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Abstract

This paper presents a new design of a reconfigurable miscrostrip patch antenna based on a
substrate-integrated waveguide (SIW). The antenna is resonant at the millimeter-wave
(mmWave) 5G spectrum. The tuning technique consists of using a nematic liquid crystal
(K15). An adjustable frequency band from 30.191 to 32 GHz is obtained, giving a tunable
range of Δfr = 1.809 GHz. The maximum gain and efficiency reach the values of 7.61 and
9.07 dBi and 93 and 94%, respectively. The proposed SIW antenna loaded with liquid crystal
was fabricated and tested. The experimental results correlated well with the simulation; how-
ever, the measured reflection coefficient plot shows a shift of the tuning range of 284MHz,
which is an acceptable outcome compared to simulation. A new approach of adopting the
magnetic field as a technique to tune the resonance frequency has been used. The structure
is characterized by its design simplicity, compactness, and fabrication process. The proposed
antenna proves that the liquid crystal improves the performance of the antenna in the Ka band
for 5G applications and satellite communication systems.

Introduction

Over the last few years, wireless applications have grown exponentially with many connected
objects. This growth requires many advancements in communication systems with high data
rate. Communication systems operating at millimeter-wave frequencies can satisfy the need for
high channel capacity. These systems are attracting researchers in the field of development and
manufacture of antennas, filters, among other subjects.

Although the microstrip antennas have some drawbacks such as low efficiency, low power,
and a very narrow frequency range [1, 2], their benefits outweigh their disadvantages as they
display a myriad of conveniences among which are their ease of installation, small size, low
weight, low cost, and compatibility with flat surfaces. Furthermore, there are methods that
can be employed to increase their gain and efficiency, such as antenna arrays [3], electromag-
netic band gap structures [4], superstrate layers [5, 6], and substrate-integrated waveguide
(SIW) technology. Merging such kinds of antennas with the SIW technology can be used
to combine the performance [7, 8]. SIW technology might be defined as flat structures fabri-
cated in a way that rows of plated holes connect the top and bottom faces in a periodic man-
ner. Because of its ease of fabrication, its small size, light weight, reliability, and low cost, this
technology is preferred. In addition, the flat shape of the SIW allows the integration of passive
and active components, so that it is incorporated onto the same plate.

The use of SIW technology has a direct effect on improving the performance of microstrip
antennas in terms of gain and efficiency [9, 10]. To take advantage of the improved properties
of the microstrip patch antenna based on SIW and to enhance the fundamentally limited char-
acteristics such as narrow bandwidth, several techniques have been proposed such as substrate
elimination [11, 12], and mode stacking [13–16], and tunability [17].

A reconfigurable antenna can be used to cover a wide band. In fact, several methods for
adding reconfigurability exist, including the use of Varactor diodes [18, 19], Pin diodes
[20], RF-MEMS microelectromechanical systems [21, 22], and agile materials [23–29].

Nevertheless, the use of diodes or RF-MEMS for tuning purposes at millimeter-wave fre-
quencies poses implementation challenges due to the small size of the antennas and their
high cost. However, the use of agile materials is a promising method.

In [25], an aperture-coupled microstrip patch antenna that uses liquid crystals for a
reconfigurable resonance frequency is presented. The tunable frequency range is from 26.9
to 30.08 GHz, with bandwidth and efficiency reaching Δfr = 3.18 GHz and 83%, respectively.
The measured gain reaches 3.9 dBi. In [20], a planar folded slot antenna includes PIN diodes
as a tuning technique, the tunable frequency is changed from 27.65 to 29.1 GHz, the band-
width obtained is Δfr = 1.45 GHz, and the maximum gain value reached is 6.4 dBi. In [26],
a ferrite loaded SIW antenna tuned with a magnetic field, the resonant frequency can be
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adjusted from 8.98 to 9.74 GHz, Δfr = 760 MHz, and the mea-
sured gain reaches 5 dBi. In [27] an SIW slot antenna loaded
with ferrite slabs is demonstrated. The frequency and polarization
can be tuned by varying the applied magnetic field. The tunable
frequency range is >8.1% in the lower frequency band (8.98–
9.74 GHz) and 5.5% in the upper frequency band (9.98–10.54
GHz). The antenna maximum gain reaches 6.34 dBi.

This work presents a new design of a microstrip SIW patch
antenna for tunable resonant frequency based on the use of nem-
atic liquid crystals (K15). The first section of this paper deals with
the design of the proposed antenna’s size optimization. According
to the simulation results, a good reflection coefficient S11 and an
appropriate realized gain are presented. The second part covers
the process of making the proposed antenna reconfigurable by
using nematic liquid crystals (K15), creating a cavity in the
ground plane where liquid crystal is injected. In addition, a new
approach where the resonant frequency is varied using magnetic
field created by two magnets is also discussed. The third part
highlights the measurement results of the fabricated antenna
and the comparison with the simulation.

Properties of liquid crystals

Liquid crystal is a dielectric material that is commonly used by the
microwave community in the nematic state due to its ability to
change its dielectric properties (permittivity) by applying an elec-
tric or a magnetic field. Changing the direction of the liquid crys-
tal molecules by an electric or magnetic field automatically
changes the dielectric permittivity. Therefore, injecting the LC
into an antenna between the top face and its ground plane is
the key to reaping the benefits of the liquid crystal by adjusting
the resonance frequency. In the literature, such control is usually
performed by applying an electrical field. In this work, such vari-
ation is done by applying a magnetic field. This method is adapted
because of the possibility to tune the mentioned parameters by dif-
ferent means, which could be in the form of electrically powered
magnets, permanent magnets, which for the latter does not require
any power, and in such case can be varied by simply readjusting the
distance between them and the structure. This is an advantageous
novel method that is not found in literature.

In this study, the liquid crystal molecules will be oriented
through a magnetic field, which is equivalent to using an
electric field. In [30] the critical magnetic field must be reached
(Hc = 1000 Oersted) in order to generate the Frederiks transition
in a nematic liquid crystal sample with a thickness of 0.1 mm
characterized by positive anisotropy (Δε = ε||− ε⊥ > 0). As the
volume of the sample thickens, the required critical magnetic
field decreases. In this paper, the amount of the nematic liquid
crystal (K15) used is 0.3 mm thick. Furthermore, two magnets
are used to create a magnetic field with a strength of 1188
Oersted at a distance of 6 mm from the sides of the liquid crystal
layer to ensure that the liquid crystal molecules settle parallel to
the applied field.

In this work, the magnets are positioned at a distance of d = 6
mm on the lateral sides of the antenna to reach the desired mag-
netic field strength to make the liquid crystal molecules take posi-
tions parallel to the applied field and to reach the parallel
permittivity ε⫽, as shown in Fig. 1(a). To eliminate the magnetic
field (H = 0 Oersted), and thus obtain the perpendicular permit-
tivity ε⊥ of the liquid crystal (K15), it is sufficient to remove
the two magnets. In this work, the weight of the magnets is not
considered.

Anisotropy is an important property that characterizes all
liquid crystals, it is defined as the difference between the parallel
and perpendicular permittivity cited in [30] and given by the rela-
tionship below:

DEr = Er|| − Er⊥ (1)
Thus, the following equations represent the perpendicular per-

mittivity and the parallel permittivity mentioned in [31, 32]
(Table 1):

Er⊥ = Er(H = 0) =
Er|| 0 0
0 Er⊥ 0
0 0 Er⊥

⎛
⎝

⎞
⎠ (2)

Er|| = Er(H ≥ Hc) =
Er⊥ 0 0
0 Er⊥ 0
0 0 Er||

⎛
⎝

⎞
⎠ (3)

Antenna design

Proposed SIW microstrip patch antenna without liquid crystal

Antenna substrate parameters such as thickness, relative permit-
tivity, and loss tangent are critical to the performance of
millimeter-wave antennas. The topology of the new SIW patch
antenna, shown in Fig. 2, has been inspired by the reference
[10, 34, 35].

In fact, the primary role of the SIW cavity at the back of the
patch antenna is to effectively suppress surface wave spurious sig-
nals, thereby confining the energy beneath the patch. In this per-
spective, it is essential to study the leakage characteristics of SIW
cavities as a closed resonant structure before they can be added to
antenna topologies with open radiation. Here, we address the
design issues for the implementation of SIW cavities, including
the effect of the via hole diameter and spacing, by identifying suit-
able designs. Indeed, in order to design the SIW cavity patch
antenna presented in Fig. 2 and to determine its most important
design parameters, we used the classical equations (4)–(8) cited in
[1] to determine the length and width of the rectangular radiative
patch, the latter is supported by an SIW cavity designed
using equations (9)–(11) cited in [18, 36, 37] in the fundamental
electrical transverse mode TE110. Metallized vias of diameter
d = 0.4 mm and the distance between two vias s = 0.6 mm,
which satisfies the conditions (12)–(14) cited in [38], were used
to construct an SIW cavity in the planar substrate to form a shield
cavity around the patch element. The patch is placed on one side
of the substrate. The SIW cavity is formed using four rows of
metallized vias, in order to obtain a behavior similar to a classic
metal cavity. The operating frequency selected for the antenna
design was 28 GHz, a 0.41 mm-thick substrate of Rogers
RT4003C type with permittivity εr = 3.55 is used. The antenna
is connected by a 50 ohm microstrip line. The geometric para-
meters of the proposed antenna are shown in Fig. 2 and listed
in Table 2.

The width of the patch w is calculated using the equation given
below:

Wpatch = c

2fc
������������
(Er + 1/2)

√ (4)

where fc is the center frequency, c the speed of light, and εr is the
relative permittivity.
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εreff is given by the following equation:

Ereff = Er + 1
2

+ Er − 1
2

1+ 12
h
w

( )[ ]−1/2

(5)

where h is the thickness of the dielectric substrate.

ΔL, the extended incremental length of the patch, can be cal-
culated using the equations given below:

DL
h

= 0.412
(Ereff + 0.3)((w/h)+ 0.264)

(Ereff − 0.258)((w/h)+ 0.8)
(6)

The effective length of the patch can be determined by the
following equation:

Leff = c

2fc
�����Ereff

√ (7)

The actual length of patch Lpatch can be determined by the
following equation:

Lpatch = Leff − DL (8)

The SIW cavity operates in the fundamental electrical trans-
verse mode TE110. The relation between the operating frequency

Fig. 1. (a) Configuration of the parallel and perpendicular
permittivity. (b) Evolution of the effective relative permit-
tivity and loss tangent in general case of liquid crystal as
functions of the applied bias magnetic field. [30–32].

Table 1. The characteristics of the nematic liquid crystal (K15) [33]

Permittivity Value Loss tangent Value

εr⊥ 2.72 tan δ⊥ 0.03

εr|| 2.9 tan δ|| 0.03

Fig. 2. Design of the proposed SIW microstrip patch antenna.

Table 2. Dimensions of the proposed SIW microstrip antenna

Parameter Value (mm) Parameter Value (mm)

h 0.41 Lf 5

Ws 4.5 Wf 0.9

Ls 4.5 L1 4.6

W 3.55 L2 2

L 2.66 L3 3.65

Lt 1.1 Lsiw 6

Wt 0.1 Wsiw 7.2

d 0.4 s 0.6

Wp 6
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and the length and width of the cavity is revealed by relations
(9)–(11) given in [18, 36, 37]:

fmnp = 1

2
������
mrEr

√
������������������������������
m
Leff

( )2

+ n
Weff

( )2

+ p
h

( )2√
(9)

Leff = Lc − 1.08d2

s
+ 0.1d2

Lc
(10)

Weff = Wc − 1.08d2

s
+ 0.1d2

Wc
(11)

The diameter of the interconnecting via (d) and the spacing (s)
between them must meet the following conditions [38]:

d ,
lg

5
(12)

s ≤ 2d (13)
d
lg

, 0.1 (14)

At this stage, simulation of the antenna is conducted to determine
its performances in terms of reflection coefficient and realized
gain before adding the liquid crystal, which is done in the second
section with the prototype.

The proposed antenna design without the liquid crystal is
shown in Fig. 2. The simulation obtained reflection coefficient
plot of the antenna and the gain pattern realized without liquid
crystal are presented in Figs 3 and 4, respectively.

The proposed antenna without liquid crystal provides |S11|> +
10 dB impedance matching throughout a bandwidth ranging from
27.66 to 28.61 GHz, corresponding to a wide bandwidth of 950
MHz with a center resonant frequency equal to 28.14 GHz. This
value is sufficient for 5G operations.

Figure 3 illustrates a good reflection coefficient S11 equal to
−31 dB at the resonance frequency 28.14 GHz, and a wide band-
width approximately equal to 1 GHz.

Figure 4 shows the realized gain pattern polar plot which is
directional in the E-plane (phi = 0°) and also directional in the
H-plane (phi = 90°) at the resonant frequency of 28.14 GHz
with a maximum value of 6.88 dBi and directivity value of
7.53 dBi. In addition, the proposed antenna exhibits excellent
radiation efficiency of nearly 91.40% at the resonant frequency.

The proposed antenna performs well without the liquid crys-
tal. In the next section of this manuscript, a parametric study is
performed to determine the best location to inject the nematic
liquid crystal between the radiative patch and the ground plane
to establish reconfigurability.

Proposed SIW microstrip patch antenna loaded with liquid
crystal

As mentioned in the introduction, injecting the liquid crystal into
an antenna between the top face and the ground plane is the key
to exploiting its advantages by adjusting the resonant frequency

Fig. 4. The simulated realized gain patterns of the proposed SIW microstrip antenna
at 28.14 GHz. (a) E-plane (phi = 0°). (b) H-plane (phi = 90°).

Fig. 3. Simulated reflection coefficient of proposed SIW microstrip antenna without
liquid crystal.

Fig. 5. Reflection coefficient S11 as a function of the
thickness of the liquid crystal layer.
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[28, 29, 31, 32]. In this context, the position of the first layer of the
liquid crystal should be limited only by the via of the SIW cavity.
Moreover, a parametric study was carried out to determine the
dimension of the optimal position for the injection of the liquid
crystal, which allows a good adjustment of the reflection coeffi-
cient of the antenna. During the parametric study, it was found

that the thickness of the LC layer has a significant effect on the
matching level of the antenna, as shown in Fig. 5.

Finally, the liquid crystal layer is placed under the patch to
obtain the following dimensions: (LLC = 4 mm, WLC = 4.4 mm,
z = 0.3 mm) (Fig. 6).

Measured and simulated results discussion

Frequency tunability

The fabricated antenna prototype is shown in Fig. 7, a conceptual
overview of the SIW antenna is shown in Fig. 8, and the fabricated
SIW antenna loaded with nematic liquid crystal K15 is shown in
Fig. 9. The reflection coefficient of the fabricated SIW antenna
loaded with liquid crystal (K15) is measured in free space.

After adding a liquid crystal layer (K15) to the antenna with-
out applying magnetic field (H = 0 Oersted, the perpendicular
permittivity of the liquid crystal is therefore εr⊥ = 2.72), the
simulation results obtained in Fig. 10 show that the resonant
frequency increases from 28.14 to 31.716 GHz with reflection
coefficient |S11| = 20.7 dB while the measured results show that
the resonant frequency reaches 32 GHz with |S11| = 15.86 dB.

The simulation results show that the fabricated antenna loaded
with liquid crystal (K15) provides good impedance matching |S11|
> 10 dB when the magnetic field created by two magnets located
at 6 mm from both sides of the antenna (Figs 8 and 9; H = 1188

Fig. 6. Design of SIW microstrip patch antenna loaded
with nematic liquid crystal (K15).

Fig. 7. Fabricated prototype of the proposed SIW antenna. Fig. 8. Conceptual overview of SIW antenna loaded with nematic liquid crystal K15
under bias magnetic field created by two magnets.
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Oersted, the parallel permittivity of liquid crystal εr‖ = 2.9) with the
resonant frequency reaching 29.907 GHz at which the reflection
coefficient is |S11| = 34.72 dB. The measured results show that the
resonant frequency is at 30.191 GHz with |S11| = 28.46 dB.

The simulated tunable frequency varies from 29.907 to 31.716
GHz while the measured tunable frequency varies from 30.191 to
32 GHz. In both cases, the tunable frequency varies in a margin of

Δfr = 1.809 GHz. The proposed SIW antenna loaded with LC pro-
vides good impedance matching |S11| > 11 dB throughout the
whole tuning range.

The measured results are in good agreement with simulation,
with just a shifting of 284 MHz resulting from minor fabrication
and dielectric characteristics uncertainties, and port losses which
are not considered in the simulation.

Radiation performance

Figure 11 shows the simulated electric and magnetic field distri-
butions for the proposed antenna loaded with liquid crystal at
the resonant frequency, in the presence and absence of the

Fig. 9. Fabricated SIW antenna loaded with nematic liquid crystal K15 under bias
magnetic field created by two magnets.

Fig. 10. Simulated and measured reflection coefficient for different LC permittivities.

Fig. 11. Electric and magnetic field distributions at res-
onant frequency.

1615International Journal of Microwave and Wireless Technologies

https://doi.org/10.1017/S1759078723000302 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078723000302


applied magnetic field (H = 0 Oe; H = 1188 Oe). The colors
representing the field distribution on a logarithmic scale range
from dark blue (low density) through green and yellow to red
(high density). The variation of the E and H field distribution
between Figs 11(a) and 11(b) is related to the variation of the
relative permittivity of the liquid crystal. Indeed, the presence
of the applied magnetic field H = 1188 Oe is reflected in the
change of the relative permittivity of the liquid crystal layer
used from 2.72 to 2.9, which is the influencing parameter for
varying the resonance frequency.

Figure 12 illustrates the realized gain pattern of the SIW
antenna loaded with liquid crystal (K15) in three different
scenarios.

Fig. 12. Simulated realized gain patterns versus frequency at
H = 0 Oe and H = 1188 Oe.

Fig. 13. Realized gain versus frequency at H = 0 Oe and H = 1188 Oe.
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The first scenario is when the liquid crystal permittivity is
equal to εr⊥ = 2.72 and no field is applied at the resonant fre-
quency f = 31.716 GHz, as shown in Fig. 12(a). In the second
scenario, the liquid crystal permittivity reaches εr‖ = 2.9 and
the applied magnetic field is H = 1188 Oersted at the resonant
frequency f = 30.191 GHz, as shown in Fig. 12(b). It can be con-
cluded that the antenna generates an approximately directional
radiation pattern for the two main planes E-plane (w = 0°) and
H-plane (w = 90°) in simulation. In the third scenario, the same
conditions prevail as in the second scenario, but considering
that the two magnets are placed at a distance of 6 mm in a
field area close to the antenna. It can be seen from Fig. 12(c)
that the simulated radiation pattern is approximately the
same when the two magnets are not considered (Fig. 12(b)).
This can be explained by the role of the rows of metallized
vias, which form a shield that limits the generated radiation
pattern. It can be also noted that the realized gain patterns
are almost identical while the antenna is varied in terms of
frequency.

In Fig. 13, the maximum realized gain of the SIW patch
antenna at the resonance frequency f = 31.716 GHz (H = 0 Oe;
εr⊥ = 2.72) reaches a value of 9.07 dBi and the efficiency reaches
94.4%. Even if H = 1188 Oe is applied, resulting in εr‖ = 2.9 at
the resonant frequency f = 30.191 GHz, the realized gain reaches
7.61 dBi and the efficiency 93%, considering the two magnets
placed 6 mm apart close to the antenna. This roughly confirms
the predicted results without considering the magnets (the rea-
lized gain reaches 7.89 dBi and the efficiency 93.15%). It can
also be noted that the realized gain decreases from 9.07 dB to
7.61 dBi by applying the magnetic field.

Table 3 illustrates the performance of the proposed SIW
antenna compared to the performance of [20, 25, 26, 27] that
use different tunable techniques presented in literature. The pro-
posed SIW antenna loaded with liquid crystal (K15) has the high-
est gain value (7.61 dBi, 9.07 dBi) and a height radiation efficiency
reaching (93%, 94.4%), in simulation both are better than the
mentioned works. The measured reflection coefficient S11 param-
eter is peaking at −28 dB, better than those of the previously men-
tioned works. The simulation and measurement results of the
conducted work solidify the use of liquid crystals in millimeter
waves dedicated to 5G applications. The proposed antenna is
characterized by its simplicity and compactness. It also delivers
a good range of tunable frequency and excellent gain and

efficiency. The proposed SIW antenna loaded with liquid crystal
(K15) is thus suitable for many 5G and satellite communication
systems.

Conclusion

In this work, a novel magnetically tunable microstrip patch
antenna based on SIW technology loaded with nematic liquid
crystal (K15) is presented. To obtain frequency agility, the nem-
atic liquid crystal is injected in an optimal location between the
radiative patch and the ground plane. The tunable frequency is
obtained by exploiting a new method that consists in applying a
magnetic field created by two magnets. The proposed method
of generating a magnetic field by permanent magnets is due to
simplicity, since these magnets have a fixed shape and do not
need a source to generate a magnetic field. Additionally, if there
is a need to modify the strength of such field, mechanical solu-
tions can be adopted to change the placement of the magnets.
As a perspective, another method can be suggested to control
the magnetic field and therefore the frequency variation through
electrical excitation. One magnetic circuit of interest is the coils of
Helmholtz [39]. The resonant frequency varies from 30.191 to 32
GHz presenting a margin of ΔFr = 1.809 GHz. The peak gain
reaches simulated values of 7.61 and 9.07 dBi. The use of liquid
crystals in reconfigurable antennas is promising at millimeter-
waves dedicated to 5G applications and satellite communication
systems. The presented method is characterized by its simplicity
not only in the making process but also in tuning the resonant
frequency of the antenna. Unlike previously adapted methods, it
does not necessarily require external powering to tune the fre-
quency, and can be in fact based on different approaches.
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