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On Gibbs Measures and Spectra of Ruelle
Transfer Operators

Luchezar Stoyanov

Abstract. We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit
estimates of the spectral radius of the Ruelle transfer operator and various other quantities related
to spectral properties of this operator. The novelty here is that the Holder constant of the func-
tion generating the operator appears only polynomially, not exponentially as in previously known
estimates.

1 Introduction

We consider a one-sided shift space
ZZI{EI (60,51,...,5m,...)31Sfi Sq,A(&-,le) =1forall ZZO},

where Aisa g x g matrix of 0s and I's (g > 2). We assume that A is aperiodic, i.e., there
exists an integer M > 0 such that AM (i, j) > 0 for all 4, j (see [5, Chapter 1]). The shift
map 0:3} — X% is defined by (&) = &', where & = &, forall i > 0.

In this paper we consider Ruelle transfer operators Ly: C(X}) — C(Z}) defined
by real-valued functions f: X} — Rby Lg(x) = ¥5(,)=x e/ g(y). Here C(Z%)
denotes the space of all continuous functions g: X — R with the product topology.
Given 6 € (0,1), consider the metric dg on 2% defined by dg(&,7) = 0if & = 5 and
dg(&n) = 0% if £ # and k > 0 is the maximal integer with &; = #; for 0 < i < k. For
any function g: X% — R set

. var
vare g = sup{[g(€) - g()] : & =i, 0<i <k}, glo = sup{ Q'Zg:kZO},

18loo = sup{lg(&)|: e 23}, lgllo = Iglo + Igloo-

Denote by Fy (2} ) the space of all functions g on X with ||g[¢ < 0o, and by specy(Lg)
the spectrum of Lg: Fg(23) — Fo(Z}).

The Ruelle-Perron-Frobenius Theorem concerns spectral properties of the trans-
fer operator Ly:Fg(X;) — Fg(X}). Assuming A is aperiodic and f € Fg(X}) is
real-valued, it asserts that L f has a simple maximal positive eigenvalue A, a corre-
sponding strictly positive eigenfunction 4, and a probability measure v on X} such
that specy(Ly) \ {A} is contained in a disk of radius pA for some p € (0,1), L7v = Av,

and assuming & is normalized by [ hdv = 1, we also have

(L1) lim inL;g - hfgdv

oo |
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for all g € Fy(2%). This was proved by Ruelle [7] (see also [8]). In the case of a
complex-valued function f, similar results were established by Pollicott [6].

In this paper a comprehensive version of the Ruelle-Perron-Frobenius Theorem
is considered which provides explicit estimates for the various constants and func-
tions involved, e.g, the function k and the constant p mentioned above, as well as the
speed of convergence in (1.1). Estimates of this kind were derived in [9], however the
constants that appeared there, including the estimate p for the spectral radius of the
operator Ly, involved terms of the form ¢/l for various constants C > 0. The same
applies to the estimates that appear in [2,5,7,8] and also to the estimate of the spectral
radius of L ¢ obtained in [4].

From our personal experience, when estimates for families of Ruelle transfer oper-
ators L ¢ are considered for a class of functions f, usually the norms | f|, are uniformly
bounded. However, the Holder constants | f|o can vary widely and in some cases can
be arbitrarily large. That is why estimates involving terms of the form e“l/lo are par-
ticularly unpleasant.

All estimates obtained in this paper involve only powers of |f|g, and, in this sense,
they are significantly sharper than the existing ones.

The motivation for [9] came from investigations in scattering theory on distri-
bution of scattering resonances, in particular in dealing with the so-called modified
Lax-Phillips conjecture for obstacles K in R” that are finite disjoint unions of strictly
convex bodies with smooth boundaries [10]. The present work stems from studies on
decay of correlations for Axiom A flows and spectra of Ruelle transfer operators in
the spirit of [3,11].

Section 2 contains the statement of the Ruelle-Perron-Frobenius Theorem with
comprehensive estimates of the constants involved, while Section 3 is devoted to a
proof of the theorem. As in [9], we follow the main frame of the proof in [2] with
necessary modifications.

2 The Ruelle-Perron-Frobenius Theorem

In what follows A will be a q x g matrix (g > 2) such that AM > 0 for some integer
M >1, 0 € (0,1) will be a fixed number, and f € Fy(2%) will be a fixed real-valued
function. Set b = by = max{L[f|s}.

Theorem 2.1 (Ruelle-Perron-Frobenius Theorem) (i) There exist a unique A =
Ag > 0, a probability measure v = v¢ on X, and a positive function h = hy € Fp(Z})
such that Lgh = Ah and [ hdv = 1. The spectral radius of Ly as an operator on Fg(Z})
is A, and its essential spectral radius is 0. The eigenfunction h satisfies + < h < K and
|h|g < BbK, where

(2.1 K = Bb™,

and the constants B and ry can be chosen as

o i gM+1g2(M+1)|flo

q _logq +2|fl|w

2.2 B: >
@22 1-0 0= T log |
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(ii) The probability measure V. = hv (this is the so called Gibbs measure generated
by f) is o-invariant.

(iii) Wehavespecy(Ls)n{z e C:|z| = A} = {A}. Moreover A is a simple eigenvalue
for Ly and every z € specy(Ly) with |2| < A satisfies |z| < p), where

1-6
=1- ——

(2.3) p o €O,
(iv) Forevery g € Fo(Z}) and every integer n > 0 we have
(2.4) ||L;g_hfgdv||9 <DA"p" gl
_ 100K°p°
where Dy = =5

The constants K, p, Dy, etc., are not optimal; slightly better estimates are possible
as one can see from the proof in Section 3.

3 Proof of Theorem 2.1

We will use the notation and assumptions from Section 2. Set L = L;. Given x =
(x0,x1,...) € % and m > 0, consider the cylinder of length m

Culx] ={y="oy...) €2y yj=x;forall j=0,1,...,m}

determined by x. Set g, (x) = g(x) + g(ox) + -+ g(c™ 'x).

As in [2], it follows from the Schauder-Tychonoft Theorem that there exist a Borel
probability measure v on £} andanumber A > 0 such that L}v = Av, that s, A [ gdv=
J Lygdvforevery g e C(Z}). With g =1, thisgivesA = [ L¢1dv. Clearly, (Ls1)(x) =
Yoex eV < gel=, and also (L) (x) 2 eVl for all x € 2% Thus,

(3.1) eWl= <)< qelf‘“’.
Let mg = mo(f, 0) > 1Dbe the integer such that
(32) gm < 1 < g™
b
Then mglogf < —logb < (mo —1)log6, so
mg—1< logb <m
0T |log 0] o

The first significant difference between our argument and the one in [2] is in the
definitions of the constants B,, and the space A below. In our argument they depend
on My, i.e., on b. ‘

For m > my, set B, = > Zizm-mg+19” and define

A={geC(Z}):g>0,
f gdv=1,¢(y) < B,, g(x)whenever y € C,,[x], m > mo}.

Then B,,, = 2= % = ei7. Notice that in the above definitions we only consider
integers m with m > my. This will be significant later on.
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Lemma 3.1 A is non-empty, convex, and closed in a C(Z}) equicontinuous family of
functions, and the operator T = %L maps A into A.

Proof We use a modification of the proof of [2, Lemma 1.8 ]. It is clear that A is
convex and closed in C (Z ),and also A # @ sincel € A.

Consider arbitrary x = (x¢,%1,...),2 = (20,21,...) € £}, and g € A. Since
AM > 0, there exists a sequence (z,,, ., 2, s Zmo s M-1> Zmo+ M = X0) such that

m+22 -
_ / _ +
}/ - (ZO> 2150 sZmO)Zm0+1) Zm0+27 e )Zm0+M,1; Zm0+M =X05X15X25 .- ) € ZA‘
Then dg(y,z) < 0™, so g € A implies g(z) < B, g(y). Moreover, a™*My = x, so

63 W)= Y menOg(E) e g(y)

om0t (E)=x

o~ (mo+3)|fls

> Tg(z).
Keeping z fixed and integrating (3.3) with respect to x, gives
Lo e~ (mo+M)|fleo
1= [ gdv - /\m0+M f 2 )Lm0+MB g(z)'

Setting K’ = B, A"+ Me(mo+Mlfl= the above implies g(z) < K'. This is true for all
z€2},50|gle < K’ forall g € A. Using (3.1), (3.2), and the definition of B,,,, we get
K’ < e (gelfl=)motM g(motM|fl ¢ porioga (08a+2lfl=)  gpro = g
where K is as in (2.1), while B and r, are defined by (2.2). (For later convenience we

take slightly larger B and r( than necessary here.) Thus,

(3.4) lglo <K, geA.
Next, integrating (3.3) with respect to z yields
M 1 M e~ (mo+M)|fleo 1 1
(T™ " g)(x) = Yoot (L™ g)(x) 2 AmeME, K 2 ¥
Thus,
1
(3.5) z s min(T™*Mg), geA.

Let is now prove that A is an equicontinuous family of functions. Given € > 0, take
m—mg+1
m > mq so that 20" ""/0-0) _1 < ¢/K. Letx, y € X% be such that dg(x, y) < ™.

Then for any g € A, we have g(x) < B,,g(y), so g(x) — g(y) < (B —1)g(y) <
(Bm — K. Similarly, g(y) — g(x) < (B - 1)K, s0

8(x) ~g()] < (Bu DK = (2700 1)K <.
Hence A is equicontinuous.
It remains to show that T(A) c A. Let g € A. Then Tg > O and [ Tgdv = L
Let m > mg and let y € C,,[x]. Given & = (&, &,...) € =} with & = x, we have
SG=x0=y08=x1=y1..., &mi1 = X = Y. Set

(36) n= 17(6) = (fo:fl)-- [ EWD £m+1 = Yms> Ym+1> Ym+2> - ) € ZX
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Then o = yand d(&,n(&)) < 6™, so by (3.2),

£(8) = F((E)| < floda(& n(8)) < b 6™ < g,
This and g € A imply g(&) < B,y+18(n(&)) and

1 1 m—mg+1
oé=x oé=x
eem—moﬂBmH o R o
= X W) = e T (Ty) ()
on=y
< B (Tg)(»)-
Thus, Tg € A. ]

Using the above lemma and the Schauder-Tychonoff Theorem we derive the fol-
lowing corollary.

Corollary 3.2  There exists h € A with Th = h, i.e., with Lh = Ah. Moreover we have
% < h < K, where K is given by (2.1).

The latter follows from (3.4) and (3.5), since T"™*M}p = .

Lemma 3.3  There exists a constant y € (0,1) such that for every g € A there exists
ge Awith T™ Mg = yh + (1- u)g. More precisely, we can take

1-6 1

(37) TR TS

Proof We use a modification of the proof of [2, Lemma 1.9 ]. Define y by (3.7).
Given g€ A, set g = T™ Mg — yhand g = lf—lﬂ. Then (3.7) and T™*Mg € A imply

ph < uK < % <min(T™*Mg), so g > 0. Moreover [ g1dv=1-y,s0 [ gdv=1
Next, let m > my and let x € £%, y € Cp,[x]. We will show that g(x) < B,,g(y),
which is equivalent to g;(x) < Bpg1(y), i.e., to
(T M) (x) = ph(x) < B ((T™*Mg)(y) - uh()),
that is, to
(3:8) #(Bmh(y) = h(x)) < Bp(T™*Mg)(y) = (T™ M g) ().
Given & € =% with 0 = x define 7 = (&) by (3.6); then g = y and 1 € Cpp11[&].
For any G € A, as in the proof of Lemma 3.1, we have
(LG)(x) = X SOG(E) < 3 &/ BGn) < o B (LG) (7).
oé=x oé=x

Using this with G = T™0*M g = i [0 M1 g ¢ A gives
m—mg+1
(T Mg)(x) < e ™ Buaa (T g) ().

This and h(x) > %i) show that to prove (3.8) it is enough to establish

Buar) (T™ ) ().

em—m0+1

u(Bm - %)h(y) <(Bm-e
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Next, the definition of B,,, h(y) < K, and (T™*Mg)(y) > 1/K show that the latter
will be true if we prove

20M—mo+1 _20m—mo+1 2gm—mo+l gm—mo+1
y(e =0 —¢ 1-6 ) < (e B,1—¢ BmH)

which is equivalent to

1
E;

0m—mg+l
29Mm—mo+1 29Mm—mo+1 mo+2 e

(3.9) y(e = —e = ) < e6m7m0+1+29m;8

-1

K? '

For the left-hand-side of (3.9) there exists some z with |z| < 20™~™*1/(1 - 9) such
that

gm—mo+1 2
Lgm—mg+1 _ng—m0+1 4@ 4@ -

99
z
- _ = = <
For the right-hand-side of (3.9) we have

em—m0+1

eem—m0+l gm-motl 1 em—mo“

KZ

—mg+1, 29M—mo+2 — 1
e >
K? K?

260 _
4e1-0 gm—mo+1 o gm—motl

Thus, (3.9) would follow from u =~ zz— - The latter is clearly true by
(3.7). This proves (3.9) which, as we observed, implies (3.8). Hence g(x) < B,,g(»)
which shows that g € A. [ |

Lemma 3.4  There exist constants A > 0 and 8 € (0,1) such that
(3.10) |T" g — hleo < AB”

for every g € A and every integer n > 0. More precisely we can take
(3.11) A=4K? ﬁ—l—ﬂe(e 1)
' P akee

Proof We use a modification of the proof of [2, Lemmal.10].

Let g € A. Given an integer n > 0 write n = p(mg + M) + r for some integers p > 0
andr=0,1,...,mp+M-1 ByLemma3.3, T"*Mg = yh+(1-pu)g for some g € A.
Similarly, T™*M g = uh + (1- u)g, for some g, € A, so

T2(m0+M)g: uh+ (1_ ‘u)(‘uh + (1 - ‘u)gz) = /,lh(l+ (1— [,l)) +(1- y)zgz.

Continuing in this way, we prove by induction

TP g (14 (1= ) + oo+ (1= )P ) + (1 )P gy

for some g, € A. Thus,

. 1-(1-p)?
g - G (- gy = - (1= 0)7) + (1= )

and therefore, using (3.4),

TP g oy < (1= )P B~ gploo < 2K(1- ).
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Next, notice that by (3.1) for every bounded function G on £} we have
(TO)@)|= 7] ¥ DGO < To[Glew < ge?/1~[G]..,
oé=x
SO oo £ ge“V1=|G|o. Using this r times and settin =(1- W, ields
TG ge?f1=|G|o.. Using th d g 7 yield
|T"g — hlao = |T" (TP g — h)|oo < (qe?/1=)"| TP M g — .,

ﬂ 2K o2l floo ymo+M ¢ pryn
B0 < 2 gty gy

As in previous estimates, using (3.2) and (3.4), we get

< 2K(qez|f‘°° ymot+M

log b

2|f|w)mo+M _ quZM|f|°Qemo(10gq+2|f|°Q) < qM62M|f|°°e(m+l)(logq+2\f|m)

(ge
< qM+le(2M+1)\f|oohr0 <K.

We have 1 — y > 1/2 by (3.7), so the above and (3.11) imply | T" g — h|e. < A(B')".
It remains to show that 8’ < 8. We will use the elementary inequality (1 - x)¢ <
l-axfor0<x<landO < a <1 Itimplies
U U 1-6 1-0

I _(1_ ﬁ _ — =1- - =
pr=(-pym <1 mo+M<1 emo+tM ! 4Kze’”°‘fMez"/(l‘e)<1 4K3 P

This proves the lemma. u
Lemma 3.5 Forevery g € A we have |g|g < BVK, and so | g|le < 2BbK.

Proof Letg e A andletx,y e 2% be such that dg(x, y) = 0™. If m < mg — 1, then
by (3.4),

do(x, 2K
|g(x) - g(}/)| <2K =2K O(me) < g1 dg(x,)/) < ZbKdg(x, ;V) < BbKdg(x,y)_

Next, assume that m > mg. Then using again (3.2) and (3.4), we get
gm—mo+1 2620/(1—\9)
1-60  (1-0)fmt

2Mm—mg+1

B, — 1= ] < 020/0-0)2

6™ < BbO™.
Since g(x) < Bug(y), we have
8(x) —g(y) < (Bm ~1)g(y) < (BbO™) K = BbKdy(x, y).
Similarly, g(y) - g(x) < BbKdg(x, y), so |g(x) - g(y)| < BbKdy(x, y). u
In particular, A ¢ F9(Z%), so A is an eigenvalue of the transfer operator
Lp:Fo(Z}) = Fo(Zh)

and & > 0 is a corresponding eigenfunction. Moreover, following arguments from the
proof of [5, Theorem 2.2], one proves that A is a simple eigenvalue and specy(Lys) c
{z : |z] < A}. Also, following the argument from the proof of [1, Theorem 1.5], one
shows that the essential spectral radius of Ly as an operator on Fg(X}) is 0A.
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Lemma 3.6 Forevery g € Fo(X}), we have

| 1
A
where Ay = 2Ab = 8K?b.

(3.12) 7L"g—h/gdv|oo£Alﬁ"HgH9, >0,

Proof We will proceed as in [9] with some modifications. Let g € Fg(Z}). First
assume that ¢ > 0. The case |g|s = 0 follows trivially from Lemma 3.4, so assume
lglo > 0and set g= C g +1, where C = m. Thenw = [ gdv>1.

We will check that g/w € A. Let m > myg, and let x, y € £% be such that y € C,,[x].
Assume for example that g(x) > g(y). We have

8(x) - g(y) = C(g(x) - &(»)) < Clgleda(x. y) = Clgle0™.
Hence, using g( y) >1and (3.2), it follows that

_ . C 9m7m0+1 _
20 <20 + BT g1+

29m7m0+1

(1-0)b emo—l)
m—mgo+1 Lgm—mo+1

<F(1+ gy ) <E0 T =FBn.
This shows that g/w € A, and by (3.10), | T"§ - wh|s, < Awp". Thus,
| T(Cg+ 1)~ h(C [ gave1)| < Awp”
Using this and (3.10) with g =1 yields
c|Tg—h [ gt <|T1-h [1dv] + A0p” < A(w+ 1B,

so|T"g—h [ gdv]e, < A% B". Finally,

S(w1)= [ gdve = <|gle+ (1-0)blglo < blglo.
Hence
(3.13) |Tg 1 [ gdv| < ablglop”.

For general g € Fy(2}), write g = g, — g_, where g, = max{g,0} > Oand g_ =
g+~ &2 0. Then g,, g € Fg(2}), [g+]o < lglo, [8-lo < lglo> g+ < [g]oo, and
g- < |gloo> 50 |lg+]lo < |glo and [g-]o < [ g6 Using (3.13) for g, and g_ implies
|T"g ~h [ gdvleo <24b[g]l0B". u

We will now sketch the proofs of the Basic Inequalities (see [5, Proposition 2.1 |
or [2, Lemma 1.2]) keeping track on the constants involved. We continue to use the
notation from Section 2 and also the one introduced above for the function f and the
operator L = Ly.

Lemma 3.7 (Basic Inequalities) We have

(3.14) IL"gloo < K*A"|gloe, g€ C(2}),n20,
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and
(3.15) IL"glg < Kz)t"[ |f|" |g| +60"glo], geFo(Zh).n>0.
Consequently,
n 4b 2 n +
(3.16) IL%lle < T—gA"lglle> g€ Te(22),m >0

1-

Proof We will just follow the standard arguments to derive the above estimates. It
follows from Corollary 3.2 that L"1 = K (L"1/K) < KL"h = KA"h < K*A", s0 L"1 <
K*A" for all n > 0.

Given g € C(Z}), for any x € % and any n > 1, we have

(L") (x)] < ; e/ Og(8)] < lgleo (L"1) (x) < K*2" g

This proves (3.14).

Next, let g € Fg(Z%), and let n > 1. Given x € 7} and y € C,[x], forany £ € £
with 6”& = x, denote by = n(&) the unique element of £% such that "7 = y and
dg(& 1) = 0"dg(x, y). Then

]

12O = Fu(r(EDI < 1 (076) = F(@Im)| < 3 100" Tdy (v, ) < L% do ),
j=0 j=0

and therefore

(65O _ B < [£,(8) = i ()<L} ¢ 1|Ji|96 do(x, y)[ O + 5],

The above yields
(L7g)(x) = (L"g) (y)] < }E; |9 g(8) ~ e g(5(8))]
< EE: [l — ] |g(&)] + Mg (&) - g(n)]
|g| \f\e do(x,y) Y [e/1(D) 4 /(D] 4 |g]00"dg(x, y) S efn(n)
onE=x onE=x
|g| \f\e

do(x, ) [(L"1) (x) + (L"1)(y)] + |gl66"do (x, ) (L") (y)
2
sm"[ A0 g1+ 071glo] o, )
which proves (3.15). The latter obviously implies (3.16). ]
To derive Theorem 2.1(iii), just notice that (2.3) implies p > 3, where  is given by
(3.11). If z € specy(Ls) with pA < |z| and z # A, then z is an eigenvalue of L. If g is a
corresponding eigenfunction, then [ gdv = 0 by (3.12), and using (3.12) again, gives

|z| < BA < pA, a contradiction. This shows that spec, (L) n{z:|z| > pA} = {A}.
We will now use (3.12) to prove the following lemma.
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Lemma 3.8 For everyg € Fo(Z4) we have

(3.17) || —Lig- hfgdv||9<A2p Igle» n>0,

where p is given by (2.3) and A, = 1(2(1)6253'

Proof We will again use a corresponding argument in [9] with some modifications.
Let ge Fp(2}) andletn > 1.

Casel: [ gdv=0.SetC = Ll, = [n/2], and k = n — £. First notice that in the
present case (3.12) gives |L gloc < AjA°B¢|g[o. Using this, (3.15), (3.12), and 6 < §,
yields

IL"glo = IL*(Lfg)lo < K*A*(CIL glo + 6¥|L  glo)
<KPAF[CALA B gllo + 0¥ KA (Clgloo + 6%Igla)] < A'A"B™?( g6
where A’ = 40K b . This proves (3.17) in the case considered.

Case 2: General case: let g € Fg(Z}) andletn > 1. Set g = g—ah, wherea = [ gdv.
Then [ gdv = 0, so by Case 1, we have |[L"g]y < A’A""/?|g]¢. By Corollary 3.2 we
have |gleo < |g]oo + K|g]oo < (1+ K)| g] g, while Lemma 3.5 implies

glo < Igleo +[gloo|hlo < BOK] g |-
Thus, |g]e < ZBbKHgH(;. This and the above estimate imply
" 1
g [ gd],= I (g - ah)lo = 1-1LBlo
< AR gle < A’ 2BbKﬁ"/2 Igle-
Combining with (3.12), gives

100BK>b?
[ —L"g—h fgde o< ————B"lglo-
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Fmally it follows from /1 — x < 1—x/2 for 0 < x < 1and (2.3) that \/_ \1- L+ 4K3 <
1- W = p. This proves (2.4).
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