HYDRATION STRUCTURE (OF EXCHANGEABLE Cu²⁺ IN VERMICULITE AND SMECTITE

(Received 9 April 1976)

The nature of adsorbed Cu²⁺ ions on various layer silicates has recently been investigated by electron spin resonance (esr) methods (Clementz et al., 1973; McBride and Mortland, 1974; McBride et al., 1975). An important result of these studies has been that the distorted octahedral $Cu(H_2O)_6^{2+}$ complex is oriented differently in smectite and vermiculite interlayers. This fact has been attributed at least partly to the strong interaction between the hydration water of Cu²⁺ and the vermiculite surface (McBride et al., 1975). Thus, Cu²⁺-saturated vermiculite has two interlamellar layers of water with the principal axes of the $Cu(H_2O)_6^{2+}$ ions oriented near 45° to the *ab* plane of the vermiculite planes (Clementz et al., 1973). It is not known, however, if Cu²⁺ will orient similarly on vermiculites largely exchanged with other cations. In addition, there have been no comparisons made between the esr spectra of Cu²⁺ on vermiculites and smectites despite the different bonding environments expected for Cu²⁺ adsorbed on these two minerals. This study compares published esr data of exchangeable Cu²⁺ with data obtained on Cu²⁺-doped vermiculite.

The high charge of Llano vermiculite in the tetrahedral layer (chemical formula given by Clementz *et al.*, 1973) requires that the average interionic distance between exchangeable divalent cations be ≈ 7 Å. Thus, broadening of the Cu²⁺ esr signal in Cu²⁺-saturated vermiculite due to magnetic dipole-dipole interactions produces a poorly defined-spectrum (Clementz *et al.*, 1973). An attempt was made to produce a sharper spectrum by doping small amounts of Cu²⁺ into Na⁺- and Mg²⁺-vermiculite. Although the spectra obtained (Figs. 1, 2) were not as distinct as those recorded for Cu²⁺ doped into Mg²⁺-hectorite (McBride *et al.*, 1975), they were detailed enough to permit calculation of the principal g-values and the hyperfine splitting parameters (A/c).

The Mg² -vermiculite, exchanged near the 5% level with Cu^{2+} , had a d(001) spacing of 14.2 Å as determined by X-ray diffraction on an oriented sample air-dried on a glass slide. The Cu^{2+} esr spectrum of this vermiculite (Fig. 1) demonstrated little orientation dependence as oriented vermiculite films were aligned in the magnetic field, H, by the method of Clementz et al. (1973). This result indicates that the $Cu(H_2O)_6^{2+}$ ligand axes are aligned near a 45° angle to the ab plane of the vermiculite. Evidently, $Cu(H_2O)_6^{2+}$ is oriented similarly in the vermiculite interlayer for both Cu^{2+} -saturated vermiculite and Cu^{2+} -doped Mg²⁺-vermiculite. This result is expected, since the d(001) spacings of the Cu²⁺ – and Mg²⁺ –vermiculite are the same. There is some indication that the g_{\perp} component of the esr spectrum is more intense when the ab plane of the vermiculite is parallel (||) to the magnetic field, H, than when it is perpendicular (\perp) to H (Fig. 1). This suggests that the z-axis of $Cu(H_2O)_6^{2+}$ is inclined at an angle somewhat greater than 45° to the ab plane of vermiculite.

The Na⁺-vermiculite, doped near the 5% exchange level with Cu²⁺, had a d(001) spacing of 11.9 Å. The esr spectrum of an oriented film of this sample (Fig. 2) indicated, from the pronounced orientation dependence of the spectrum, that the z-axis of the hydrated Cu²⁺ was perpendicular to the vermiculite *ab* plane. This alignment is readily explained if it is concluded that hydrated Cu²⁺ ions must lose both axial water molecules, forming planar $Cu(H_2(D)_4^{2+})$, in order to penetrate the interlayer of Na⁺-vermicu lite. The octahedral $Cu(H_2O)_6^{2+}$ complex, at the 5% level of exchange, is incapable of occupying an interlamellar region of Na⁺-vermiculite composed of a mono-layer of vater molecules.

Solvent's other than water can alter the interlamellar orientation of Cu^{2+} complexes on layer silicates (Berkheiser and Mortland, 1975). Thus, the Cu^{2+} -doped Mg^{2+} -vermiculite', when wetted in pyridine, produced a Cu^{2+} esr spectrum with the z-axis of the Cu^{2+} -pyridine complex perpendicular to the vermiculite *ab* plane. Since the *d*(001) spacing was: 14.0 Å, it is likely that a planar Cu^{2+} complex with four pyridine molecules produced the orientation observed.

Comparisons between the Cu²⁺ spectra for vermiculite and smectite show some fundamental differences. The Cu²⁺-doped Na⁺-vermiculite and Cu²⁺doped Na⁺-montmorillonite have similar d(001) spacings with planar Cu(H₂·O)⁴₄ ions aligned in the plane of the approximate monolayer of interlamellar water (Table 1). Despite this stereochemical similarity of Cu²⁺, the values of g_{\parallel} and A/c are significantly different in the two minerals (Table 1). While g_{\parallel} is larger in the vermiculite than in the montmorillonite, A/c is smaller in the vermiculite.

morillc nite, A/c is smaller in the vermiculite. The Cu²⁺-doped Mg²⁺-vermiculite has a somewhat lower d(001) spacing than the Cu²⁺-doped Mg²⁺-hectorite, a fact that might be attributed to the different orientation of Cu(H₂O)²⁺ in the two minerals. In hectorite, hydrated Cu²⁺ is oriented with the z-axis perpendicular to the *ab* plane (McBride *et al.*, 1975), while in vermiculite the z-axis is near 4.5° to the *ab* plane (Fig. 1). Also, g_{\parallel} is larger while A/c is smaller for the Mg²⁺-vermiculite compared to Mg²⁺-hectorite (Table 1). It is apparent that

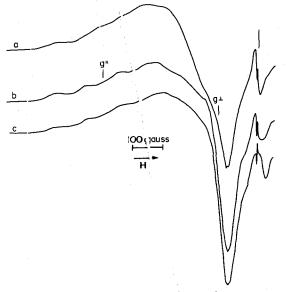


Fig. 1. Cu^{2+} esr spectra of Cu^{2+} -dop ed Mg²⁺-vermiculite films (air-dry) oriented with the *ab* p lane (a) 90° (\perp) (b) 45° and (c) 0°(\parallel) to the magnetic field *H*. The positions of g_{\parallel} and g_{\perp} are indicated, and the free electron resonance position (g = 2.00) is indicated by \bowtie vertical line.

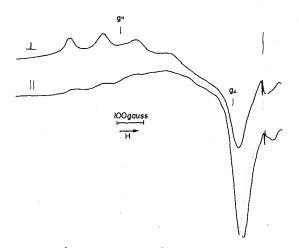


Fig. 2. Cu^{2+} esr spectra of Cu^{2+} -doped Na⁺-vermiculite films (air-dry) oriented with the *ab* plane perpendicular (\perp) and parallel (\parallel) to *H*. Positions of g_{\parallel}, g_{\perp} and g = 2.00 are indicated by vertical lines.

the properties of the layer silicate as well as the nature of the dominant exchange cation affect the bonding structure of Cu^{2+} .

The data of Table 1 reveal that, in general, g_{\parallel} is larger and A/c is smaller for Cu^{2+} adsorbed on vermiculite compared to Cu^{2+} adsorbed on smectites. It has been shown that, as the Cu^{2+} -ligand bond becomes more covalent, g_{\parallel} and g_{\perp} must decrease while A/c increases (Kivelson and Neiman, 1961). The data suggest, then, that Cu^{2+} is more

Table 1. Esr and X-ray diffraction dat a for various airdried layer silicates containing exchangeable Cu²⁺

Layer silicate*	d(001) Spacing (Å)	9 11	g_{\perp}	A/c (cm ⁻¹)
Cu ²⁺ -hectorite [†]	12.4	22.34	2.08	0.0165
Mg^{2+} -hectorite [‡] (~5% Cu ²⁺ -doped)	15.0	2.335	2.065	0.0156
Na^+ -montmorillonite (10% Cu ²⁺ -doped)	(11.0)	2.33	2.08	0.0149
Cu ²⁺ -vermiculite [†]	14.2	2.40	2.10	0.0115
Mg^{2+} -vermiculite (~5% Cu ²⁺ -doped)	14.2	2.40	2.09	0.0123
Na ⁺ -vermiculite ($\sim 5\%$ Cu ²⁺ -doped)	11.9	2.39	2.07	0.0138

* The montmorillonite used was the Upton, Wyoming clay and the vermiculite was from Llano, Texas. The unit cell formulae of these minerals are reported by Clementz *et al.* (1973).

† Data from Clementz et al., 1973.

‡ Data from McBride et al., 1975.

The bracketed d(001) specing represents a randomly interstratified X-ray diffraction peak.

covalently bonded in Mg²⁺-hectorite than in Mg²⁺-vermiculite. A similar conclusion is implied for Cu²⁺ in Na⁺montmorillonite and Na⁺-vermiculite (Table 1). The esr parameters for Cu²⁺ in aqueous solution (-8°C) have been determined to be $g_{\parallel} = 2.39$, $g_{\perp} = 2.07$, and $A/c = 0.0142 \text{ cm}^{-1}$ while in 60% glycerine-40% water (-20°C), the parameters have been calculated as $g_{\parallel} = 2.40$, $g_{\perp} = 2.10$, and $A/c = 0.0128 \text{ cm}^{-1}$ (Poupko and Luz, 1972). Since g_{\parallel} is the most sensitive indicator of covalency (Kivelson and Neiman, 1961), it is concluded that aqueous Cu²⁺ resembles Cu²⁺ adsorbed on vermiculite more than Cu²⁺ adsorbed on smectites (see g_{\parallel} values of Table 1).

It is suggested that surface oxygen atoms of vermiculite, being capable of forming strong hydrogen bonds to water (Farmer and Russell, 1971), prevent maximum covalent bond formation between Cu^{2+} and the hydration water. The surface oxygens of smectite, having little capability to hydrogen bond, permit optimum covalent interaction between Cu^{2+} and water. As previous i.r. (Farmer and Russell, 1971) and est (McBride *et al.*, 1975) spectroscopy have indicated, the position of charge in the layer silicates can thereby alter the orientation of hydrated cations on silicate surfaces. The strong hydrogen bonding of $Cu(H_2O)_6^{2+}$ and $Cu(H_2O)_4^{2+}$ in vermiculite may be the factor producing est parameters similar to those for Cu^{2+} in aqueous solution. However, hydrated Cu^{2+} adsorbed on smectites can bond only weakly through its water molecules to the surface oxygens, and is chemically less similar to hydrated Cu^{2+} in solution.

Department of Agronomy, Cornell University, Ithaca, NY 14853, U.S.A. MURRAY MCBRIDE

REFERENCES

- Berkheiser, V. and Mortland, M. M. (1975) Variability in exchange ion position in smectite: dependence on interlayer solvent: Clays & Clay Minerals 23, 404-410.
- Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M. (1973) Stereochemistry of hydrated copper (II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: J. phys. Chem. 77, 196-200.
- Farmer, V. C. and Russell, J. D. (1971) Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions: Trans. Farad. Soc. 67, 2737-2749.
- Kivelson, D. and Neiman, R. (1961) Esr studies on the bonding in copper complexes: J. chem. Phys. 35, 149-155.
- McBride, M. B. and Mortland, M. M. (1974) Copper (II) interactions with montmorillonite: evidence from physical methods: *Soil Sci. Soc. Am. Proc.* **38**, 408–415.
- McBride, M. B., Pinnavaia, T. J. and Mortland, M. M. (1975) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces: J. phys. Chem. **79**, 2430–2435.
- Poupko, R. and Luz, Z. (1972) Esr and nmr in aqueous and methanol solutions of copper (II) solvates. Temperature and magnetic field dependence of electron and nuclear spin relaxation: J. chem. Phys. 57, 3311-3318.