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ON CHARACTERIZING INJECTIVE SHEAVES 

DAVID E. DOBBS 

1. I n t r o d u c t i o n a n d n o t a t i o n . Let T be a Grothendieck topology, Ab 
the category of abelian groups, and S the category of Ab-valued sheaves on T. 
ft is known tha t S is an abelian A Bo category with a set of generators [2, 
Theorem 1.6(i), p. 30] and, hence, has injective envelopes [10, Theorem 3.2, 
p. 89]. Consider an object F of S. Two necessary conditions tha t F be injective 
in 5 are tha t the values assumed by F are injective in Ab (i.e., divisible abelian 
groups) [2, Corollary 2.5, p. 17; Miscellany 1.8(h), p. 33]; and tha t F is 
cohomologically trivial (dubbed "flask" in [2, p. 39]), in the sense tha t the Cech 
cohomology groups Hn({Ui—+ V\, F) vanish for each n ^ 1 and each cover 
{ Ui —» V) in T [2, Theorem 3.1, p. 19]. In this note, we seek instances in which 
these necessary conditions are jointly sufficient. 

Our motivation is a result of Martinez [9] on cohomology of profinite groups 
which, as translated in Proposition 1 below, implies sufficiency of the above 
conditions in case T is the étale topology of Spec(&), where k is a field. If T 
corresponds to a topological space X (as, e.g., in [14, p. 193]), sufficiency is 
readily established in case X is either discrete or indiscrete (Remark 4) , but 
fails in general (Example 3). Our main result (Theorem 6) establishes suffi
ciency for F arising from a Boolean space X. A corollary yields, for any pro-
finite group G, a non trivial injective-preserving left exact functor from the 
category of discrete G-modules to the category of Ab-valued sheaves on G. 

The author is indebted to his colleague W. F. Keigher for some st imulat ing 
conversations about this paper. 

2. R e s u l t s . Since any profinite group may be realized as the Galois group of 
a Galois field extension [16, Theorem 2], the motivating result of Mart inez 
[9, Proposition 4] may be translated as follows. 

PROPOSITION 1. Let T be the sub-Grothendieck topology of the étale topology of 
Spec(&), constructed from a Galois field extension L/k as in [5, p. 39]. (If L is 
a separable closure of k, then T is the étale topology of Spec(k).) Fhen F (as above, 
an object of S) is injective in S if (and only if) the following two conditions hold: 

(a) F (Spec K) is injective in Ab, for each finite Galois subextension K/k of 
L/k; and 

(b) the Cech cohomology group /ZV(Spec(2£), ^0 = 0> whenever i = 1 ,2 and 
K/k is a finite subextension of L/k. 
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Proof (sketch). Let G = gal(L/k). The equivalence between 5 and the 
category of discrete G-modules (cf. [5, Corollary 5.4, p . 54; 14, Proposition 71, 
p. 207]) permits F to be identified with a discrete G-module M. In view of the 
construction of the equivalence (especially, of M* in [5, p. 24]) and the defini
tion of the Krull topology on G, we see t ha t (a) is equivalent to t ha t par t of 
Mart inez 's criterion for injectivity which specifies t ha t Mu be divisible for 
each open normal subgroup U of G. After subjecting the remaining pa r t of 
Mart inez 's criterion to [9, Proposition 2] for translat ion, we obtain the condi
tion tha t the profmite group cohomology H^V, M) vanish whenever i = 1, 2 
and V is an open subgroup of G. I t remains only to identify the preceding 
condition with (b) . T o tha t end, let K be the subextension of L/k such tha t 
V = gal (L/K) and observe from [5, p. 175] (with F = <j>M and K "chosen") 
t ha t H*(V, M) ^ # T

z ' (Spec( .K) , F), to complete the proof. 

Note tha t condition (b) in Proposition 1 is ostensibly weaker than the re
quirement tha t F be cohomologically trivial, as the Cech group HT

n(Y, F) is 
defined as the direct limit of the Cech groups Hn({ Yt —> F } , F), the covers 
being ordered by refinement, as in [2, Definition 3.3, p. 21]. Moreover, (a) 
does not posit injectivity of all values of F. As Remark 4 and Theorem 6 also 
indicate, various contexts often admi t affirmative results in which such weaker 
conditions characterize injectivity; however, Example 3 will develop a nega
tive result in which "cohomologically t r ivial" is s t rengthened to "f labby" 
(in the sense of [15, p . 58]). 

We pause to apply, and comment about , the conditions in Proposition 1. 

Example 2.(i) In the context of Proposition 1, take L/k to be C / R ; then, 
T is the étale topology of Spec ( R ) . As in [5], it is harmless to think of F as 
an R-based topology, the objects of whose underlying category are the finite 
products of copies of C and R. Note t ha t the units functor U is an object of 5 ; 
similarly, the functor UC (to employ the notat ion of [4, p. 48]), given on an 
algebra A by (UC)(A) = L / (C(g) R , 4 ) , is also an Ab-valued jH-sheaf. We 
claim tha t UC is injective in S. 

Indeed, condition (a) is readily verified: (UC)(R) = [ / (C) , (UC)(C) ^ 
[ /(C) X / / ( C ) , and both are divisible groups, since C is root-closed. As for (b) , 
first note tha t fly (Spec (C) , UC) = i ^ ( { S p e c ( C ) -> Spec (C)} , UC) = 0 
for i > 0. Moreover, fly (Spec (R) , UC) = # ' ( { S p e c ( C ) -> Spec (R)} , UC) 
is the Amitsur cohomology group i f * (C/R , UC) ~ Hl(C (g)R C / C , U) ; since 
there are C-algebra homomorphisms C —•> C ® R C and C ® R C —> C, the 
fundamental homotopy proper ty for Amitsur cohomology ([1, Lemma 2.7; 
2, Proposition 3.4, p. 22]) implies t ha t the identi ty map on Hl(C ® R C / C , U) 
factors through ff^C/C, U). Thus , HT*(Spec(C), UC) = 0 for all i > 0, to 
establish the above claim. 

Consider the natural transformation a: U —* UC induced by the embeddings 
A —» C ® R A. Although UC is injective and a is a monomorphism in 5 , we 
next show tha t a is not an injective envelope, i.e., t ha t a is not essential in 5. 

https://doi.org/10.4153/CJM-1977-100-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-100-4


INJECTIVE SHEAVES 1033 

To tha t end, let G = g a l ( C / R ) and observe tha t the discussion in [5, pp. 
48-49] identifies a with the homomorphism 0: U(C) -> ( t / C ) ( C ) = U(C ® 

R C ) of (necessarily discrete) G-modules given by 0(a) = 1 ® a. (Note tha t 
0 is a G-map since G acts on the second tensor factor of f/(C ® R C ) , according 
to [5, p. 49].) Finally, if co is a primitive cube root of unity, then jco <8> 1, 
co2 ® 1, 1 0 1} is a G-submodule of C/(C ® R C ) which meets the image of f3 
trivially (as co and co2 are nonreal) ; thus 0 is not essential, and so neither is a. 
I t would be convenient to have an explicit construction for the injective 
envelope of U. 

(ii) We now proceed to establish independence of the conditions (a) and (b) 
in Proposition 1. First, we revisit a context mentioned by Rim [12, Remark, 
p. 708] (also cf. [11, p. 257]). Let T be constructed as above from a proper 
extension L/k of finite fields; take F in S to be UL (again using the notat ion of 
[4, p . 48]). Observe tha t F does not satisfy (a), since F(k) = U{L) is not a 
divisible group. However, F does satisfy (b) : it is a mat te r of evaluating 
H{(L/K, F) for i = 1,2 and K any field between k and L, and these groups 
vanish, by using homotopy as in par t (i). (For another example—essentially 
Rim's—with the same T, take F = U. Again (a) fails, bu t (b) holds: 
Hl(L/K, U) = 0 by Hilbert 's Theorem 90, and H2(L/K, U) is the trivial split 
Brauer group B{L/K). The H2 computat ion may also be effected by group 
cohomology ([3, Theorem 5.4; 13, p. 141]) since every element of K is a norm 
from L.) 

For yet another example showing tha t a cohomologically trivial sheaf need 
not assume injective values, this time in the finite topology of any field (as 
defined in [5, p . 105]), take F to be Au (constructed as in [5, pp. 93-94]), with 
A nondivisible. The required properties of F are given in [5, Chapter I I , 
Propositions 1.3 and 4.7(a) , Theorem 4.5]. 

Next, to show tha t (a) does not imply (b), let T arise from a finite cyclic 
^-dimensional field extension L/k with Galois group G, and let F correspond 
to a trivial G-module M which is divisible and has nontrivial w-torsion. As 
F(K) — M for each field K between k and L (see construction of M* in 
[5, p. 24]), F satisfies (a). (Indeed, all values of F are injective, since [5, 
Proposition 5.2, p. 51] shows tha t F is additive, in the sense of [3, p. 30]). 
However, (b) fails since HT

l(Spec(k)y F) ^Hl(L/ky F) 9^Hl(G, M) ^ 
{x in M: nx = 0} 7e- 0. 

(iii) For T as in Proposition 1, conditions (a) and (b) do not guarantee 
injectivity of an Ab-valued T-presheaf F (although (a) and (b) remain neces
sary conditions for injectivity in the category of Y^presheaves). Indeed, [6, 
Theorem 3.2] provides an addit ive presheaf F on the étale topology of Spec(Q) 
such tha t all values of F are injective, and enough Amitsur cohomology in F 
vanishes [6, Corollary 3.5] in order to assure tha t F satisfies (b) ; however, 
there is a cover whose H1( — , F) is nontrivial [6, Theorem 3.2], whence .Fis not 
injective. The moral is tha t the vanishing of the direct limit Cech groups 
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HT*(—, P) does not guarantee vanishing of the Cech groups H*(—, F) taken 
with respect to individual covers. In view of such pathology, it would be 
interesting to obtain an analogue of Proposition 1 for presheaves. 

Henceforth, T will arise from an ordinary topological space X, with S again 
denoting the sheaf category. 

Example 3. Consider the two-point space X = {x, y\, whose open sets are 
(/>, X and {x}. Define P in 5 by sett ing F(X) = Q and F({x\) = Q / Z , with 
the restriction map F(X) —> F({x}) being the canonical epimorphism, T. NOW, 
F is flabby and, hence, cohomologically trivial; and, of course, all the values 
of F are injective. Howrever, we claim tha t F is not infective. 

Indeed, define P in S by sett ing P(X) = Q 0 Q / Z and P({x}) = Q / Z , 
with the restriction map P ( X ) —> P({x} ) being the second projection, 7r2. 
Consider the monomorphism u: F —•> P in 5 given by z*x = (1, 7r) and zi^} = 1, 
Were F injective, there would be a natura l t ransformation v: P —> Z7 such tha t 
ww = 1. Then wx wrould be the unique retraction of ux in Ab, namely (1, 0 ) ; 
similarly, v{x] = 1, and natura l i ty of v would require 7r(l, 0) = 7r2, the desired 
contradiction. 

Sobered by the preceding example, wc pause to record success for the trivial 
topologies. 

Remark 4. If X has either the discrete or the indiscrete topology and F in 5 
is such tha t F(X) is divisible, then F is injective. Indeed, if X is indiscrete, 
the sheaf condition requires only tha t the tested presheaf send </> to 0, a natural 
transformation Pi —» P2 of sheaves amounts only to a group homomorphism 
Fi(X) —> F2(X), and the test diagrams for injectivity of P i n S thus degenerate 
to test diagrams for injectivity of F(X) in Ab. As for the case of discrete X, 
define P in 5 by P(U) = TlxÇU P({x}) for each (open) subset U of X, with 
the restriction maps being the canonical projections. Observe tha t the sheaf 
proper ty of P (applied to the cover of U by singleton sets) shows t ha t F is 
natural ly equivalent to P ; bu t P is injective in 5 [10, Chapter X , Lemma 1.1 
and Corollary 7.2], to complete the proof. (In fact, one proves similarly: the 
(flabby) sheaf Q, constructed on an arb i t rary X in [10? p. 257], is injective if 
and only if its global sections, Q(X), form a divisible group.) 

Example 5. Let R be any commuta t ive ring (with 1). In [8], Magid constructs 
a topological space X and a sheaf F in the corresponding 5 such tha t F(X) ~ 
B(R), the Brauer group of R. Then F is injective if (and only if) B(R) is 
divisible. 

T o begin the proof, recall t ha t X = S p e c ( / ( P ) ) , where I(R) is the Boolean 
ring of idempotents of R (with sui tably redefined addi t ion) . In this generality, 
the proof must await Theorem 6, which applies since X is a Boolean space. 

A special case, which can be settled now, arises when R is the product of 
finitely many rings, P i , . . . , R„, each having divisible Brauer group. (For 
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instance, local classfield theory [13, Proposition 6, p. 200] permits the p-adic 
fields as suitable Rf.) Then I(R) is isomorphic to the product of n copies of 
Z/2Z, and so X is a discrete n-point space. As F(X) ^ £ ( i ? i ) © . . . © B(Rn), 

Remark 4 implies tha t F is injective. 

By way of generalizing the discrete case in Remark 4 and completing the 
proof begun in Example 5, we now present our main result. For us, a Boolean 
space will mean a Hausdorff space in which the compact open sets form a basis; 
for the purposes of Corollary 7, note tha t any compact Hausdorff totally dis
connected space is Boolean (but not all Booleans are compact) . 

T H E O R E M 6. Let F be an Ab-valued sheaf on a Boolean space X. Then F is 
injective in S if (and only if) F(X) is divisible. 

Proof. We begin by establishing a fragment of cohomological triviality: if F 
is a compact open subset of X, then HT^Y, F) = 0. Indeed, since any compact 
subspace of a Hausdorff space is closed, the direct limit defining HT

n(Y, F) 
may be taken cofinally over finite covers by clopen (i.e., closed and open) sets 
which may be further assumed mutually disjoint. For any such cover { Yt —» Y), 
the coboundary in the corresponding Cech cochain complex al ternates between 
0 and isomorphisms, giving i7w({Ff—» F} , F) = 0 for all n > 0. Thus , 
HT

n(Y, F) = 0 for n > 0 (more than was claimed, the preceding argument 
being valid for any sheaf F). 

Let u: F —> I be an injective envelope in S, with sheaf cokernel I —* C. 
If F i s open in X, there is an exact sequence 

0 - > F(Y) - » J ( K ) -> C(Y)->HTi(Y, F) - > 0 ; 

bu t HT
l ( F, F) Q* H?1 ( F, F) [2, Corollary 3.6, p. 38] ; so, if F is also compact, 

the preceding observation yields C(Y) as the cokernel in Ab of uY. Note F(Y) 
is divisible for clopen F, since the sheaf condition for F, applied to { F —» X, 
X\Y->X], gives 

F P O ^ F ( F ) © F(X\Y). 

Hence, it suffices to prove tha t uY is essential in Ab for each compact open F ; 
for then uY is an isomorphism (being split essential), C(Y) = 0, C is the zero 
sheaf (having vanished on a basis), u is an isomorphism in S, and .F is injective, 
as required. 

Indeed, it is enough to show tha t ux is essential in Ab. To prove this reduc
tion, take F compact open in X and H a nonzero subgroup of I(Y). We must 
show, given ux essential, tha t uY(F(Y)) P\ H 9^ 0. The inclusions i: Y —> X 
and j : X\Y—> X induce, as above, an isomorphism 

/ = (It, Ij): I{X)-*I(Y) © I(X\Y); 

set K =f~1(H®0). By essentiality of ux, there exists b in F(X) such 
tha t 0 7* ux(b) G X . Since f(ux(b)) ^ 0, project onto / ( F ) to obtain 0 ^ 
(Ii)(ux(b)) = uY((Fi)(b)) fz H, as required. 
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Suppose tha t ux is not essential. Then , in part icular, ux is not surjective, and 
the injectivity of F(X) provides a nonzero subgroup M of I(X) such tha t 
I{X) = ux(F(X)) © M. Define an Ab-valued presheaf P on X by sett ing 
P(X) = M and P(Y) = 0 for any open Y j± X. Observe tha t P is a sub-
presheaf of 7; let v: I —» 7 / P = J be the canonical epimorphism. Note tha t 
zw: F —> / is a monomorphism in the presheaf category; indeed, ker (^ x w x ) = 0 
since ux(F(X)) C\ M = 0, while, for open F ^ X , ker(^FMy) = ker(wF) = 0. 
If 7# is the associated sheaf to 7 and w: J —* J# the canonical natural t rans
formation [2, p. 24], then (left) exactness of # implies t ha t (vu)* = wvu is a 
monomorphism in S. Essentiali ty of u in 5 now implies t ha t wv is a monomor
phism in S and, hence, also a monomorphism in the presheaf category. Then 
wxvx is a monomorphism in Ab, although ker (^ x ) = M ^ 0. This contradic
tion reveals t ha t ux is essential, to complete the proof. 

Recall t ha t the category of discrete modules over a profinite group G is 
equivalent to the category of Ab-valued sheaves on a Grothendieck topology 
associated to G([2, Example (0.6 bis) ; 5, Corollary 5.4, p. 54; 14, Proposition 
71, p. 207]). Our final results t reat the natural question of relating the former 
category to the category of Ab-valued sheaves on G itself. 

COROLLARY 7. Let G be a profinite group, M the category of discrete G-modules, 
P the category of Ab-valued presheaves on G, and S the category of Ab-valued 
sheaves on G. Then there exists an additive, left exact and fully faithful functor 
i: M —> P such that the (additive, left exact) composite j — H: M —> S preserves 
infectives. 

Proof. For each object Moi M, let i(M) be the object of P given by i(M) (U) 
= Mu for each open set U of G. (The restriction map i(M)(U) —> i(M)(V), 
arising from an inclusion V C U of open subsets of G, is taken to be the in
clusion Mu —> Mv.) If h: M —> TV is a morphism in M , then i(h) is taken to be 
the natural transformation i(M) —» i(N) which, a t level U, is the restriction of 
h to Mu —» Nu. Clearly, i is a functor M - » P. 

Verification tha t i is addit ive and left exact may safely be omit ted. (Note 
t ha t j = §i is then also addit ive and left exact, as # surely is.) T o show tha t i is 
faithful, suppose tha t h: M —> N in M satisfies i(h) = 0. Then h restricts 
to the zero map Mu —> Nu for all U and, since discreteness of M gives M = 
U Mu, we conclude h = 0, as needed. Fullness of i also follows readily from 
discreteness of M. 

I t remains to show that , if M is injective in M, then j(M) is injective in S. 
As G is, in particular, a Boolean space, injectivity of j(M) in S amounts , by 
Theorem 6, to divisibility of the abelian group j(M)(G). Before calculating 
j(M)(G), we next establish divisibility of some related groups. 

W e claim tha t , if W is an open normal subgroup of G and if g 6 G, then 
MWo is divisible. Indeed, since (W, g), the subgroup of G generated by W and 
g, is again open and Mw° = Mf w,0), it suffices to prove tha t Mu is divisible for 
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each open subgroup U of G. This , in turn, follows since M corresponds to an 
injective sheaf H on a. sub-Grothendieck topology of the étale topology of 
Spec(&), where k is a field, and corresponding to U there is a finite separable 
field extension K/k satisfying i ï (Spec (if)) = Mu. 

In order to apply the preceding observation to a computat ion of j(M)(G), 
first recall t ha t # is built by the "double + " construction [2, pp. 24-30]. Note , 
for any nonempty open subset W of G, tha t i(M)+{W) = HT°(W, i(M)) = 
lim_» H°([Wk->W}, i(M)) = lim_ ( H I ^ ) = lim_» Mw = Mw; similarly, 
i(M)+{^>) = 0. (The last assertion reveals why replacement of i by j was 
necessary; namely, i(M) is typically not a sheaf, as i(M)(4>) = M.) Now, 
consider any element (3 in j(M)(G) = HT°(G, i(M)+) = lim^ H°({Wk->G\, 
i(M)+). Since G is compact, we may assume tha t 13 is the class of an element b 
in H°({Wk —> G], i(M)+), where {Wk —> G) is a finite i r redundant cover of G 
by n basic open sets. I t is convenient to use the basis of clopens of the form 
Wg where W is an open normal subgroup of G and g Ç G, for then b is in 
r R = i i(M)+(Wk) = I I M^* which, by the remarks of the preceding paragraph, 
is a divisible group. 

Now, if m is a positive integer and one seeks y 'mj(M) (G) such tha t my = ft, 
then the preceding comment supplies c in IT MWfc such tha t mc = b. We would 
like to take y to be the class of c, bu t cannot (yet) , since torsion in M may 
prevent c from being in the difference kernel H°({ Wk —» G), i ( M ) + ) . T o circum
vent this possibility, refine { Wk —» G} to the cover { F* —» G}, where Fw = Wn 

and 7 , = Wk\(Wk+i U . . . U W ,̂) for all U ^ » - l . As the 7 , are 
mutual ly disjoint and i(M)+(</>) = 0 , we have H°({ Vk -> G}, i (M)+) = 
I l ÂfFfc, which ^o^v contain c (along with b and the rest of IT MWk). Now it 
makes sense to refer to the class of c in j(M)(G), and such a choice for 7 
assures my = fi, thus establishing divisibility. 

We close with three observations about the functors introduced in Corollary 
7. 

Remark 8. (a) Since i is fully faithful and left exact, i reflects injectives. 
T h e next example illustrates tha t j does not, in general, reflect injectives. 
Accordingly, j is not fully faithful (and we obtain an amusing proof t ha t 
neither is #). 

For the example, take G and M as in the last par t of Example 2 (h) . Apply
ing the sheaf condition îorj(M) to the cover of G by singletons leads to j(M) (G) 
^U0ÇG j(M)({g}); now, j(M) ({g}) = H°({{g} -+ {g}}, i (M)+) = i ( M ) + 
({#}) = M° = M. Hence, j(M)(G) is divisible and, by either Remark 4 or 
Theorem 6, j{M) is injective in 5. Howrever, M is not injective in M, since it 
was seen earlier tha t Hl(G, M) 7^ 0. 

(b) I t is worthwhile to note tha t j is never the zero functor. Indeed, if M 
is a nonzero bu t trivial G-module, then j(M)(W) 7e 0, for any nonempty 
clopen subset W of G. For a proof, observe tha t covers by finitely many, 
mutual ly disjoint nonempty clopens are cofinal in the family of covers of W\ 
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for such a cover H°(\Wk -» W},i(M)+) = Il Mw* = II M, a nonzero group 
which, by [2, (1.4) and (1.5), pp. 26-27], survives in the direct limit defining 
j(M)(W). 

(c) Wi th regard to the possible (right) exactness of j , we shall first obtain 
a formula for Rnj, the n-th r ight derived functor of j . Fix an open subset W of 
G\ let r = Tw: S —> Ab be the section functor given by T(F) = F(W) for 
each sheaf F. By Corollary 7, j and T satisfy the conditions of Grothendieck 's 
composite functor theorem [7, Théorème 2.4.1]; thus, for each M in M, one 
obtains a first-quadrant spectral sequence 

E2
pq = (RpT)((R9j)(M)) =$En = (Rn(Tj))(i¥). 

The initial term E2
pq is the Grothendieck cohomology groupHT

p(W, (Rqj) (M) ) ; 
since the clopens form a basis for the topology of G, the parenthetical remark 
in the first paragraph of the proof of Theorem 6 combines with [7, Corollaire 4, 
p. 176] to permit E2

pq to be identified with HT
P(W, (Rqj)(M)). (As G is para-

compact , cf. also [15, Chapter VII I ] . ) 

Assume, moreover, t ha t W is clopen. The aforementioned parenthetical re
mark now implies t ha t the spectral sequence collapses: E2

pq = 0 whenever 
p > 0. Hence, £2°'w ^ En for all n; i.e., (Rnj)(M)(W) ^Rn(Twj)(M), the 
promised formula for (Rnj)(M) on the basis of clopens. In part icular, j is 
exact if and only if Twj is exact for each clopen subset W of G. 

Finally, we claim tha t , in case G is finite, j is exact if and only if G is the 
trivial group. Indeed, suppose tha t j is exact. Consider a short exact sequence 
0 —> M —> I —> C —» 0 in M, with / injective. Let W = {g| be a singleton 
subset of G. Exactness of Twj implies exactness of the sequence 0 —» j(M) (IT) 
—» j ( ^ ) ( J^0 ~ ^ i ( ^ ) ( H / ) ~> 0, t ha t is (arguing as in (a ) ) , exactness of 0 —> 
M° —> I9-+ Cg-^>0. (One may also see this wi thout appeal to spectral sequences, 
by arguing tha t the sequence of stalks, 0 —>j(M)g —*j(I)g —> j{C)g —> 0, is 
exact.) Hence, Hl(E, — ) = 0 for each cyclic subgroup F2 of G. By dimension-
shifting, each E has strict cohomological dimension 0 and hence, by [14, 
Proposition 16], is trivial. Then G is trivial, proving the "only if" par t of the 
claim. 

Conversely, if G is trivial, then exactness of j amounts to exactness of 
r { i } j , since T^j = 0 is exact. Now, T^j converts an exact sequence Mi —> 
M2 -> Mz from M into the sequence ( M i ) 1 -> (M2)

1 —> (M3)1 in Ab. Tr ivia l i ty 
of G permits M to be identified with Ab, so tha t the two sequences become 
identified, making inheritance of exactness obvious, and completing the proof. 

We conjecture t ha t j fails to be (right) exact for any infinite profinite 
group G. 
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