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2 P. Broussous

1. Introduction

This work is a contribution to the study of distinguished complex representations for
Galois symmetric spaces over a non-archimedean local field. It may be viewed as a

continuation of [6] where the authors prove a particular case of Prasad’s conjecture on

the distinction of the Steinberg representation ([15], Conjecture 3, p. 77). However, even
though the Bruhat-Tits building will be used here as a geometrical tool as in [6], our

fundamental techniques will be that of integration of matrix coefficients, in the spirit of [5].

We restrict ourselves to the easy case where the symmetric space is of the form
H(E)/H(F ), where E/F is a quadratic unramified extension of non-archimedean local

fields and H a connected simple group defined and split over F. For simplicity sake, we

shall assume that H is simply connected. Indeed, in that case, the set of Iwahori subgroups

of H(E) identifies with the set of chambers in the Bruhat-Tits building of H(E), and this
makes our calculations less technical. However, our arguments should adapt easily to the

non-simply connected case.

Recall that a smooth complex representation (π,V) of H(E) is said to be H(F )-
distinguished if the intertwining space HomH(F ) (V,C) is non-zero, where C is a complex

line with the trivial action of H(F ). In this article, we study the distinction of Iwahori-

spherical irreducible representations (i.e., representations (π,V) such that VI �= 0), where
I is some fixed Iwahori subgroup of H(E). If (π,V) is such a representation, the Iwahori-

Hecke algebra HI of H(E) relative to I acts on M = VI via an irreducible representation

(r,M).

Our first result is the following.

Theorem 1.1 (Theorem 4.1). Let (π,V) be an Iwahori-spherical irreducible representation

of H(E). Let J be any Gal(E/F )-stable Iwahori subgroup of H(E). Then the obvious

restriction map HomH(F ) (V,C)−→HomC (V
J,C) is injective.

As a consequence, if Λ ∈ HomH(F )(V,C) is non-zero, then for any Gal(E/F )-stable

Iwahori subgroup J of H(E), there exists a vector v ∈ VJ such that Λ(v) �= 0.

The proofs of these results are based on a transitivity property of the action of H(F ) on
the set of chambers of the Bruhat-Tits building of H(E), which was a crucial ingredient

of [6].

We next assume, moreover, that (π,V) is a discrete series representation. Using the
fact due to Zhang [19] that H(E)/H(F ) is a very strongly discrete symmetric space, we

establish a second result.

Theorem 1.2 (Theorem 5.3). Let (π,V) be an irreducible Iwahori-spherical discrete
series representation of H(E). Let J be some Gal(E/F )-stable Iwahori subgroup of H(E)

and ν denote a Haar measure on H(F ).

Then (π,V) is H(F )-distinguished if, and only if, there exist v ∈ VJ , ṽ ∈ ṼJ , such that∫
H(F )

cv,ṽ(h)dν(h) �= 0,

where Ṽ is the contragredient representation and cv,ṽ is the coefficient of π attached to v

and ṽ.
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On the distinction of Iwahori-spherical discrete series representations 3

To turn the previous theorem into an effective criterion, we use the notion of generalized
Poincaré series attached to an Iwahori-Hecke algebra introduced by Gyoja [11]. Let

(W,S) be a Coxeter system with associated Hecke algebra H. Let Si, i = 1,...,m be the

intersections of the conjugacy classes of W with S. For each representation (r,M) of H,
Gyoja attaches a power series L(t1,...,tm,r) ∈ End(M)⊗CC[[t1,...,tm]]. Now assume that

H=HI is the Iwahori-Hecke algebra of H(E) relative to I and (r,M) is the representation

associated to the HI-module VI , for a representation (π,V) of H(E).

Theorem 1.3 (Theorem 7.1). Let (π,V) be an irreducible Iwahori-spherical discrete
series representation of H(E). Then π is H(F )-distinguished if, and only if,

L(1/qo,...,1/qo,r) ∈ End(M) is non-zero, where qo is the size of the residue field of F.

Our last result is concerned with the case where the discrete series (π,V) corresponds
to a degree 1 character of HI. Those representations were classified by A. Borel in [2]. It

is by using techniques borrowed from loc. cit that we prove the following: the value of

L(t1,...,tm,r) occuring in Theorem 1.3 can be calculated using a Macdonald’s Poincaré

series (cf. [14]). Using Macdonald’s formulas, we obtain the following:

Theorem 1.4 (Theorem 7.4). Let (π,V) be an irreducible Iwahori-spherical discrete

series representation of H(E) such that VI is 1-dimensional. If H is not of type G2, then

π is H(F )-distinguished if, and only if, it is the Steinberg representation. If H has type
G2, there are two representations satisfying the assumptions of the theorem: the Steinberg

representation and another one; they are both H(F )-distinguished.

In other words, the Steinberg representation of H(E) is the unique representation

satisfying the assumption of the theorem and which is H(F )-distinguished, except in
type G2 where there is another one.

The case of the Steinberg representation (originally D. Prasad’s conjecture) was

already established in [6] (where H is not necessarily assumed simply connected) and
in characteristic 0, Prasad’s conjecture was entirely proved by Beuzart-Plessis [1].

Macdonald’s formulas [14] allow only to calculate Gyoja L-functions L(t1,...,tm,r) when

r is a degree 1 character; this is why we are not able to give a classification of distinguished
discrete series representations when dimVI > 1.

In [16], Dipendra Prasad states a conjecture predicting the distinction of irreducible

smooth complex representations in the case of a general Galois symmetric space

H(E)/H(F ) (Conjecture 2 of loc. cit.). An irreducible smooth representation π of H(E)
conjecturally has a Langlands parameter φπ: WE ×SL2(C)−→ LG, where the Langlands

dual LG is a semidirect product WE � Ĝ, Ĝ being the complex dual of G = H(E).

Roughly speaking, the point of Prasad’s conjecture is to relate the H(F )-distinction of π
to properties of the parameter ϕπ. A precise formulation of this conjecture in our case

may be stated as follows (this formulation as well as the two following remarks are due

to Prasad himself).

Conjecture 1.5 (Prasad). Let E/F be a quadratic unramified extension of non-

archimedean local fields. Let H be a simply connected split simple group over F if −1

belongs to the Weyl group of H, and the unique quasi-split (but not split) group over F
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4 P. Broussous

which splits over E otherwise. (This ensures that the opposition group Hop of H =H(F ),

defined in [16], is split over F.) A Iwahori-spherical discrete series representation π of G=

H(E) has, by the work of Kazhdan-Lusztig, cf. [13], an L-parameter φ :WE×SL2(C)→ LG
which on WE factors through an unramified extension of E. Assume that the group of

connected components of the centralizer of the corresponding unipotent element in Ĝ

is an elementary abelian 2-group (which is known to be the case for all groups of type
Bn,Cn,Dn). Then π is distinguished by H =H(F ) if and only if

1. The restriction of φ to WE is trivial,

2. The representation π is generic. (Under condition (1), genericity should not depend
on the choice of the Whittaker datum.)

Further, if the conditions (1) and (2) are satisfied, then dimHomH (π,C) is the order

of the centralizer of φ(SL2(C)) in Ĝ, which by assumption, is a finite elementary abelian

2-group.

Remark 1. We relate the above conjecture to that in [16]. In the present case,
WF ×SL2(C) and WE ×SL2(C) can be replaced by 〈FrZ〉×SL2(C) and 〈Fr2Z〉×SL2(C),

where Fr is a Frobenius element of WF . Because of the hypothesis in the conjecture,

π0(Z ̂G(φ(SL2(C)))) being an elementary abelian 2-group, 〈Fr2Z〉 must land inside the
connected component of identity of Z

̂G(φ(SL2(C))). Hence, by the discreteness of the

parameter φ, Z
̂G(φ(SL2(C))) must be finite and therefore an elementary abelian 2-group,

and the image of 〈Fr2Z〉 under φ must be trivial, which is the conclusion in part (1) of the
conjecture. Further, the natural map from the component group of a lifted parameter φ̃

for Hop to the component group for φ is clearly an isomorphism. Hence, by the conjecture

of [16], the only π corresponding to the trivial character of the component group can be
distinguished, which is the conclusion in part (2) of the conjecture.

Remark 2. Here is the example of G2, which appears in this work but for which the

hypothesis in the conjecture above does not hold. There is a discrete series representation

π of G2(E) which has a one dimensional fixed vector for an Iwahori subgroup, which by
Reeder [17], page 480, corresponds to a subregular unipotent element with component

group isomorphic to S3 with the representation of the component group, the 2-dimensional

irreducible representation ρ of S3. It is thus a non-generic representation of G2 which is

distinguished by G2(F ) (by Theorem 7.4 of this paper). In this case, the representation
ρ of S3 has a fixed vector under any transposition in S3, thus confirming the general

conjecture of [16] in an example with a non-abelian component group.

It would be nice to check Prasad’s conjecture in our case. In this aim, one would have to

determine the Galois parameters of our representations, which are not known in general.
The article is organized as follows. After introducing the general notation in §1, in §2

we recall the models of Iwahori-spherical representations introduced in [2] and explain

how to deduce a very simple formula for the Iwahori-spherical coefficients. The bound on
the dimension of the space of H(F )-invariant linear forms is given in §3, and the fact that

test-vectors can be chosen Iwahori-spherical is proved in §4. In §5, we recall the definition
of Gyoja’s generalized Poincaré series, and we give Macdonald’s formulas. Finally, §6 is

https://doi.org/10.1017/S1474748024000185 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000185


On the distinction of Iwahori-spherical discrete series representations 5

devoted to establishing the numerical criterion in terms of Gyoja’s Poincaré series values
and to applying it to the case of degree 1 characters of the Iwahori-Hecke algebra.

I warmly thank Nadir Matringe and Dipendra Prasad for their help in writing this

article. I am grateful to the referee whose comments helped me to improve the content
of the manuscript.

2. Notation

Throughout the article, we use the following notation.

If X is a set, we denote by |X| its cardinal. If a group Γ acts on X and Γ′ is a subset

of Γ, XΓ′
denotes the subset of those x ∈X that are fixed by Γ′.

We let F denote a non-archimedean, non-discrete, locally compact field. We denote by

oF its ring of integers, by pF the maximal ideal of oF , and we set kF = oF /pF (residue

field), q0 = |kF |= pr, p being the characteristic of kF (residue characteristic).

We fix an unramified quadratic extension E/F and use the obvious pieces of notation
oE , pE , kE . We denote by θ the generator of the Galois group Gal(E/F ). We set q= |kE |,
so that q = q20 .

We fix a connected simple F -algebraic group H assumed to be split over F and simply
connected, and we write H =H(F ) for the locally compact group of its F -rationnal points.

We denote by G = ResE/FH the F -algebraic group obtained by Weil’s restriction of

scalars. It is semisimple and simply connected. We set G=G(F ) =H(E).
The Galois group Gal(E/F ) acts on G by F -rational automorphisms of algebraic group.

We still denote by θ the action of θ on G and G so that H = G
θ and H =Gθ. The pair

(G,H) (or the G-set G/H) is called a (Galois) reductive symmetric space.

We let XF (resp. XE) denote the Bruhat-Tits building of H over F (resp. over E ).
Recall that XE identifies canonically with the Bruhat-Tits building of ResE/F (H) over F.

As simplicial complexes XF and XE have dimension d, the F -rank of H. As a particular

case of building functorialities, there is an injection j : XF −→XE satisfying the following
properties:

(a) j is Gal(E/F )�H-equivariant,

(b) the image of j is X
Gal(E/F )
E ,

(c) j is simplicial and maps chambers to chambers.

We identify XF as a subsimplicial complex of XE , viewing j as an inclusion.

We fix a maximal F -split torus T of H and set TF = T(F ), TE = T(E). We denote
by Φ = Φ(T,H) the root system of T in H. Let WAff

F = NH(T )/T o
F be the affine Weyl

group of H relative to T, where NH(TF ) is the normalizer of T in H and T o
F the maximal

compact subgroup of TF . The group WAff
E is defined in the same way, and the inclusion

NH(TF ) ⊂ NG(TE) induces an isomorphism of groups WAff
F 	 WAff

E . In the sequel, we

abbreviate WAff =WAff
F =WAff

E .

Let AF (resp. AE) denote the appartment of XF (resp. XE) associated to T. It follows
from the construction of j that AF =AE . Fix a chamber Co of AF , and let IoF (resp. IoE)

denote the Iwahori subgroup of H (resp. the Gal(E/F )-stable Iwahori subgroup of G)

fixing Co. Since H is simply connected, these Iwahori subgroups are the (global) fixators
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6 P. Broussous

of Co. Let S ⊂WAff
F be the set of involutions corresponding to reflections in AF relative

to the walls of Co. Then, since H is simply connected, (IoF ,NH(TF )) (resp. (I
o
E,NG(TE)))

is a Tits system (or BN-pair) in H (resp. in G) with Coxeter system (WAff,S). We denote

by l the length function of W relative to the generative subset S. Recall that

|IoEwIoE/IoE |= ql(w), w ∈WAff .

Recall that the vertices of XE are naturally labelled by the elements of S. Since the

action of G preserves the labelling, it suffices to define the labels of vertices of Co. Then

if s ∈ S, the vertex fixed by the standard maximal parahoric subgroup IoE〈S\{s}〉IoE has
label s (here, 〈S\{s}〉 is the subgroup of WAff

E generated by S\{s}). If C is a chamber

of XE , the wall of C which does not contain the unique vertex of type s is said to be of

type s. If C and D are two chambers of XE , we write D ∼s C if D and C are adjacent
and if the wall D∩C is of type s.

We let HI denote the Iwahori-Hecke algebra of G relative to our choice IoE of Iwahori

subgroup. Recall that as a complex vector space, HI is the set of complex functions

of G which are bi-invariant by IoE and have compact support. It is endowed with the
convolution product defined by

u�v(g) =

∫
G

u(gx−1)v(x)dμ(x) =
∑

x∈Io
E\G

u(gx−1)v(x), g ∈G, u,v ∈HI,

where μ is the Haar measure on G normalized by μ(IoE) = 1. Recall that (ew)w∈WAff is a

C-basis of HI, where for w ∈WAff , ew denotes the caracteristic function of IoEwI
o
E . Recall

that we have the classical relations

(es+1)� (es− q) = 0, s ∈ S

ew �ew′ = eww′ if l(ww′) = l(w)+ l(w′), w, w′ ∈WAff

and that the es, s ∈ S generate HI as an algebra.
If f ∈HI, we define f̌ by f̌(x) = f(x−1), x ∈G. The map f �→ f̌ is an automorphism of

the vector spaceHI satisfying (f �g)̌ = ǧ � f̌ , f,g ∈HI. If (r,M) is a complex representation

of HI, we define its contragredient (r̃,M̃) in the dual M̃ of M by r̃(f) = tr(f̌), f ∈HI,
where t denotes the transposition.

In this article, representations of G, H or HI are always assumed to be in complex

vector spaces. If (π,V) is a smooth representation of G, (π̃,Ṽ) denotes its contragredient

(i.e., its smooth dual). If W is a complex vector space, W ∗ = HomC(W,C) denotes its
algebraic dual.

3. Iwahori-spherical representations: models and coefficients

In this section, we abbreviate I = IoE .
Let S(G) denote the abelian category of smooth representations of G and S(G)I denote

the full subcategory of those representations (π,V) that are generated by the fixed vector

set VI . Let HI−Mod denote the category of left HI-modules. If (π,V) is an object of
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On the distinction of Iwahori-spherical discrete series representations 7

S(G)I, then VI is naturally a left HI-module, so that we have a well-defined functor

M : S(G)I −→HI−Mod, (π,V) �→ VI .

It is now a well-known fact ([2],[8]) that M is an equivalence of categories; in other
words, the trivial character of I is a type for G in the sense of [7]. Moreover, if (π,V) is

admissible, we have M(Ṽ) =M(V)̃ : the functor commutes with the operation of taking

the contragredient.
A pseudo-inverse V for M may be constructed as follows (cf. [2]§4). Let us fix a left HI-

module M viewed as a representation (r,M) of HI. Let Cc(G/I) be the space of functions

on G which are right I -invariant and have compact support. This is naturally a right

HI-module and a smooth representation of G (by left translation) and both structures
are compatible. Hence, we may form the tensor product V(M) := Cc(G/I)⊗HI

M . Of

course, we have an isomorphism of left HI-modules M 	V(M)I ; it is explicitly given by

m �→ e1⊗m.
We shall need two other functorial constructions P, Po, considered by Borel in loc. cit.

§2. If (r,M) is a representation of HI, we set

Po(M) = {f ∈ C(G/I,M) f �u= r(u).f, u ∈HI},

where C(G/I,M) denotes the space of M -valued functions on G which are right
I -invariant. This space is acted upon by G via left translation, but the obtained

representation of G is not smooth in general; we denote by P(M)⊂Po(M) the subspace

of smooth vectors. By [2] Proposition 2.4, the map

νo : P(M)I =Po(M)I −→M , f �→ f(1)

is an isomorphism of vector spaces. Moreover, for m ∈ M , the element fm ∈ P(M)I

mapped onto m by νo is the function fe on G mapping any element of IwI, w ∈WAff ,

to q−1
w r(ěw).m, symbolically written by Borel as

fm =
∑

w∈WAff

ew q−1
w r(ěw).m. (1)

The tensor product Cc(G/I)⊗HI
M may be viewed as the quotient of Cc(G/I)⊗CM

by the G-invariant subspace generated by (f �u)⊗m−f ⊗r(u).m, f ∈ Cc(G/I), u ∈HI,

m∈M . We may identify Cc(G/I)⊗CM with the space Cc(G/I,M) of M -valued functions

on G which are right I -invariant. The bilinear G-invariant map

Po(M̃)×Cc(G/I,M)−→ C, (f,g) �→
∑

x∈G/I

〈f(x),g(x)〉M (2)

induces a well-defined G-invariant bilinear map

Po(M̃)×V(M)−→ C

whence a G-intertwining operator

ψM : Po(M̃)−→V(M)∗,

where ∗ denotes an algebraic dual. From [2] Proposition 2.6, we have the following.

https://doi.org/10.1017/S1474748024000185 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000185


8 P. Broussous

Proposition 3.1. Let (r,M) be a representation of HI. Then the intertwining operator

ψM : Po(M̃) −→ V(M)∗ is an isomorphism and restricts to an isomorphism

P(M̃)	V(M )̃.

Observe that if M is finite dimensional, V(M) is admissible and we have V(M )̃ 	
V(M̃). So exchanging the roles of M and M̃ , we obtain P(M)	V(M) as G-modules.

Let (r,M) be a finite dimensional representation of HI, and set (π,V) =V(r,M). We

make the canonical identifications VI = M and ṼI = M̃ . Recall that for m ∈ M and
m̃ ∈ M̃ , the corresponding coefficient cm,m̃ of V is the complex function on G defined by

cm,m̃(g) = 〈m̃,π(g).m〉V, g ∈G.

Let us observe that by construction, cm,m̃ is I -bi-invariant.

Corollary 3.2. For m ∈ M , m̃ ∈ M̃ , w ∈ WAff , the value of cm,m̃ on IwI is

q−1
w 〈m̃,r(ew).m〉M .

Proof. The vector m ∈ V corresponds to the function vm ∈ Cc(G/I,M) which has

support I and constant value m on I. The linear form m̃ corresponds to the function
fm̃ ∈ C(G/I,M̃) whose value on IwI, w ∈ WAff , is given by q−1

w r̃(ěw).m. Applying

the pairing formula (2), for w ∈ WAff , we have cm,m̃(w) = 〈q−1
w r̃(ěw).m̃,m〉M =

q−1
w 〈m̃,r(ew).m〉, as required.

We now describe a geometric model for the space Po(M̃) for a given representation
(r,M) of HI. We let Ch(XE) denote the G-set of chambers of XE and F(Ch(XE),M̃) the

space of M̃ -valued functions on Ch(XE). We let F(Ch(XE),M̃)r denote the subspace of

F(Ch(XE),M̃) formed of those functions f satisfying for all C ∈Ch(XE) and for all s ∈ S:

r̃(es).f(C) =
∑

D∼sC

f(D). (3)

Since G acts on Ch(XE) by preserving the labelling of vertices, F(Ch(XE),M̃)r is a

G-subspace of F(Ch(XE),M̃)

Proposition 3.3. The spaces Po(M̃) and F(Ch(XE),M̃)r are isomorphic as G-modules.

Proof. Since G acts transitively on Ch(XE) and the global stabilizer of Co is I, we may

identify C(G/I,M̃) with F(Ch(XE),M̃). Since {es s ∈ S} generates HI as an algebra,

a function f ∈ C(G/I,M̃) is in Po(M̃) if and only if f � es = r̃(es).f , for all s ∈ S. It
follows that Po(M̃) identifies with the space of functions f : Ch(XE)−→ M̃ satisfying

f �es = r̃(es).f . Now our result follows from [2] §4 Equation (6):

f �es(C) =
∑

D∼sC

f(D), f ∈ F(Ch(XE),M̃), s ∈ S. (4)
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On the distinction of Iwahori-spherical discrete series representations 9

4. Multiplicities

We continue to abbreviate I = IoE , a fixed Gal(E/F )-stable Iwahori subgroup of G.
We fix an irreducible Iwahori-spherical representation (π,V) of G. It is of the form

V(M), for some irreducible representation (r,M) of HI. The aim of this section is to give

a bound for the dimension of the intertwining space HomH (V,C), where C is acted upon
via the trivial representation of H.

We shall prove the following.

Theorem 4.1. The obvious restriction map HomH(π,C) −→ HomC(π
I,C) is injective.

In particular, we have

dimCHomH (V(M),C)� dimCM.

By Propositions 3.1 and 3.3, we have an isomorphism of vector spaces:

HomH (V(M),C) = (V(M)∗)H 	Po(M̃)H 	 F(Ch(XE),M̃)Hr .

Through this isomorphism, the restriction map HomH(π,C)−→HomC(π
I,C) corresponds

to the map F(Ch(XE),M̃)Hr −→ M̃, f −→ f(Co). Indeed, recall that π = V(M), where

V(M) is the image of Cc(G/I,M)	Cc(G/I)⊗M in the quotient Cc(G/I)⊗HI
M . Then

πI 	M corresponds to the images v̄m, m ∈M , where vm ∈ Cc(G/I,M) is the function

with support I and value m. For f ∈HomH(π,C)	Po(M̃)H and m ∈ πI 	M , we have

f(v̄m) =
∑

x∈G/I

〈f(xCo),vm(x)〉M = f(C0)(m).

Hence, we are reduced to proving the following result.

Proposition 4.2. A map f ∈ F(Ch(XE),M̃)Hr is entirely determined by the value f(Co)

(i.e., the mapping F(Ch(XE),M̃)Hr −→ M̃, f �→ f(Co) is injective).

To prove the proposition, we use the same tool that allowed us to establish the
multiplicity 1 property of the main result of [6] (Theorem 2):

Proposition 4.3 (François Courtès). Let d be a non-negative integer and C be a chamber

of XE at combinatorial distance d from XF . Let D
+ be a chamber of XE, adjacent to C

and at combinatorial distance d+1 from XF . Consider the wall A=D+∩C. The set CA

of chambers of XE containing A splits into two subsets: the set C+
A (resp. C−

A) formed of

those chambers at combinatorial distance d+1 (resp. d) from XF .

Then the stabilizer HA of A in H acts transitively of C+
A et C−

A. Moreover, we have

(|C−
A|,|C+

A|) =

⎧⎨⎩
(1,q2o)

or

(qo+1,q2o − qo).

Proof. This follows from [6] Proposition A1 and the proof of [9] Theorem 6.1.

Proof of Proposition 4.2. Let f ∈ F(Ch(XE),M̃)Hr . For a non-negative integer d, we let

Ch(XE)d denote the set of chambers in XE at combinatorial distance from XF less than
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or equal to d. In particular, Ch(XE)0 =Ch(XF), the set of chambers in XF . We prove by

induction on d that for all d� 0, the restriction of f to Ch(XE)d depends only on f(Co).

Our assertion holds for d = 0 since H acts transitively on Ch(XF). Assume it holds
for an integer d � 0. Let D be a chamber a combinatorial distance d+1 from XF . By

definition, there exists a chamber C adjacent to D and at combinatorial distance d from

XF . Use the notation A=D∩C, C−
A and C+

A as in Proposition 4.3. Let s be the type of
A. By Relation 3, we have

r̃(es).f(C) =
∑

E∈C−
A\{C}

f(E)+
∑

E∈C+
A

f(E) = (|C−
A|−1)f(C)+ |C+

A|f(D), (5)

where we used the fact that H acts transitively on C+
A and C−

A, and that f is H -invariant.

Hence, we have

f(D) =
1

|C+
A|

r̃
(
es− (|C−

A|−1)e1
)
.f(C) (6)

so that f(D) depend only on f(Co), as required.
Theorem 4.1 has the following nice consequence.

Theorem 4.4. Let (π,V) be an irreducible Iwahori-spherical representation satisfying

dimVI = 1. Then π has the multiplicity 1 property

dimCHomH (V,C)� 1.

5. Test vectors

Let us fix an irreducible square integrable (or discrete series) representation (π,V) of G.

By definition, for v ∈ V and ṽ ∈ Ṽ, the coefficient cv,ṽ: g �→ 〈ṽ,π(g).v〉V, g ∈ G, lies in
L2(G). Fix a Haar measure ν on H.

Proposition 5.1. For all v ∈ V, ṽ ∈ Ṽ, the integral∫
H

cv,ṽ(h)dν(h)

is absolutely convergent.

Proof. Indeed, by [10] Corollary 1.2, a Galois symmetric space as G/H is strongly

discrete: the restriction to H of a coefficient of an irreducible discrete series representation

of G lies in L1(H).

Following Zhang [19], for v ∈ V and ṽ ∈ Ṽ, we set

L(v,ṽ) =

∫
H

cv,ṽ(h)dν(h).

Then L: V× Ṽ−→ C is a bi-H -invariant bilinear form. For ṽ ∈ Ṽ, we set

Lṽ : V−→ C, v �→ L(v,ṽ).
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By construction, Lṽ ∈ HomH (V,C) for all ṽ ∈ Ṽ, and we set H(π) = {Lṽ ṽ ∈ Ṽ} ⊂
HomH (V,C).
By [19] Proposition 3.2, G/H is very strongly discrete in the sense of loc. cit. Definition

1.3; this means that the linear form

C(G)−→ C, f �→
∫
H

f(h)dν(h)

is well defined and continuous, where C(G) denotes the Harish-Chandra’s Schwartz space

of G (cf. loc. cit. §2). As a consequence, by loc. cit. Theorem 1.4, we have the following

result.

Theorem 5.2 (Zhang). We have the equality H(π) =HomH (V,C) (i.e., any H-invariant

linear form on V is obtained by integration on H against a smooth linear form on V).

The following result relates the distinction of π to the integral of a bi-I -invariant

coefficient.

Theorem 5.3. The discrete series representation (π,V) is H-distinguished if, and only

if, there exist v ∈ VI and ṽ ∈ ṼI such that

∫
H

cv,ṽ(h)dν(h) �= 0.

Proof. One implication in Theorem 5.3 being obvious, let us assume that (π,V) is H -

distinguished, and let us fix a non-zero Λ ∈ HomH(V,C). By Theorem 5.2, there exists

ṽ1 ∈ Ṽ such that Λ=Lṽ1
. By Theorem 4.1, pick v ∈ VI such that Λ(v) =L(v,ṽ1) �= 0. The

map Λ̃: ṽ �→ L(v,ṽ) is a non-zero element of HomH (Ṽ,C). Applying Theorem 4.1 again

to (π̃,Ṽ), there exists ṽ ∈ ṼI such that L(v,ṽ) �= 0, and we are done.

6. Generalized Poincaré series

Recall that we abbreviate W =WAff
F =WAff

E .

The Poincaré series of the Coxeter system (W,S) is the formal power series W (t) =∑
w∈W

tl(w) ∈ Z[[t]]. This is the generating function of the length of elements of W. It is

known ([3],[18]) to be a rational function of t. We shall need a generalization of the
Poincaré series due to Macdonald and Gyoja.

We let S1, ..., Sm be the non-empty intersections of S with the conjugacy classes of

W. By [4] Proposition 5, page 16, for w ∈W the number of elements of Si occurring in
a reduced expression of w depends only on w, we denote it by li(w). We have l(w) =

l1(w)+ · · ·+ lm(w). Let t1, ..., tm be indeterminates. For w ∈W , we write t= (t1,...,tm)

and tl(w) := t
l1(w)
1 · · · tlm(w)

m .
By [2] §3.3, the Si, i = 1,...,m are the connected components of the subgraph of the

Coxeter graph Cox(W,S) obtained by erasing the multiple edges. The number m is so

given as follows:
m= 1 if G is of type An (n� 2), Dn (n� 3) and Ei (i= 6,7,8),

m= 2 if G is of type A1, Bn (n� 3), G2 and F4,

m= 3 if G is of type Cn (n� 2).
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Remark. There is a mistake in loc. cit.. Indeed, Borel claims that m = 2 when G is of
type B2 = C2.

We choose the indexing in (ti)i=1,..,m as in [11], pages 173, 174.

Following Gyoja [11], for a representation (r,M) of HI, define an element of
EndC(M)⊗CC[[t1,...,tm]] by

L(t,r) =
∑
w∈W

r(ew)t
l(w). (7)

Theorem 6.1 ([11] Theorem 1.8, page 90). In any basis of M, the matrix components of
L(t,r) are rational functions of t1, ..., tm.

When (r,M) is the trivial representation of HI, we set W (t) = L(t,r), that is W (t) =∑
w∈W

tl(w). This rational function has been computed by Macdonald ([14] Theorem 3.3).

When m= 1, then W (t) =W (t) is the ordinary Poincaré series, and Bott’s formula gives

W (t) =
∏

i=1,..,l

1− tmi+1
i

(1− ti)(1− tmi
i )

,

where m1, ..., ml are the exponents of the spherical Coxeter group attached to W (cf. [4]

Chap. V, §6, Définition 2).

If m= 2, the formulas are the following.

Type A1, W (t1,t2) =
(1+ t1)(1+ t2)

1− t1t2
.

Type Bn (n� 3), W (t1,t2) =
1− tn1

(1− t1)n

n−1∏
i=1

(1− t2i1 )

n−1∏
i=0

1+ ti1t2

1− tn−1+i
1 t2

.

Type G2, W (t1,t2) =
(1+ t1)(1+ t1+ t21)(1+ t2)(1+ t1t2+ t21t

2
2)

(1− t21t2)(1− t31t
2
2)

.

Type F4, W (t1,t2) =(
3∏

i=1

(1− ti+1
1 )(1+ ti1t2)(1− ti2)

(1− t1)(1− t2)

)
(1+ t1t

2
2)(1+ t21t

2
2)(1+ t31t

3
2)

(1− t31t
2
2)(1− t41t

3
2)(1− t51t

3
2)(1− t61t

5
2)
.

Finally, for m= 3, we have the following formula.

Type Cn (n� 2), W (t1,t2,t3) =

n−1∏
i=0

(1− ti+1
1 )(1+ ti1t2)(1+ ti1t3)

(1− t1)(1− tn−1+i
1 t2t3)

.

Remark. These formulas are taken from [14], page 173.

7. A numerical criterion with application to degree 1 characters

Let (π,V) be an irreducible discrete series representation of G, and let us assume that it

is Iwahori-spherical: VI �= 0. Let (r,M) denote the representation of HI in M = VI . The

following result is a numerical criterion to decide whether or not (π,V) is H -distinguished.
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Theorem 7.1. (a) The representation π is H-distinguished if, and only if, the

endomorphism L(to,r) ∈ EndC(M) is non-zero, where to = (
1

qo
,...,

1

qo
).

(b) We have dimHomH (π,C)� rankL(to,r).

Proof. (a) We abbreviate J = IoF . Recall that JwJ ⊂ IwI, for all w ∈W . Let ν the Haar
measure on H normalized by ν(J) = 1. Let m ∈ M and m̃ ∈ M̃ . We first calculate the

integral

∫
H

cm,m̃(h)dν(h). By the Bruhat-Tits decomposition H = �w∈WJwJ , we have∫
H

cm,m̃(h)dν(h) =
∑
w∈W

∫
JwJ

cm,m̃(h)dν(h) (8)

=
ν(JwJ)

ql(w)

∑
w∈W

〈m̃,r(ew).m〉M (9)

=
q
l(w)
o

ql(w)

∑
w∈W

〈m̃,r(ew).m〉M (10)

= 〈m̃,
∑
w∈W

r(ew)

(
1

qo

)l(w)

.m〉M (11)

= 〈m̃,L(to,r).m〉M, (12)

where in (9), we used Corollary 3.2 and where we set to = (
1

qo
,...,

1

qo
).

By Proposition 5.3, π is H -distinguished if and only if there exist m ∈M and m̃ ∈ M̃

such that

∫
H

cm,m̃(h)dν(h) �= 0. Thanks to the last calculation, this is indeed equivalent

to L(to,r) �= 0, as required.
(b) It follows from (a), using the notation of §5, that for m ∈M and m̃ ∈ M̃ , we have

Lm̃(m) = 〈m̃,L(to,r)〉M . Let us put s = rankL(to,r). Then there exist m̃1, ..., m̃s ∈ M̃

such that the (Lm̃i
)|M , i = 1,...,s, are linearly independent. It follows that the Mm̃i

∈
HomH (π,C), i= 1,...,s, are linearly independent, and we are done.

We now assume that the discrete series representation (π,V) satisfies dimM =

dimVI = 1, so that we may view r as an algebra homomorphism HI −→C. Such discrete
series were classified in [2] §5 by A. Borel. We recall this classification.

The character r is constant on each {es s∈ Si}, i=1,...,m and because of the quadratic

relations, we have r(es) ∈ {−1,q}, s ∈ S. Following Borel loc. cit, for i= 1,...,m, we set

εi =

{
1 if r(es) = q

−1 if r(es) =−1

so that the representation π is entirely characterized by the m-uple (ε1,...,εm); we write

π = π(ε1,...,εm). Recall that StG = π(−1,..,−1) is the Steinberg representation of G.

Proposition 7.2 (Borel [2] §5.8). The discrete series representations of G of the form

π(ε1,...,εm) are the Steinberg representation and
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π(−1,1) for types Bn (n� 3), F4, G2,

π(−1,−1,1), π(−1,1,−1) for types C2, C3,

π(−1,−1,1), π(−1,1,−1), π(−1,1,1) for type Cn (n� 4).

Lemma 7.3. Assume that π(ε1,...,εm) is a discrete series representations of G. We have

L(to,r) =W (ε1q
εi
o ,...,εmqεmo ). In particular, π(ε1,...,εm) is H-distinguished if, and only if,

W (ε1q
εi
o ,...,εmqεmo ) �= 0.

Proof. Observe that for i= 1,...,m and s∈ Si, we have r(es) = εiq
εi+1
o , so that for w ∈W ,

we have r(ew) =
m∏
i=1

(εiq
εi+1
o )li(w). Hence, we have

L(to,r) =
∑
w∈W

r(ew)(
1

qo
)l(w)

=
∑
w∈W

m∏
i=1

(εi
qεi+1
o

qo
)li(w)

=W (εiq
εi
o ,...,εiq

εi
o )

as required.

We may now state the main result of this article.

Theorem 7.4. The discrete series representation π(ε1,...,εm) is H-distinguished if and

only if it is a Steinberg representation, or if H is of type G2 and (ε1,ε2) = (−1,1). When
it is distinguished, it has the multiplicity 1 property dimHomH (π(ε1,...,εm),C) = 1.

Proof. The multiplicity 1 property follows from Theorem 4.1. The first assertion is proved

by a case-by-case calculation based on Macdonald’s formulas given in §6. Note that in the
case of the Steinberg representation, the distinction property was originally D. Prasad’s

conjecture ([15] Conjecture 3, p. 77) and was proved in [6] (cf. [1] for a proof of Prasad’s

conjecture in the general case).
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