) 

and I means the sum over bodies , the curly brackets 
m e a n the scalar product .The part £ + c" 2 2 r ^ s w e H known . (Fich-
tenholz, 1950 ; see also Droste ,1916). The term ^ obtained in this work 
differs from the one derived by Damour(1983) since this author neglected 
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the "double-zero function" (Barker and O'Connel, 1980). Both expressions 
coincide if one adds the "double-zero" function and the total time deri­
vative to Damour*s expression. Damour was not able to derive the complete 
expression for C because he did not possess the non-reduced eq.m. (4.1). 
As a result of ^ neglecting the "double-zero" function Damour !s expres­
sion for C is only valid in a non-harmonic frame of reference (Schafer, 
1984). 

It can be shown that the Lagrangian (5.1) is invariant with respect 
to the 10-parameter group of motions of the Minkowski space-time. This 
leads to the existence of 10 conserved quantities : energy E, momentum 
P, angular momentum L 1 and the integrals of the center of mass K 1 . They 
are defined by : 

E = E + c~ 2E + c ^ E = - £ + E(p.v 1 + q.a 1) 
0 2 4 1 1 

pi = P 1 

0 
+ c-2pi 

2 
+ c - ^ p i 

4 = z P 1 

L 1 = L 1 

0 
+ c" 2Li 

2 
+ 

4 = £ikl 
r , k 1 l k k l I k , Z ( z p - z p + v q - v q ) 

K 1 = K 1 

0 
+ c" 2Ki 

2 
+ c ^ K i 

4 
= C 1 - tP 1 

where p^ = C, - C, i ; q^ = C, i v 1 dt a-1- a 

The conserved quantities E, P 1 , L 1 , K 1 for n = 0,2 are known (Fichten-
holtz, 1950). n n n n 

For n = 4 these quantities can be easily obtained from (5.1). Being 
directly derived from (5.1) they contain the time derivatives of x| up 
to the third order inclusively. One can exclude the higher time deriva­
tives with the help of the eq.m. of the preceding orders. As a result, 
one obtains the set of conserved quantities E2p^, P 32PN> L ^ p ^ , K^"2PN 
which depend only on the coordinates and velocities of the bodies. 

In order to derive the balance equations in 2 1/2PNA one takes the 
time derivative from each of these quantities and then uses the equations 
of motion (4.1). This procedure yields : 

d 
dt + c- 2E + cT^E + 

2 4 
c" - 5 E ) = 

5 
-J Q 

" 45 c 5 °ik D i k (5.2) 

d 
dt 0 

+ c - y + c - y + c- 5L £) 
or 
45 c lkl kj jl (5.3) 

d 
dt <5l + c - 2 p i + c - ^ p i 

2 4 
+ c- 5pi) = 0 (5.4) 

d 
dt (K 1 

0 
+ c" 2Ki + rt1 

2 4 
+ c- 5Ki) 

5 
= 0 (5.5) 

where D £ k is the quadrupole moment of the system. The explicit expres­
sions for E, P 1 , L 1 , K 1 are given is Grishchuk and Kopejkin(1983). See 

https://doi.org/10.1017/S0074180900147941 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147941


EQUATIONS OF MOTION FOR ISOLATED BODIES 31 

also Damour (1983) and McCrea (1981). It is seen from (5.2)(5.3) that 
the system loses its energy and angular momentum due to the quadrupole 
gravitational radiation. The momentum is radiated in the next octupole 
order (Bekenstein, 1979). It will show up in the eq.m. of order (v / c ) 7 . 
Since the momentum is conserved in this approximation the system moves 
with a constant speed. This fact is made clear by (5.4)(5.5). 

6. THE OSCULATING ELEMENTS 

The eq.m. (4.1) can be treated as equations of ordinary celestial mecha­
nics in the Euclidean space. In addition to the Newtonian force g 1 they 
contain the small disturbing force 

F i = c" 2F i + c^F*- + c" 5Fi 
2 4 5 

The variation of Keplerian parameters can be found by the well known 
method of osculating elements (Duboshin, 1975). 

Let us consider an elliptic orbit. The osculating elements are : 
Q - the longitude of ascending node, i - the inclination of the orbit, 
03 - the angular distance of pericenter from ascending node, p - the 
semilatus rectum, e - eccentricity, m - the mean anomaly at t Q . Equations 
which determine the time evolution of the osculating elements depend on 
the disturbing force. The general form of these equations is well known 
(see Duboshin, 1975). 

The analysis shows that U and i remain constant and, hence, the or­
bital plane stays fixed in the space. The equations for p, e, 0) are sol­
ved by successive approximations. The results are presented in Grishchuk 
and Kopejkin (1983). From the expressions for p and e it is easy to de­
rive the rate of change of the semi-major axis a = p(1 - e 2 ) - 1 and of 
the orbital period P. After averaging over the Newtonian period P Q = 
(a3

Q/GmQ) ll2 (where m 0 = m + m f ) , one obtains (Grishchuk and Kopejkin, 1983): 

1 dP _ 3 1 d a > _ 96 . G W m o ( 33 2 37 ^ n 

P dt ~ ~2 a dt ~ ~ ~5~ a \ l - e 2 ) 7 / 2 ( 1 + 24*0 + 96*o } ( 6 - 1 ) 

o o 

where a Q , e Q are the "undisturbed" parameters. 
This formula was derived long ago by a different method (Peters and 

Mathews, 1963). It is important to emphasize that we have derived (6.1) 
by a strictly celestial mechanical method without applying any additio­
nal notions such as the energy-momenturn pseudotensor. As is known, the 
formula (6.1) is now confirmed observationally with the accuracy of a 
few percents (Weisberg and Taylor, 1984). 

The results presented here conclude the exhaustive treatment of the 
motion of two bodies within the accepted assumptions. 
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DISCUSSION 

Will : in most post newtonian treatments of this problem, there occur 
divergent integrals of the source gravitational energy densities. How 
are these handled in your approch ? 

Grishchuk : this problem is avoided in the approximation considered here 
by leaving the time derivatives of the source densities under the 
integral sign, according to a suggestion by Ehlers and others. 

Bertotti : what is the relationship of your work and Damour's work ? 

Grishchuk : Damour and his colleagues applied basically the E.I.H. method 
which necessitated the use of a rather complicated regularization pro­
cedure at the world lines of singularities. We preferred to give a 
"microscopic" description of the bodies by considering them as fluid 
drops. The equations of motion and the Lagrangian we gave are comple­
te. They are not reduced by the substitution of the equations of mo­
tion of the preceeding orders and the Lagrangian does not ignore the 
so-called "double zero" function discussed by Barker and O'Connell. 
We have also found in an explicit form, the full set of osculating 
elements for the Keplerian orbit. The main conclusion of both works 
coincide precisely. 

Bertotti : how did you deal with the matching problem between the nearby 
and the wave zones ? 
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Grishchuk : technically, we did not deal with the matching problem, sin­
ce we have considered the near zone solutions. However, the boundary 
conditions are implied in the analysis and they are determined by using 
the retarded solutions only throughout the calculations. 

Kristensen : the initial value problem depends on the coordinates and 
their first time derivatives. Your fourth order Lagrangian depends 
also on the accelerations. How do you avoid in higher order time deri­
vatives in the equations of motion ? 

Grishchuk : one cannot avoid the higher order derivatives and they really 
do appear in the equations of motion derived from our Lagrangian. Ho­
wever, they enter the equations in small terms of the order of c"**so 
that they can be eliminated, if desired, by using the equations of 
motion of the preceeding approximations. 
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