YET ANOTHER PROOF OF THE MINIMAX THEOREM
J.E.L. Peck

(received December 23, 1957)

Introduction. There are so many proofs of this theorem
in the literature, that an excuse is necessary before exhibiting
another. Such may be found by examining the proof given below
for the following: it uses no matrices, almost no topology and
makes little use of the geometry of convex sets; it applies equally
well to the case where only one of the pure strategy spaces is
finite; also there is no assumption that the payoff function is
bounded. Thus it can provide a short route to the more general
forms of the theorem.

Affine functions on convex sets. A real function f defined
on a convex subset K of a real linear space is called affine if

f(ﬂxl-\-(l-?k)xz) H 7\f(x1)+(1-%) f(xz) , for o2 A<l and X1,%, & K.

The proof of the minimax theorem is contained essentially in a
lemma concerning a finite family of such functions. If F is a
family of functions, then the family of means Znizl Aif;, where
fieF, Ay 20, if1,...,0, Z?=1 A; = 1 is the convex family gene-
rated by F and will be denoted by F*,

LEMMAT If F is a finite family of real affine functions
defined on a convex subset K of a real linear space, then

sup, EKminng*f(meinfe F¥ SUPy. g f(x).

Proof. The inequality

supxiKminng* f(x)= inff&F* SUp . K f(x)
is a simple consequence of the definitions of sup. and inf.

Put

(1) supxeKmmfe_F f(x) = v.
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Since min I‘.\f(x)-'- min e F¥ f{x), and v»> -00, it is only necessary
to show for a finite v that,

(2) for some g eF  andall xe K, g(x)=v.

We begin with the case where F = {f f} consists of two

functions. If for 0< A<1, we write fa = (1 -X )f +7\f , then

= {fl :0¢ l‘.—l} . For each x¢g K we put A(x) _§A f,\ (x)e v}
Because of (1) we have f(x) «v or { (x) ¢v. Since f;(x) is an
affine function of A, each/\ (x) is a non vacuous closed sub-
interval of [ 0, 1] containing at least one end point. To prove (2)
we need only show that there is some A common to all A (x).
This is achieved by showing that if 0¢ A(a)e[0,1) and 1e A(b)
c(0,1], then /\(a) meets A(b). This corresponds to the case
where fo(a) & v fl(a) and fl(b)& v<fy(b). The figure shows that
there is obviously a A ¢ A(a)a A(b), i.e. f5(a) = fa(b)e v.

In fact, if (1-2)A~! =

i £
[£,(a)-£, (0] [£ (0)-1 (a)]

e - - =

~r \L\a
then f3(a) = f5(b). Since
F;) \

f) 1is affine, it is coastant !

on the segment in K joining A

a to b, and for some point

c on this segment, f)(a) = f5(b) = f(c) = fo(c) = fl(c) & V.

We now extent the result (2) to the case where F= if
i z is a family of more than two functions. Put Ko ix:
fo(x) >4}, where v is defined in (1) with the new F. S1nce f
affine, the set K, is a convex subset of K. If K, is vacuous (2)
is trivial; if it is not, put Fo= {£),f,,...,£} , Shen by (1),

sup_ £ Ko minfE Fo f(x) ¢ v.

Assuming that the theorem is true for n functions (on K,), there
is an hg Fo » such that on K, h(x) =« v. Now on K, mm(f (x),
h(x)) ¢ v. Thus if F|= {fo,h} we have by the case for two
functions, that for some g¢ Fl*, g(x)« v on K. However

F, *eF*, so that (2) is established in the general case.
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Dual games. We say that a dual game (X,Y,f) consists of
a real function (the payoff) defined on the product X*Y of two
sets (pure strategy spaces). It is extended to X*uY*, where X
and Y* (mixed strategy spaces) are convex subsets of real linear
spaces in which X and Y, respectively, are embedded. The set
X* is the class of all sums Zflﬂ’;-x., x.eX, av. 20, i=1,...,
a ~ o S vor S [ou?
n, Z'-lp'i = 1, and similarly for Y™, while f is extended to
X* x Y’*’ so that it is an affine function of each variable. If we put
fy(x) = f(x,y), then {fY:y € Y} is a family of affine functions
defined on the convex set X*,

THEOREM Any dual game (X,Y,f) in which Y is finite
satisfies the equality

supng* minYE v* f(x,y) = min.ye y* Supy ¢ x* f(x.,y).

Thus the game has a value, 'apd the player on Y has an optimal
strategy. '

Proof. Apply the lemma to the family F = ify:yg Y} .

Other proofs. This form of the theorem was first estab-
lished by Wald [5] . For a survey of many proofs see Kuhn [3] .
To these should be added the proofs of Dantzig [1l , Peck and
Dulmage [4] , Fan[2] and Zieba [€] .
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1-A similar lemma may be established for a family of concave
functions. The proof is a little more difficult.
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