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Introduction. There a re so many proofs of this theorem 
in the l i t e r a tu re , that an excuse is necessary before exhibiting 
another . Such may be found by examining the proof given below 
for the following: it uses no m a t r i c e s , a lmost no topology and 
makes little use of the geometry of convex sets ; it applies equally 
well to the case where only one of the pure strategy spaces is 
finite; also there is no assumption that the payoff function is 
bounded. Thus it can provide a short route to the more general 
forms of the theorem. 

Affine functions on convex s e t s . A rea l function f defined 
on a convex subset K of a rea l l inear space is called affine if 

f(Xx1-^(l-A)x2) = A ^ x ^ - H l - * ) f(x2) , for o^X^rl and x x , x 2 g. K. 

The proof of the minimax theorem is contained essential ly in a 
lemma concerning a finite family of such functions. If F is a 
family of functions, then the family of means 5_ £z i "A f̂;» where 
f- £ F , A | > o , i=l , . . . , n, ^ . . , Ai : 1 is the convex family gene-
rated by F and will be denoted by F * . 

LEMMAl If F is a finite family of rea l affine functions 
defined on a convex subset K of a real l inear space, then 

s u p x £ K m i n f £ F * f ( x ) = m i n f € p * s u p x t K f ( x ) e 

Proof. The inequality 

s u P x t K m i n f £ F * f ( x ) " i n W * S U p x £ K f ( x ) 

is a simple consequence of the definitions of sup. and inf. 

Put 

(i) s u P x e K m i n f e F f ( x ) = v -
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Since min, p£(x)=minf * f(x), andv?-oo, it is only necessary 
to show for a finite v that, 

(2) for some gfcF'̂  and all x s K, g(x)^v. 

We begin with the case where F = |f , f j consists of two 
functions. If for 0<A<1, we write f̂  = ( 1 -X )f0+Xf1} then 
F* = {fx :04 M l ] . For each xeK we putA(x) =̂ X :fA (x)* v} 
Because of ( 1) we have fQ(x) ev or f i(x) c v. Since f^(x) is an 
affine function of A , each A (x) is a non-vacuous closed sub-
interval of [O, 1J containing at least one end point. To prove (2) 
we need only show that there is some A common to all A (x). 
This is achieved by showing that if Ofc. A(a)e[o,l) and l£ A (b) 
c ( 0 , l ] , then /\(a) meets A(b). This corresponds to the case 
where fQ(a) é v<f1(a) and f^b)^ v<f0(b). The figure shows that 
there is obviously a A ^ A(a)^A(b), i .e. f^(a) = f^(b)^. v. 

In fact, if ( l - ^ A * 3 • 

[f1(a)-f1(bO [fo(b)-fo(a)] -*1 

then f^(a) = f^(b). Since 

f̂  is affine, it is constant 

on the segment in K joining 

a to b, and for some point 

AT 

•f. 

wp^ rv 

^ 

c on this segment, f^(a) = f^(b) = f^(c) = f (c) = f^c) £ v. 

We now extent the result (2) to the case where F= [f , f, , 
. . . ,fn] is a family of more than two functions. Put K = Sx: 
fQ(x) >v\, where v is defined in (1) with the new F. Since f is 
affine, the set KQ is a convex subset of K. If K is vacuous (2) 
is trivial; if it is not, put FQ= U i » ^ ' * • * , f \ ' t h e t l b Y (* )» 

s u P x s K 0
m i n f £ F o

f ( x > * 

Assuming that the theorem is true for n functions (on K ), there 
is an h £ FQ ' r, such that on KQ, h(x) ^ v Now on K, min(f0(x), 
h(x)) û v. Thus if F ^ |fQ,h} we have by the case for two 
functions, that for some g e F ^ , g(x)*.vonK. However 
Fj'^CF", so that (2) is established in the general case. 
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Dual games . We say that a dual game (X, Y,f) consists of 
a rea l function (the payoff) defined on the product X*Y of two 
sets (pure strategy spaces) . It is extended to X *Y , where X 
and Y* (mixed s trategy spaces) a re convex subsets of rea l l inear 
spaces in which X and Y, respect ively, a r e embedded. The set 
X* is the class of all sums ^ ^ - m p q * Xj, * x » /*£ >°> i = 1, . . . , 
n, ^L^-i^i = 1, and s imilar ly for Y*, while f is extended to 
X'%Y" so that it is an affine function of each var iab le . If we put 
fy(x) = f(x,y), then \ f y : y € Yj is a family of affine functions 
defined on the convex set X . 

THEOREM Any dual game (X,Y,f) in which Y is finite 
satisfies the equality 

SUPX£,X* m i t l y £ Y* f<x»y) = m i a y e Y* s u Px t X* f(x>Y)-

Thus the game has a value, and the player on Y has an optimal 
s t ra tegy. 

Proof. Apply the lemma to the family F= \ f v : ya Y f . 

Other proofs . This form of the theorem was first es tab­
lished by Wald £.51 . For a survey of many proofs see Kuhn £3J . 
To these should be added the proofs of Dantzig 111 , Peck and 
Dulmage [4J , Fan \z\ and Zieba \£\ . 
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A s imi la r lemma may be established for a family of concave 
functions. The proof is a little m o r e difficult. 
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