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On a random solution of a nonlinear

perturbed stochastic integral

equation of the Volterra type

J. Susan Milton and Chris P. Tsokos

The object of this present paper is to study a nonlinear

perturbed stochastic integral equation of the form

x{t
tt

; u) = h[t, x(t; w)) + k[i, X(T; U) ; oijdT , t > 0 ,
>0

where io € ft , the supporting set of the complete probability

measure space (ft, A, \i) . We are concerned with the existence

and uniqueness of a random solution to the above equation. A

random solution, x(t; u) , of the above equation is defined to

be a vector random variable which satisfies the equation y

almost everywhere.

1. Introduction

Stochastic integral equations play a major role in characterizing some

very important problems in life sciences and engineering [J, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, /3, 14, 151. The object of the present study is concerned

with a theoretical investigation of a class of nonlinear perturbed

stochastic integral equations. More specifically, we consider a stochastic

vector integral equation of the form

rt
(1.1) x(t; 0)) = h[t, x(t; a))) + k[t, x(x; u ) ; u]dx , t > 0 ,

Jn
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where

(i) to € fi , the supporting set of the complete probability

measure space (fi, A, y) ;

( i i ) x{t; w) i s the unknown ra-dimensional vector valued

random function defined on R , the non-negative rea l

numbers;

( i i i ) under appropriate conditions the stochastic kernel

k\r, x(x; iii); to) is an m-dimensional vector valued

random function on R+ ;

(iv) for each t € R and each m-dimensional vector valued

random function x(t; a>) , h[t, x{t; u)) i s an

m-dimensional vector valued random variable.

We sha l l be concerned with the existence and uniqueness of a random

solution, a second order stochastic process, to random integral equation

( l . l ) . The above equation is very important in the formulation of

stochastic chemical k inet ics models. The random equation ( l . l ) i s a

generalization of the recent study of Anderson [ I ] and Tsokos [1Z] in that

both the s tochast ic kernel and the stochastic free term are functions of

the unknown m-dimensional valued random function x(t; OJ) .

2. Preliminary concepts

We sha l l now define several spaces of functions and s ta te lemmas

which are essent ia l in fu l f i l l ing the objectives of the present study.

DEFINITION 2 . 1 . The random vectors

and

a r e s a i d t o b e e q u a l i f and only i f

x- (w) H y . ( w ) \i a l m o s t everywhere f o r each i = 1 , 2 , — , m .

DEFINITION 2 . 2 . L e t ¥(fl , A, p) b e t h e s e t o f a l l random v e c t o r s o f
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the form

3(10) = (s^u)), s 2 ( u ) , . . . , 3m(w)) ,

where for each i = 1, 2, . . . , m , a. (to) i s an element of £OT(ft, A, y) .

LEMMA 2 .1 . V{n, A, y) is a complete normed linear space over the

reals with the usual definition of component-wise addition and scalar

multiplication where Ohe norm in V(Q, A, y) i s given by

,u) Y ^ i

DEFINITION 2.3. Let Cy = C^{R+, f(f2, A, y)] be the set of a l l

continuous functions from i? into V{Q, A, y) .

Note that for each t € i?+ we get an associated random vector

x(t; w) = [x^it; m), x^.t\ to), . . . , xj,t; u)) . We shall be tac i t ly

assuming that for each i the sample function x . ( t ; u>) is continuous in

t for each to . Since we are dealing with a f in i te measure space, for

each t and each i , E\x.(t; w) | < °° . The main purpose for defining

the norm in ^(ft, A, y) as i t was done was to enable us to obtain a

relatively simple norm defined in terms of the components of the vector

involved.

LEMMA 2.2. C^ is a linear space over the reals with the usual

definitions of addition and scalar multiplication for continuous functions.

LEMMA 2 . 3 . Let

F = { | |x( t j u ) | L : Wxit; to)|l } = sup { | |x ( t ; u) | j } ,
" OSiSrc

n = 1 , 2 , 3 , . P is a family of semi-norms defined on Cy .

LEMMA 2.4. The space Cm can be topologized by the family F of

semi-norms defined in Lemma 2.3 and the topology obtained is locally convex

and hausdorff.

LEMMA 2.5. The topology i on C^ induced by the family F of

semi-norms defined in Lemma 2.3 is metrizable where the metric p is
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defined by

p(x(t; ID), y(t; co)) = \ -̂ - » , ,

The following lemma is important in that i t characterizes the topology

T defined on C^ in a convenient manner.

LEMMA 2.6. The topology T on Cy induced by the family F of

semi-norms (and hence also by p ) is the topology of uniform convergence.

That is, xm(.t; w) —^ x{t; u) if and only if lim \\xm(.t; m)-x(t; to)|| = 0

uniformly on every interval [0, M] 5 R+ .

Throughout the paper T will represent a l inear operator from

Cy(R+, Y(fi, A, u)) •* Cy[R+, ¥(fi, A, p)) and B and D wi l l represent

Banach spaces contained in C^[R+, 'iHil, A, \i)) •

DEFINITION 2.4. The Banach space B is said to be stronger than the

space Cy i f every sequence which converges in B with respect to i t s

norm also converges in CV, but the converse need not be t rue .

DEFINITION 2.5 . The pair of spaces (B, D) wi l l be called

admissible with respect to the operator T i f and only i f TB c D .

LEMMA 2.7. Let T be a continuous linear operator from C^ •*• C^ .

If the pair of Banach spaces B and D are stronger than Cy and if

(B, D) is admissible with respect to T then T is continuous from B

to D .

Note that since T i s a continuous operator from B to D i t i s

bounded and hence there exists a constant Q such that

•x)(t; u)| |D 5 Q\\x(t; u)| |B .

Thus we can define a norm on T by

,. „ , D ' } •
DEFINITION 2.6. By a random solution of equation 1.1 we shal l mean
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the following: the random vector valued function x(t; w) on /?+ is a

random solution of equation 1.1 if for each fixed t 2 0 , x(t; to) is a

vector random variable and satisfies equation 1.1 u almost everywhere.

LEMMA 2.8. The operator T defined on Cy by

(Tx)(t; to) = X(T; U>)<2T
>0

is a continuous linear operator from Cw into C^ .

DEFINITION 2.7. Let C = C (if, , V(fi, A, u)) be the collection of
9 9 +

al l continuous functions x(t; w) from R into V(£2, 4, y) such that

for g a positive valued continuous function on R we have

for some positive constant A .

LEMMA 2 . 9 . C' is a complete normed linear subspace of Cy where

the norm in C' , denoted \\x{t; u)|L, , is given by
9 %

! ! x ( t ; W ) | | = s u p { g{'t) '*} .
9

DEFINITION 2.8. Let C = C [R+, V{n, A, y)) be the collection of

a l l continuous and bounded functions x(t; ID) from R+ into ^(fi, A, v)

LEMMA 2.10. C' is a complete normed linear subspace of Cy where

the norm in C' , denoted i|x(t; tu)|j , , is given by

| j x ( £ ; u ) | L , = sup { | | x ( t ; w)\\v} .

LEMMA 2.11. The Banach spaces C and C are stronger than C^ .

DEFINITION 2.9. Let E be an arbitrary metric space with metric

p . A mapping Z of E •* E is called a contraction if there exists a

real number r , 0 S r < 1 such that p(z(x), Z(y)) s rp(x, y) for all

x, y in E .
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THEOREM 2.1 (Banach's Fixed Point Theorem). If a contraction

operator Z is defined on a complete metric space E } then -there exists a

unique point x* € E such that Zx* = x* .

3. Existence of a random solution

With respect to the aims of the present study, we state and prove the

following theorems.

THEOREM 3.1. Assume that equation ( l . l ) satisfies the following

condi tions:

(i) B, D c Cy are Banach spaces stronger than Cy and the

pair (B, D) is admissible with respect to the operator

it
T given by {Tx)(t; w) = X(T; w)dx ;

J0

(ii) k[t, x{t; (o); to) is a mapping from the set

W = {x(t; (o) : x(t; oi) € D, \\x(t; 0))||p 5 p}

into the space B for some p ^ 0 such that

\\k[t, x(t; ID); u))-fc(*, y(t; u); 0))|lB S \\\x(t; Oi)-y(f, 03)11̂

for x(t; (o), y(t; u>) € W and a constant X 2 0 ;

(Hi) x(t; w) •*• h[t, x(t; u)) is a mapping from W into D

such that

\\h{t, x(t; u))-h[t, y{t; as))\\D < Y lk ( t ; u)-y{t; U))||o

for some y > 0 .

Then there exists a unique random solution of equation ( l . l ) . , an element of

W , provided that y + XM < 1 3 where M = ||2*||0 and

\\h[t, x(t; o))j||D + AfllfeC*, x(t; 0)); 0)) ||g < p .

Proof. Note tha t by Lemmas 2.7 and 2.8 the operator

f*(Tx)(t; u) = x(x; iii)dj is continuous from B to D . Define the
J0

operator V from W into D by
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rt
; <o) = h{t, x(t; <o)) + k[i, X(T; a>); <o)dx .

J0
(Ux){t; {, ; )

J0

We must show that UW <=_ W and that for some r € [0, 1) ,

\\(Ux)(t; <*)-{Uy)(t; o))||o 5 r | |x( t ; u)-y{t; ui)\\D .

Let x ( i ; u ) , t /( t ; to) € V . Since (t/x)(i; to) and (%) ( t ; u) € 0 and D

i s a Ban.ach space, (Ux)(t; ID) - (iA/)(t; <o) € D . Thus,

\\(Ux){t; u)-{Uy)(t; a)\\D = |ft(t, x(t; u)) + | k ( T , X(T; U) ;

, y ( t ; u)) - f fc(x, y(x; oi); u)*r |
0

, x(t; Ui))-h[t, y(t; w))

it I ,

[/C(T, X(T; 03); w) - &(T, J/(T; to) ; 0))](2T

'0 "V
, x(t; u))-h[t, y(t; ^))\\D

t ||
|)C(T, X(T; U ) ; W) - k{t, y{T, w); 03)]dT

0 "D

£ Yllx(t; <o)-j/(t; (o) 1^

+ Af||fc(t, x ( t ; U>); U))-fe(t, t/(t; 0)); U)) |

where the l as t inequality i s due to the Lipschitz condition and the fact

that T i s continuous from B to D and therefore bounded. However,

| |x(t ; u>)-y(t; u)\\D + M\\k[t, x(t; (o); u ) -k( t , y ( t ; (o); cj

< Yl|x(t; u)-y(t; <o)||D

Since Y + WX < 1 , one condition of the definition of contraction map is

sa t i s f ied .

We must now show inclusion. Let x(t; 0i) € W . We have
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\\(Ux)(t; (0)|L = \\h[t, x(t; 0))) + j fc(x, x(x; w); <o
II 1Q

5 \\h[t, x(t; to)}I) + | |f k[t, x ( x ; (0); wj
D I I J0 "D

S p .

Hence, (Ux)(t; w) € V implying W<£W . Thus by Banach's fixed point

theorem there exis ts a unique point x ( t ; u) € P/ such that

(Ux)(t; , x ( t ; to)) + fe(T, x(x; to); (o)
J0

and the proof is complete.

The following theorem is a special case of Theorem 3.1 which is useful

in various applications.

THEOREM 3.2. Assume that equation ( l . l ) satisfies the following

conditions:

(i) k[t, x(t; ui); to) is a mapping from the set

W = {x(t; w) : x(t; to) € C, \\x{f, u)\\c, < p}

into the space C' for some p > 0 ;
y

\\k{t, x(t; to); u)-k{t, y{f, «)); u)\\c, < A||x(t; u)-y(t; to)^,

for x(t; w), i / ( t ; ( o ) € ( / j A > O a constant; g is

also integrable on i?+ ;

i i J x(t; w) -*fe(t, x ( t ; (o)) is a mapping from W into C'

such that

\\h[t, x(f, u))-h[t, y{t, >c))\l • ' vIM*: ^-y{f, o))||c,

for some Y > 0 .

Then there exists a unique random solution oj equation ( l . l ) i W provided

that Y + AM < i y where M = \\T\\ (T as defined in Theorem 3.1 (i)) and
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\\h[t, x(t; u ) ) \ \ c , + M\\k[t, x(t; <o); t o ) ^ , 1 p .
9

The proof consists of showing that under the assumption g is

admissible with respect to the operator T given by

f*(2"x)(t; 0)) = x(T; U))dT .
J0J 0

Let x ( i ; co) € C' . Consider

|a i (T; CO)|dT

f *
< | | |x .(T; CO) |||dT , y almost everywhere

J0
ft 111 X.(TjU)) HIJ ift

= 6 .

By definition of the norm in &„(&* A, \i) , we can conclude that

III [Tx.)(t, co) HI 5 & for each i . This in turn implies that

UTxHti u)\\v = max fill [Txjit; co) |||} < 6 ,

which is the condition needed for (Tx)(t; co) to be an element of C' .

Since the remaining conditions are identical to those of Theorem 3-1 the

proof is complete.
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