INTEGRAL FORMULAS FOR SUBMANIFOLDS AND
THEIR APPLICATIONS

KENTARO YANO

Introduction. Liebmann [12] proved that the only ovaloids with constant
mean curvature in a 3-dimensional Euclidean space are spheres. This result
has been generalized to the case of convex closed hypersurfaces in an m-
dimensional Euclidean space by Alexandrov [1], Bonnesen and Fenchel [3],
Hopf [4], Hsiung [5], and Siiss [14].

The result has been further generalized to the case of closed hypersurfaces
in an m-dimensional Riemannian manifold by Alexandrov [2], Hsiung [6],
Katsurada [7; 8; 9], Otsuki [13], and by myself [15; 16].

The attempt to generalize the result to the case of closed submanifolds in
an m-dimensional Riemannian manifold has been recently done by Katsurada
[10; 11], K6jy6 [10], and Nagai [11].

Our aim in the present paper is to obtain first of all the most general integral
formulas for closed submanifolds in an m-dimensional Riemannian manifold,
to specialize these formulas, and to apply these formulas to obtain a generali-
zation of the theorem of Liebmann. We also discuss submanifolds of co-
dimension 2 in an (z + 2)-dimensional Euclidean space.

In § 1, we recall formulas for the submanifolds in a Riemannian manifold
which will be used in the later sections. In § 2, we prove integral formulas for
closed submanifolds in their most general forms. We specialize these formulas
in §§ 3, 4, and 5 and prove a theorem which is a generalization of the theorem
of Liebmann quoted above. In the last section we study submanifolds of
codimension 2 in an (# - 2)-dimensional Euclidean space.

1. Preliminaries. We consider an m-dimensional orientable differentiable
Riemannian manifold M of class C” covered by a system of coordinate
neighbourhoods {U; %" and denote by g;;, {/:}, Vi K, and K,;, the
metric tensor, the Christoffel symbols formed with g;;, the operator of co-
variant differentiation with respect to {,”;}, the curvature tensor, and the
Ricci tensor respectively, where, throughout the paper, the indices #, 1, 7, k, [
run over the range {1, 2, ..., m}.

We then consider an #-dimensional compact and orientable differentiable
submanifold N of class C” covered by a system of coordinate neighbourhoods
{V; u*} and C® differentiably embedded in 3, and denote by

(1.1) x" = x"(u®)
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the local expressions of N, where, throughout the paper, the indices ¢, b, ¢, d, e

run over the range {1, 2,...,n} (1 <z < m). The Riemannian metric of N
induced from that of M is given by

(1.2) g = g3:BBy’,

where

(13) .Bbi = 6bxi, 0y = a/aub.

We denote by { %}, Vi, Kie?, and K, the Christoffel symbols formed with
g1, the operator of covariant differentiation with respect to { %}, the curvature
tensor, and the Ricci tensor of N, respectively.

We put

(1'4) VcBbh = acBbh + {jhi}Bchbi - {cab}Bahy

and call this kind of covariant differentiation van der Waerden-Bortolotti
covariant differentiation along the submanifold N. From (1.2) and (1.4), we
find g,;(VyB.)By* = 0, which shows that V.B,* are orthogonal to the
submanifold V.

We assume that the mean curvature vector

(L.5) H" = (1/n)g*'V :By"

never vanishes on N and take a unit vector C* in the direction of the mean
curvature vector and then we put

(1-6) (VcBbi) Cz‘ = hcb-

C" is called the mean curvature unit normal and %, the second fundamental
tensor of the submanifold N with respect to the mean curvature unit normal.
The eigenvalues ki, . . ., k, of k. are called principal curvatures of the sub-
manifold with respect to C* If by = ... =k, = k, that is, h, = kg, then
the submanifold is said to be umbilical with respect to C".

From (1.6), we have

a.mn g%V Byt = hACh
The scalar

(L.8) S Ay
' n =1 ¢ n ¢

is called the first mean curvature of NV with respect to C".

Now we put C" = Cu+i" and choose m — n mutually orthogonal unit
normals Cpii”, ..., Cx* in such a way that (B C) form a positively
oriented frame along the submanifold &V, where, throughout the paper, the
indices u, v, w take the values# + 1, ..., m. Then V B, can be expressed as

(19) VcBbh = hcbﬂcvhy

which are equations of Gauss, where kg1 = Bop.

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-046-9

378 KENTARO YANO

On the other hand, if we put
v.C) = 9.0+ {/"}BSC,
equations of Weingarten can be written as
(1.10) v.C" = —h2B) + LwCd,

where %%, = hepog® and Iy = —lews is the so-called third fundamental
tensor. The [.,, define the connection induced on the normal bundle. For
v = n + 1, we have

(1.11) V.C" = —h Bl + 1,,C,",
where I, = lo 11,0 From (1.9), (1.11), and the Ricci identity
ViV .C" — V V(" = Ki; BB CY,

we find
Va(—h: B + 1,,C") — Vo (—hB + 1,,C*) = Ki;"BB,CY,

= (Vah)Bd" — b (haaoCi') + (Vabeo) €' + leo(—ha*sBd" + L Cu")

+ (Veha®)Bo" + ha® (heaoCs") — (Vilao) C — lao(—hBa" + LeruCy")

= K;;"B/BJCt,
from which, taking the inner product with B,",
— Vil — loshayy + Vihay + lavhony = KijuBdBC'BY,

or
(1.12) Vilbey — Vehay — bashevs + Leohavy = KijinBd* BBy 'C",

which are equations of Codazzi.
Multiplying (1.12) by g and contracting, we find

(1.13) Vaha® — Viha® — lahe® + looha®s = KijuBdfBIiCh,
where
Bit = g?B B,
An arbitrary vector field " normal to the submanifold N is expressed as
w' = Clwy,
and consequently

Vcwh = ('—hcauBuh + lcuvcvh)wu -+ Cuhac'wu
= "kcauwuBah + (acwv + lcuku)cvh'
We put

,Vcwh = (/Vcwﬂ)cvh = (acwv + Zcuuwu)cvhy
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and say that the vector " normal to the submanifold V is parallel with respect
to the connection 'V induced on the normal bundle when

'Vt =0,

that is, when V " is tangent to the submanifold.

In the latter sections, we assume that the mean curvature vector H” is
parallel with respect to the induced connection V. This assumption is
equivalent to the fact that

VH" = 1% V, (1, "C") = 1% (V") C" + }zka“(—hc”Bb" + 1.,Cy")
= - l haahchbh + l (Vchaa) Ch + 1 haalcwcwh
n n n

is tangent to the submanifold, that is,
(1.14) he® = const # 0, low = 0.
2. Integral formulas. We now assume the existence of a vector field
9" in M and put
(2.1) v, = By,
From this equation we have
(2.2) Va, = (V.By)v; + BBy (Vv,),

from which

gV, = (g7V.By')v; + BIN(V p.)
= b, Cl; + 1B*(Vp, + V;),
or
(2.3) gV 0y = ahy® + B (L g5,
where
(2.4) a = Ciy,

and %, denotes the Lie derivative with respect to 7",
Integrating (2.3) over N, we find

(2.5) f ah dS + % f B (&g, dS = 0,
N N
where dS is the surface element of V.
We next put
(2.6) wy = hy™,,

from which
Ve, = (Vckba)va + 7V 0,
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and consequently,
(2.7) 2V awy, = (V. hp9)o® + $h°°(V o, + Viu).
On the other hand, we have, from (2.2),

3V, + Vo) = (V.By)v, 4+ 3BB (Vi + V),
and consequently (2.7) becomes
(2.8) gV aw, = (V. h®)v® + (A By, + 1hBB, (L g;1).
Substituting

Vol = Vol — Lyhe® + laohs® — KijunBy¥BIC?
obtained from (1.13) into (2.8), we obtain
(2.9) 2V awy, = (Vohe® — Lyoho®s + loohs®s — KijunBy*BI'C")o?

+ (hV By, + 3h°B B, (L 0g1).

Integrating this over IV, we find

(2.10) J:V [0°Voh" + (VB + h”B/B, (L g,4)
— KBy o"BY'C" — 1L,w"h,"y + 1ok ’0"1dS = 0.
On the other hand, we have, from (2.4),
Via = (—h"B,* + 1,,C,")vi + B’ CHV 0.)
= (=, + Lw,) + By/CHV w,),
where v, = C,%; and
VeV = V (—h'v + L) + (V.Bo') CH(V 1)
+ By (—h Bt + 10Co?) (Vi) + BEBYCH(VV 1),
from which
gV Vo = g (—hyy + Lyw¥n) + H,2CICT (Vo + Vwy)
— 3hPB B (Vv + V,) + g9,By Cot (V) + BH¥CHVLY 24),
= gV e(—h + butw) + 3 (R*C'C* — BBBy) (Vi + V0,)
+ g°1.ByCh (V) + BYCH V.V w,).
Integrating over NV, we find

@.11) fN [3(h°CCt — 1PBB,Y) (L agse) + £%1aoBo Co (V,01)
+ Bkjci(VkVﬂ)i)] dS = 0.

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-046-9

INTEGRAL FORMULAS 381

3. The case in which " is a conformal Killing vector field. We assume
that 9" is a conformal Killing vector field, that is,

(3.1) ogvgji = Vﬂ)i + Vivj = 2pg,-i,
where p = (1/m)V 2%, and consequently
(3.2) —.-gp{ jhi} = V]-Vﬂ)h + Kkjihvk = 52”1 + a’llpj - phgji’

where p; = V;p, p* = p;g®™. In this case, (2.5) and (2.10) become

(3.3) f ah,” dS + nf pdS =0,
N N

and

(3.4) f [W"Voh + (BV By )v: + ph" — Ky juBy2"B?'C"
N
- lbv'ubh'aav + lcvhbcvvb] as = 0,
respectively. From (3.2), we have
B“Ci(vkvﬂji) Bkjci(_Klkjivl + gxip; + g0k — gkjpi)
= "—Klkjﬂ)lBiji —_ npiCi.

Substituting this into (2.11), we find

f [pkaa - phaa + nglchbiji(Vj'ui) - Klk]'i'uszjCi - nPiCi] as = 0’
N
or

(3.5) f [npC* + Kpjut*B'C" — g1.,,B,’C,'(V0:)]1dS = 0.
N

4. The case in which ¢" is a conformal Killing vector field and
(V.By")v; = ah.. The conformal Killing vector field 9* can be expressed as

(4.1) v = B + Clay,

along the submanifold N, where a,+1 = . Thus, from equations (1.9) of
Gauss and (4.1), we have

(VeBo')v: = hopu - ot
= hcb'a+ hcbn+2'an+2+ oo+ hcbm'am-

We assume in the following that

(42) hcb n+2 * Ont2 + . e + hcb m * Oy = 01
that is,
4.3) (V.By)v, = ahe.
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The condition (4.2) or (4.3) is satisfied if

(4.4) Reyny2 =0,..., heym =0,

or

(4.5) Qs =0,..., an=0,

or

(4.6) Beavure =0,..., hepnrs =0, Quisr1 = 0,...,a, = 0.
If (4.4) is satisfied, then equations (1.9) of Gauss take the form

4.7) V. By = h,C",

which means that the van der Waerden-Bortolotti covariant derivative
V .B," of By" is in the direction of mean curvature vector. If (4.5) is satisfied,
then (4.1) takes the form

(4.8) o = B + aCh,

which means that the conformal Killing vector field 9" is contained in the
linear space spanned by vectors tangent to the submanifold NV and the mean
curvature vector. This case has been considered by Katsurada and Nagai [11].
We notice that the condition (4.2) or (4.3) is automatically satisfied for the
case of hypersurface.

Now, if we assume (4.3), then we have, from (3.4),

@9) [ BT+ @b + ot — Koy BIC”
N

- lbuvbhaav + lcvhbcvvb] s =0,
where 9% is the tangent part of 2, that is,
(4.10) vk = B = " — Clv,.

5. The case in which ¢" is 2 conformal Killing vector field, (V B,)v; =
ah., and the mean curvature vector is parallel with respect to the
connection induced in the normal bundle. We now assume that 2" is
a conformal Killing vector field, (V.B,%)v; = ah. and, moreover, the mean
curvature vector H* = (1/n)g®V B," is parallel with respect to the con-
nection induced in the normal bundle.

In this case, we have (1.14) and consequently, from (3.3), (4.9), (3.5),

we obtain
(5.1) ha“fadS—i—nfpdS:O,
N JvN
(52) J:V [athhcb + phaa -_ Kkjihﬂ’kBjich] as = 0,
(5‘3) f [npzcz + KkjihkajiCh] as = O,
N
respectively.
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Forming the difference (5.2)— (5.1) multiplied by (1/%)%.°, we find

(54:) f a(th - 1 heeg0b> <hcb - 1 hddgcb> dS - f .Kkj:m'z),kBjiCh dS = 0.
N n " N

Thus if a # 0 has definite sign and Ky ;;,#0'*B7*C* = 0, then ki = (1/1)h g,
which shows that the submanifold N is umbilical with respect to the mean
curvature normal. Thus we have the following result.

THEOREM 5.1. Suppose that an orientable Riemannian manifold M admits a
conformal Killing vector field v*. If a closed and orientable submanifold N of M
satisfies (4.2) or (4.3), the mean curvature vector is parallel with respect to the
connection induced in the normal bundle, a # O does not change the sign, and

(5.5) KkjihvlkBjiCh =V,
then the submanifold is umbilical with respect to the mean curvature normal.

We notice here that condition (5.5) is automatically satisfied when M is a
space of constant curvature (see Katsurada and Nagai [11]).

We now assume that A/ admits a homothetic Killing vector field 2%, that is,
p = const. Then we have from (5.3)

f KkjihkajiCh dS =0
N
or

f Kkjih'l)lkBﬂCh as + f Kkjﬁﬂ)"kBjiCh ds = 0,
N N

where #''* is the normal part of »*. Thus the condition (5.5) in Theorem 5.1

can be replaced by
(5.6) Ky *BIiCh = 0.
If, moreover, (4.5) is satisfied, that is, if 2" has the form
" = B 4+ oC?,

then (5.4) becomes

f a<h°b bt l heagw) (hcb - l hddgcb> as + f Kkji;ﬂ)”kBjiCh dS = 0,
N n n N

f Oll:<kcb - 1 heegw> <hcb - 1hddgcb> + chﬂthBﬂCh:, asS = 0.
N n n

Thus condition (5.5) in Theorem 5.1 can be replaced by
Kk“thBjiCh = 0,

or

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-046-9

384 KENTARO YANO

or
(5.7) _KkjithBajCiBbhgcb = 0.

This condition has the following geometrical interpretation. We choose %
mutually orthogonal unit vectors X;, X, ..., X, tangent to the submanifold
and consider the sectional curvatures v(C, X1), v(C, X2),...,v(C, X,).
Then (5.7) means that the sum of these sectional curvatures is zero.

If N is a hypersurface, then (5.7) can be written as

Kj,-CjCi = 0,
(see [15]).
6. Submanifold of codimension 2 in an (z + 2)-dimensional Eucli-

dean space. We consider a submanifold N of codimension 2 in an (n + 2)-
dimensional Euclidean space E and let the local expression of N be

(6.1) X = X(u%),

where X is the so-called position vector field.
We put

(6.2) X, = 9,X;

then the metric tensor g, of N is given by

(6.3) gov = X, X,

where X . - X, denotes the inner product of X, and X,.
If we put

VoXb = ach - {cab}Xa,

then the mean curvature vector field is given by

L.
(6.4) H == g"VX,

We assume that H # 0 and choose the first unit normal C to the sub-
manifold NV in this direction and denote by D the second unit normal.
Then the equations of Gauss can be written as

(6.5) VX = heoC + kD,
where (1/7)h,° is the first mean curvature of NV and
(6.6) 2% = 0.

The equations of Weingarten take the form
6.7) v.C = —h'X,+ I.D,
(6.8) VD = —k X, — I.C.

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-046-9

INTEGRAL FORMULAS 385

From the Ricci identity,
ViV Xy — V VX, = — K" X,
we have, using (6.5), (6.7), and (6.8),

(Vahey)C + hep(—ha*Xo + D) + (Vakey)D + key(—ka"X, — 1,0)
- (Vchdb)c - hdb(_hcaXa + ch)
- (Vckdb)D - kdb(—kcaXa - ZCC) = —chbaXay

from which

(6.9) Koo = hahoy — hlhay + kaker — kokan,
(6.10) Vaher — Vihay — laikey + Lekap = 0,
(6.11) Vakey — Vikay + lihey — lehay = 0.

Equations (6.9) are those of Gauss and (6.10) and (6.11) those of Codazzi.
In a similar way, from the Ricci identity

VchC - VchC = 0,
we find

(612) lec - Vcld + hdahca - hcakda = 01

which are equations of Ricci.
Now the position vector X is expressed as

(6.13) X = X2* + aC + 8D,
and consequently we have
X.= (haoC + kD)o’ + X Vo* + (Vo) C + a(—h X, + I.D)
+ (VB)D + B(—k "X, — 1.C),

from which

(6.14) Vs = g + aboy + Bk,
(6.15) Ve + bat® — I8 =0,
(6.16) VB + kv’ + la = 0.

From (6.14), we have
ngvcvb = n + ah,®,

from which, integrating over XV,

(6.17) nf as + f ahy dS = 0.
N N

We next put

(6.18) wy, = %y,
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from which
Ve, = (Vchba)va + hba(vcva)y
ngVcwb (Vchac)va + hba(vbva)y
V'V + lkov" + k" + ahbakba + 6hbakbay

by virtue of (6.10) and (1.14). Thus, integrating over N, we find

(6.19) f [0°VaheS + Lk, + R + ah™hyy + BEky] dS = 0.
N
From (6.15), we have

VeV + Vc(hbava) - (Vclb)ﬁ - LV =0,
Vcha "‘I— Vc(hbav“) i (Vclb)ﬁ + lb(km‘v" + lca) = 0,

from which
2 Via + Vo (he'v*) — (V)8 + kol + [ % = 0.

Integrating over NV, we obtain

(6.20) J:V [alJ* — B(VI®) + ky,lD"]dS = 0.
We now assume that

(6.21) (VX)) - X = ahy,

which means that

(hcbc + kcbD) (Xa'va + aC + BD) = ahcbv
or

(6.22) Bk = 0.

We also assume that
1 cb
Va(; g Vch>

is tangent to the submanifold, which means that
Vo(ha'C) = (Voha®)C + ho"(—he’ Xy + 1.D)
is tangent to the submanifold, that is to say,
(6.23) h,* = const # 0, I, = 0.
Thus, taking account of (6.3) and (6.22), we have, from (6.17) and (6.19),

(6.24) nf as + haaf adS =0,
N N

(6.25) f (2 + ah™hy,1dS = 0.
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Forming the difference (6.25) - (6.26) multiplied by (1/7)h°, we find

6.26) fa@“—lm?QGm—l%%)dS=Q
N n n

Thus, if @ # 0 does not change the sign, we have
h’cb = (]-/n)haagcby
from which we have the following result.

THEOREM 6.1. Assume that a closed and orientable submanifold N of co-
dimension 2 in an (n + 2)-dimensional Euclidean space satisfies:

(Vch) - X = ahey,

V‘(i gb“VbXa> s tangent to N,

and that o % 0 does not change the sign; then the submanifold is umbilical with
respect to the mean curvature normal.

Since N is umbilical with respect to the mean curvature normal, we can put
(627) hcb = Ncvs
where ) is a constant different from zero. Since %% = \6,* and /., = 0, we have
from (6.7)
V.(C+A\X) =0,
from which

(6.28) X+%C=Cm

where Cy is a constant vector, from which we can conclude that the sub-
manifold NV is on a sphere with centre at Co and with the radius 1/|A|. From
(6.5), we see that the equations of Gauss for N as a hypersurface of a sphere are

”VCXZJ = kcbDy

which shows that N is minimal in the sphere. Thus we have the following
result.

TaEOREM 6.2. Under the same assumptions as in Theorem 6.1, the submanifold
N is a minimal hypersurface of a sphere.
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