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Altman [1] showed that Riesz-Schauder theory remains valid for a completely
continuous linear operator on a locally convex Hausdorflf topological vector space over the
complex field. In a later paper [2], he proved an analogue of the Aronszajn-Smith result;
specifically, he showed that such an operator possesses a proper closed invariant subspace.
The purpose of this paper is to show that Ringrose's theory of superdiagonal forms for
compact linear operators [3] can be generalized to the case of a completely continuous
linear operator on a locally convex Hausdorff topological vector space over the complex
field. However, the proof given in [3] requires considerable modification.

Terminology pertaining to locally convex Hausdorff topological vector spaces in this
paper is as in the book [5]. Throughout, X is a fixed locally convex Hausdorff topological
vector space over the complex field and X^{0}.

DEFINITION. A linear operator T on X is called completely continuous if there is a
neighbourhood U of O such that TU is a precompact set.

We observe that, by Proposition 7.2 of [5; p. 58], the topology of X has a basis of
barrels. Since any subset of a precompact set is precompact, we may assume without loss
of generality that U is a barrel.

Next, we describe Altman's generalization of Riesz-Schauder theory [1],

THEOREM A. Let T be a completely continuous linear operator on X, and let A be a
non-zero complex number. There are two possibilities:

(a) \I — T is a homeomorphism of X onto itself;
(b) A is an eigenvalue of T.
The set of points which satisfy (b) is countable and it has no cluster point except possibly

zero. Let A be a non-zero eigenvalue of T. Then there is a positive integer v(\) with the
following properties.

(i) For each positive integer n, (A/ -T)"X is closed. Also

(A/-T)m+1X = (A/-T)mX (m>v(A))

and v(K) is the smallest positive integer with this property.
(ii) For each positive integer n, N{{Kl-T)n), the null-space of (A/-T)" , is finite-

dimensional. Also
N((A7- T)"1) = N((A7- T)m+1) (m >

and v(K) is the smallest positive integer with this property.
(iii) (A/-T)'"X©N((Af-T)m) = X (m>v(A)).
(iv) If d(X.) is the dimension of the null-space of (AJ-T)"( M, then
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NOTE. The integers v(A) and d(\) are called respectively the index and the algebraic
multiplicity of the eigenvalue A.

Altman [2] proved the following result.

THEOREM B. Let T be a completely continuous linear operator on X. Then there is a
proper closed subspace Y of X invariant under T, provided only that X has dimension at
least two.

Prior to proving the main results of this paper we require a preliminary result on
quotient spaces.

THEOREM C. Let M be a closed linear subspace of X. Let <t> be the canonical mapping of
X onto XIM. Then

(i) the topology of XIM is locally convex;
(ii) if P is a basis of continuous seminorms on X, we denote by PM the family of

seminorms on X/M consisting of the seminorms

[x] -* p([x]) = inf{p(y) : y e [x]};

then PM is a basis of continuous seminorms on X/M;
(iii) <$> is a continuous mapping of X onto X/M.
For a proof of this result, the reader is referred to Proposition 7.9 of [5, p. 65].

Whenever, in this chapter, a quotient space is introduced it will be assumed that it has
been topologised in the manner specified above.

Throughout the remainder of this paper, T denotes a fixed completely continuous
linear operator on X. The term subspace will be used to describe a closed linear subspace
of X. Clearly if Y is an invariant subspace for T, then T | Y, the restriction of T to Y, is
also completely continuous. We have also the following result.

PROPOSITION 1. Let Y be an invariant subspace for T. Then the operator TY defined on
the quotent X/Y by

TY[x] = [Tx] (xeX)

is a completely continuous operator.

Proof. By definition there is a neighbourhood U of 0 such that the image TU is
precompact. Let $ be the canonical mapping of X onto X/Y. Then <f>(U) is a neighbour-
hood of the zero element in X/Y and, moreover, TY<t>(U) = <t>{TU). By [4, p. 49], the
continuous image of a precompact set is precompact. It follows that TY is completely
continuous.

A family 9 of subspaces of X, which is totally ordered by the inclusion relation, will
be termed a nest of subspaces. If in addition each subspace in 9 is invariant under T we
shall describe ^ as an invariant nest. A trivial example of an invariant nest is the family
consisting of the two subspaces {0}, X. Non-trivial invariant nests may be constructed
using Altman's result, Theorem B.

We shall use the symbol <= to denote the inclusion relation and reserve cz for strict
inclusion. The strong closure of a subset S of X will be denoted by cl S. Given a nest & of
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subspaces of X and M e f , we define

M_ = cl[Utf< : L e 9 , L <= M}].

If there is no L in ^ such that L c M, we define M_ = {0}. It is clear that M_ is a subspace
of X, and that it will be an invariant subspace if 9 is an invariant nest. Also M_ £ M. It
should be emphasized that the definition of M_ depends on the particular nest 9 under
consideration and not merely on the subspace M. We shall say that 9 is continuous at M
if M = M_.

A nest 9 will be termed simple if

(ii) if 5̂ 0 is any subfamily of 9, then the subspaces

r\{L:Le90},d[\J{L:Le90}]

are in 9;
(iii) if Me9, then the quotient space M/M- is at most one-dimensional.
We note that condition (ii) implies that M_s9 whenever Me9.

THEOREM 1. There exists a simple nest 9, each of whose members is a subspace
invariant under T.

Proof. Let V̂; denote the class of all invariant nests. Then Jf, is not empty since it
contains the trivial nest consisting of the subspaces {0}, X. The class Jft may be partially
ordered by inclusion; if 9\, 92eJfh we say 9X<92 if every subspace in the family 9X is
also member of 92. It is easily seen that, in this way, JV; is inductively ordered; for if
jVoc J{. and Jf0 is totally ordered by the relation <, then

is the least upper bound of Jf0 in Jft. We may now deduce from Zorn's lemma the
existence of at least one maximal nest of invariant subspaces, 9 say.

It is apparent that {0}, XegF, since otherwise 9 could be enlarged by the addition of
these subspaces, contrary to the assumption that 9 is maximal. Moreover, let 90 be a
sub-family of 9 and consider

It is evident that that Mo is a closed subspace of X. Let Me 9. Since 9 is totally ordered
by inclusion we have either (a) M^L(Le90) and M<=,MQ, or (b) L<=M for some L in
90 and M0<^M. It follows that the family obtained by adding Mo to 9 remains totally
ordered by inclusion and is therefore an invariant nest. Since 9 is maximal we deduce that
Mo e 9. A similar argument shows that

c\[\J{L:Le90}]e9.

Hence, in order to prove that 9 is a simple invariant nest for T it remains to verify
that, given any M in 9, the quotient space M/M_ is at most one-dimensional. Suppose
that, for some M in 9, this is not the case. When x e M we denote by [x] the coset
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x + M_. It follows from results stated earlier that M/M_ is a locally convex Hausdorff
topological vector space. Since M and M_ are invariant under T, we may define a linear
operator TM from M/M_ into itself by the equation

TM[x] = [Tx] (xeM).

It follows from Proposition 1 that TM is a completely continuous linear operator.
Since M/M- has dimension exceeding one, Theorem B implies the existence of a proper
subspace LM of M/M_ which is invariant under TM. If we now put

L={x:xeM, [x]eLM},

then L is a subspace of X, being the inverse image under the continuous linear map
x —» [x] of the subspace LM, such that M_ cL<^M. Given any subspace N in & we have
either (a) M s N and L c N or (b) N c M and

iVccl[U

It follows that L ^ ^ , and that the family obtained by adding L to $F is a nest. This
contradicts the assumption that &• is maximal. Hence M/M- is at most one-dimensional,
for every M in SF, and so ^ is a simple nest.

Throughout the remainder of this paper we shall use the symbols T, $F with the
meanings attributed to them in the statement of Theorem 1. If Me &>, then either M = M_
or M/M has dimension one. In the latter case let zM e M\M^. Then, since M is invariant
under T, we have TzM e M, and hence TzM can be expressed uniquely in the form

TzM = aMzM + yM, (1)

where aM is a scalar and yM e M_. It is easily verified that aM does not depend on the
particular choice of zM. When M = M_ we define aM = 0. In this way we associate with
each M in 9> a scalar aM which we shall call the diagonal coefficient of T at M.

Let a be a scalar. We define the diagonal multiplicity of a to be the number (possibly
infinite) of distinct subspaces M in & for which aM = a.

PROPOSITION 2. Let MeSF and let 8>0 be given. Then there exists a subspace L in &
such that LcM and for every p in the basis P of all continuous seminorms on X we have

PL([TX])«S (xeM_)

where [y] denotes the coset y + L(y e X) and

pL([x]) = inf{p(y):ye[x]}.

REMARK. The interest of this lemma lies in the case in which M = M_. When M ^ M_,
the result is trivial since we may take L = M_.

Proof. Suppose that the lemma is false, and denote by &0 the class of all L in & such
that L<^ M. Since we are going to vary L we shall not use the notation [y] for cosets, but
throughout the proof will write y + L. If L e ^ 0 , the set

SL = {x e U n M_: pL(Tx + L)>8, for some p in P}
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is not empty. Since SLzSN if N s L the family {SL : L e 8F0} forms a filter base on the set
U. Hence the family {TSL: L e 6F0} forms a filter base on the precompact set TU. This
filter has at least one accumulation point in the compact set K formed by taking the
closure of TU in the completion X of X. Since

(yeTSJ

it follows that

8, (2)

where we use the same notation for the extension of p to X. Furthermore we have
SL c M, TSL c M_ and hence

the closure being taken in the completion of X. Thus for some L in &>0, we may choose an
element y in L such that p(xo-y)<8. This contradicts (2) and the lemma is proved.

PROPOSITION 3. Let p be a non-zero eigenvalue of T and x a corresponding eigenvector.
Let

M = O{L:Le&,xeL}.

Then Me&> and p = aM..

Proof. The property (ii) of simple nests immediately implies that Me&>. In proving
that p = aM we shall consider separately the two cases in which (respectively) M = M_ and

(a) Suppose that M = M_. Choose 5 so that

0<8<|p|, (3)

and let L be chosen to satisfy the conclusions of Proposition 2. Since L<^M and L e ^ it
is an immediate consequence of the definition of M that x£L. We may choose, by a
corollary to the Hahn-Banach theorem, a continuous linear functional / on M such that
/(x) = l and /(y) = O(yeL). Let p be the seminorm defined by

p(z) = \f(z)\ (zeM).

Define

d(u, L) = inf p(u-z) (ueM).
zeL

Observe that if y e L, then Ty e L and hence

\p\ = \p\d(x, L) = d(px, L) = d(Tx, L)

= d(Tx + Ty, L)ss8.

The last inequality follows from Proposition 2. This contradicts (3). Hence case (a) cannot
occur.
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(b) We may now suppose that M±M_. Then xeM, but x<£M, since M is, by
definition, the smallest member of SP containing x. Let zM e M\M_, and let yM in M_ be
chosen so that TzM = aMzM + yM. We may put

where y e M_ and |8 7̂  0. Then

0 = Tx - px = T(0zM + y) - p(/3zM + y)

=/3(aMzM + yM) + Ty - p(j3zM + y)

= /3(aM - p)zM + /3yM + Ty - py.
Now y, yM and (since M_ is invariant under T) Ty are all elements of M_ but zM£M-..
Hence /3(am-p) = 0, and since (3^0, it follows that a M =p .

Proposition 3 asserts that a non-zero eigenvalue of T is a diagonal coefficient of T.
We now prove a result in the opposite direction.

PROPOSITION 4. Let MetF and suppose that aM^0. Then aM is an eigenvalue of T.

Proof. It is sufficient to show that aM is an eigenvalue of the operator T obtained by
restricting T to the space M. Since a M ^ 0 we have M£M_. Now TM is completely
continuous. From equation (1) it follows that the range of the operator TM — aMI is
contained in M_, and is therefore not the whole space M. It follows from Theorem A that
aM is an eigenvalue of TM and hence of T.

PROPOSITION 5. Let p be a non-zero eigenvalue of T. Then the diagonal multiplicity of p
is equal to its algebraic multiplicity as an eigenvalue of T.

Proof. Let d denote the diagonal multiplicity, m the algebraic multiplicity, and v the
index of p relative to T. Then

(a) v is the least integer such that (T-p/)"+1x =0 only if

(T-pi)"x = 0 (xeX);

(b) v is the least integer such that

(c) the null-space of the operator (T—pt)" has dimension m.
Let S be the completely continuous linear operator defined by

where A = —(—p)". Then A is an eigenvalue of S which has index unity and algebraic
multiplicity m. Since S is a polynomial in T, each subspace M in 2F is invariant under S.
We may therefore consider the diagonal coefficients of S with respect to the nest SF.

Let M e f and let aM, aM denote the diagonal coefficient at M of T, S respectively. If
M = M_, we have aM = aM = 0. If M ^ M_, then with the usual notation we may deduce
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from the equation TzM = aMzM + yM that

(T-pI)zM = (aM - p)zM + yM.

It easily follows that, for n = 1, 2, . . . , we have

{T-plYzM=(aM-pYzM + yM,

where y('l)eM_. In particular, by taking n = v, we obtain

Thus crM = A + (aM - p)\ We deduce that aM = A if and only if aM = p. Hence the diagonal
multiplicity of A relative to S is d. It is now sufficient to prove the lemma under the
additional hypothesis that p has index unity relative to T, since in the general case we may
reduce to this situation by replacing T, p by S, A respectively.

Suppose therefore that p has index unity relative to T, and let N be the null-space of
the operator T-pI. Given xeJV, define

M(x) = D {L : L e &, x € L}.

From Proposition 3 and its proof we deduce that M(x) e SF, x e M(x)\M_(x) and aM(x) =
p(xeN, x^O). The remainder of the proof is divided into three stages.

First, we show conversely that if Me3* and aM = p then M = M(x) for some
non-zero x in N. For this purpose, let TM denote the restriction of T to M, and let WM,
NM be the range and null-space respectively of the operator TM - pIM. Then TM is a
completely continuous linear operator on M, and it is immediate from the definition of
index in terms of null-spaces that p has index unity relative to TM. Hence, by Theorem A,

Since, as in the proof of Proposition 4, WMcJVf, it follows that JVM meets M\M^. If
xeJVMn(M\M_), it is easily verified that xeN, x^O and M(x) = M

Secondly, let Mx c M2 <=•...<=• Md be distinct members of the nest 9 at which T has
diagonal coefficient p. We may choose non-zero vectors xx,. . . , xd e N such that Mt =
M(Xj)(i = 1 , . . . , d). For each i = 1 , . . . , d, x{ is not a linear combination of x l 5 . . . , X;^;
for this would imply that xiz.M{xi-^)c.M_(xi), which is not so. Hence, xu...,xd are
linearly independent elements of N, and since dim N = m we have m^d.

Thirdly, suppose that m>d. By the Hahn-Banach theorem, we can find linear
functionals continuous on X, such that (^(xO^O, but </>j(x) = 0(xeM_(Xi)). Then if
xeM(Xj) and <£i(x) = 0, we have xeM.(Xj). Now since dimN>d, we may choose a
non-zero vector x in N such that <fo(x)=0(i = 1 , . . . , d). Then aMM = p, and therefore
M(x) = M(xf) for some r. Thus xeM(Xj), <fo(x) = 0, and we have xeM_(x;) = M_(x).
However, this is impossible. Hence m =£ d. Since the reverse inequality has already been
established we have m = d, and Proposition 4 is proved.

We now state a theorem which summarizes the principal results obtained in the
preceding lemmas.
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THEOREM 2. Let T be a completely continuous linear operator on a locally convex
Hausdorff topological vector space X over the complex field and let ^ be a simple nest of
subspaces of X, each of which is invariant under T. Then

(i) a non-zero scalar p is an eigenvalue of T if and only if it is a diagonal coefficient of
T;

(ii) the diagonal multiplicity of p is equal to its algebraic multiplicity as an eigenvalue
ofT;

(iii) the operator T has no non-zero eigenvalue if and only if aM =fl(Mef), orequival-
ently if and only if TMcM_(Mef ) .

Proof. The only statement not already proved is (iii). From (i), it follows that T has
no non-zero eigenvalue if and only if aM = 0(Mef) .

COROLLARY. If there is a continuous simple nest of subspaces of X, each of which is
invariant under T, then T has no non-zero eigenvalue.

Proof. This follows from part (iii) of the preceding theorem.
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