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Jordan–Chevalley Decomposition in Lie
Algebras

Leandro Cagliero and Fernando Szechtman

Abstract. We prove that if s is a solvable Lie algebra of matrices over a ûeld of characteristic 0 and
A ∈ s, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of
A belong to s if and only if there exist S,N ∈ s, S is semisimple, N is nilpotent (not necessarily
[S,N] = 0) such that A = S + N .

1 Introduction

All Lie algebras and representations considered in this paper are ûnite dimensional
over a ûeld F of characteristic 0. An important question concerning a given represen-
tation π∶g→ gl(V) of a Lie algebra g is (cf. [B2, Ch. VII, §5])

(∗) Does π(g) contain the semisimple and nilpotent parts of the Jordan–Chevalley
decomposition (JCD) in gl(V) of π(x) for a given x ∈ g?

For semisimple Lie algebras, this is true for any representation and this classic result
is a cornerstone of the representation theory of semisimple Lie algebras (see [Hu, §6.4
and Ch. VI] or [FH, §9.3 and Ch. 14]). We are interested in the classiûcation of in-
decomposable representations of certain families of non semisimple Lie algebras (see
[CS2,CS3]), and an extension of the classical result to more general Lie algebras will
prove useful in this endeavour. In a diòerent direction, the recent article [Ki], studies
the existence of a Jordan–Chevalley–Seligman decomposition in prime characteristic.

_e question (∗) led us to study the existence and uniqueness of abstract JCD’s
in arbitrary Lie algebras [CS]. Recall that an element x of a Lie algebra g is said to
have an abstract JCD if there exist unique s, n ∈ g such that x = s + n, [s, n] = 0 and
given any ûnite dimensional representation π∶g → gl(V) the JCD of π(x) in gl(V)
is π(x) = π(s) + π(n). _e Lie algebra g itself is said to have an abstract JCD if every
one of its elements does. _e main results of [CS] are _eorems 1 and 2, and they
respectively state that a Lie algebra has an abstract JCD if and only if it is perfect, and
an element of a Lie algebra g has an abstract JCD if and only if it belongs to [g, g]. _ese
theorems, though related to question (∗), do not provide a satisfactory answer to it.

_e purpose of this note is two-fold: on one hand we prove _eorem 1.1 below,
which directly addresses question (∗) and allows us to derive from it [CS,_eorems 1
and 2]. On the other hand, we recently realized that there is a gap in the original
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proof of [CS, _eorems 1 and 2], since [CS, Lemma 2.1] is not true. _erefore, we
leave [CS,_eorems 1 and 2] in good standing by giving a correct proof derived from
_eorem 1.1.

_eorem 1.1 Let s be a solvable Lie algebra of matrices, let A ∈ s, and assume that
A = S + N with S ,N ∈ s, S semisimple, N nilpotent (we are not assuming [S ,N] = 0).
_en the semisimple and nilpotent summands of the JCD of A belong to s.

_is theorem is a consequence of the following result.

_eorem 1.2 Let F be algebraically closed. Given a square matrix A = S + N with S
semisimple and N nilpotent, let {Sn} and {Nn} be sequences deûned inductively by

S0 = S and N0 = N ,

and, if [Sn ,Nn] /= 0, let (Nn)λn be a non-zero eigenmatrix of ad(Sn) corresponding to
a non-zero eigenvalue λn appearing in the ad(Sn)-decomposition of Nn , and let

Sn+1 = Sn + (Nn)λn and Nn+1 = Nn − (Nn)λn .

(_e sequences depend on the choice of the non-zero eigenvalues.)
If {S ,N} generates a solvable Lie algebra s, then (independently of the choice of the

eigenvalues)
(i) Sn is semisimple, Nn is nilpotent, and Sn ,Nn ∈ s for all n,
(ii) there is n0 such that [Sn0 ,Nn0] = 0.
In particular, A = Sn0 + Nn0 is the Jordan–Chevalley decomposition of A with both
components Sn0 ,Nn0 ∈ s. Moreover, if π∶ s → gl(V) is a representation such that π(S)
is semisimple and π(N) is nilpotent, then π(A) = π(Sn0) + π(Nn0) is the Jordan–
Chevalley decomposition of π(A).

2 Jordan–Chevalley Decomposition of Upper Triangular Matrices

_is section is devoted to proving _eorem 1.2, and thus we assume that F is alge-
braically closed. Let t denote the Lie algebra of upper triangular n × n matrices over
F, let t′ = [t, t], and let s be a Lie subalgebra of t.

Lemma 2.1 Let S , X ,N ∈ s and assume that ads(S)(N) = λN, with λ ∈ F, and
ads(S)(X) = µX, with 0 /= µ ∈ F (in particular, X ∈ t′). _en

exp ( − µ−1 ads(X))(N) =
n−1

∑
j=0

(−µ)− j

j!
ads(X) j(N)

is an eigenmatrix of ads(S + X) of eigenvalue λ, and it belongs to s. In particular, S is
semisimple if and only if S + X is semisimple.
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Proof Since X ∈ t′, we see that −µ−1 ads(X) is a nilpotent derivation of s, so
exp(−µ−1 ads(X)) ∈ Aut(s). In particular, exp(−µ−1 ads(X))(N) ∈ s and

[ exp ( − µ−1 ads(X))(S), exp ( − µ−1 ads(X))(N)]
= exp ( − µ−1 ads(X))([S ,N])
= λ exp ( − µ−1 ads(X))(N).

But [S , X] = µX yields exp(−µ−1 ads(X))(S) = S + X, so exp(−µ−1 ads(X))(N) is
an eigenmatrix of ads(S + X) of eigenvalue λ. Consequently, if adt(S) is semisimple
then exp(−µ−1 adt(X)) transforms a basis of eigenmatrices of adt(S) into a basis of
eigenmatrices of adt(S + X).

To complete the proof it is suõcient to show that a matrix A ∈ t is semisimple if
and only if adt(A) is semisimple. _e ‘only if ’ part is clear. Conversely, if adt(A) is
semisimple and A = As +An is the JCD of A, then As ,An ∈ t (both are polynomials in
A), and it follows that adt(A) = adt(As) + adt(An) is the JCD of adt(A). By unique-
ness, adt(An) = 0, and this implies that An = 0, since An ∈ t′ and the centralizer of t
in t′ is 0.

Let S ∈ s be semisimple. Let Λ be the set of eigenvalues of ads(S), and for each
λ ∈ Λ, let sλ ⊂ s be the corresponding eigenspace. Given N ∈ s, let

N = ∑
λ∈Λ

Nλ ,

where each Nλ ∈ sλ . We refer to the above as the ads(S)-decomposition of N .
For k = 0, . . . , n − 1, let tk be the subspace of t consisting of those matrices whose

non-zero entries lay only on the diagonal (i , j) such that j − i = k. Given N ∈ t, let
dk(N) ∈ tk be deûned so that N = ∑n−1

k=0 dk(N). We now introduce a function that
will used to measure how close two matrices are to commuting with each other.

Deûnition 2.2 Let S ,N ∈ s, with S semisimple, and let N = ∑λ∈Λ Nλ be the de-
composition of N as a sum of eigenmatrices of ads(S). For k = 0, . . . , n − 1, let

CS ,k(N) = { λ ∈ Λ ∶ λ /= 0 and dk(Nλ) /= 0} ,

let cS ,k(N) be the number of elements in CS ,k(N) (cS ,0(N) = 0, since λ /= 0 implies
that Nλ ∈ t′), and let

γS(N) = ( cS ,1(N), . . . , cS ,n−1(N)) ∈ Zn−1
≥0 .

It is clear that cS ,k(N) ≤ dim s for all k and [S ,N] = 0 if and only if γS(N) =
(0, . . . , 0).

Lemma 2.3 Let S , X ,N ∈ swith S semisimple and ads(S)(X) = µX, with 0 /= µ ∈ F.
Let k0 ≥ 1 be the lowest k such that dk(X) /= 0 (µ /= 0 implies X ∈ t′ and hence k0 ≥ 1).
_en CS+X ,k(N) = CS ,k(N) for all k ≤ k0.

Proof We ûrst point out that it follows from Lemma 2.1 that S + X is semisimple,
and thus it makes sense to consider CS+X ,k(N).
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Let
N = ∑

λ∈Λ
Nλ , Nλ ∈ s,

be the ads(S)-decomposition of N . Let

Ñλ ,0 = exp ( − µ−1 ads(X))(Nλ),

and, for j ≥ 1, let Ñλ , j = µ− j

j! ads(X) j(Ñλ ,0).
It follows from Lemma 2.1 that Ñλ , j is an eigenmatrix of ads(S + X) of eigenvalue

λ + jµ. Since

Nλ = exp ( µ−1 ads(X))(Ñλ ,0) = Ñλ ,0 + Ñλ ,1 + Ñλ ,2 + ⋅ ⋅ ⋅ ,

it follows that
N = ∑

λ∈Λ
∑
j≥0

Ñλ , j = ∑
λ∈Λ

Ñλ ,0 + ∑
λ∈Λ
∑
j≥1

Ñλ , j

and this leads to the decomposition of N as a sum of eigenmatrices of ads(S + X)
(a�er adding up those Ñλ , j with the same eigenvalue).

Let k ≤ k0 (recall that k0 is the lowest k such that dk(X) /= 0). Since k0 ≥ 1, it
follows that

dk(Ñλ , j) =
⎧⎪⎪⎨⎪⎪⎩

dk(Nλ) if j = 0,
0 if j ≥ 1.

_is implies CS+X ,k(N) = CS ,k(N).

Lemma 2.4 Let S ,N ∈ s, with S semisimple, and let N = ∑λ∈Λ Nλ be the
ads(S)-decomposition of N. Assume that there is λ0 ∈ Λwith λ0 /= 0 such that Nλ0 ∈ sλ0

is non-zero. _en
γS+Nλ0

(N − Nλ0) < γS(N)
in the lexicographical order. (_e pair (S + Nλ0 ,N − Nλ0) is closer to commuting than
the pair (S ,N).)

Proof Let k0 be the lowest k such that dk(Nλ0) /= 0 (k0 ≥ 1, since Nλ0 ∈ t′). It is
clear that

(2.1) cS ,k(N − Nλ0) =
⎧⎪⎪⎨⎪⎪⎩

cS ,k(N) if k < k0 ,
cS ,k0(N) − 1 if k = k0 ,

and thus γS(N − Nλ0) < γS(N).
It follows from Lemma 2.3 that, for k ≤ k0,

cS+Nλ0 ,k(N − Nλ0) = cS ,k(N − Nλ0),

and this, combined with (2.1), implies γS+Nλ0
(N − Nλ0) < γS(N) in the lexicograph-

ical order.

We are now in a position to prove_eorem 1.2.
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Proof of_eorem 1.2 Since {S ,N} generates a solvable Lie algebra s, and F is alge-
braically closed, it follows from Lie’s _eorem that we can assume S ,N ∈ s ⊂ t, and
since N is nilpotent, N ∈ t′.

We will prove (i) by induction. Assume (i) is true for Sn and Nn and let us suppose
that [Sn ,Nn] /= 0. Since λn /= 0, we have (Nn)λn ∈ t′, and hence Nn+1 is nilpotent. It
follows from Lemma 2.1 that Sn+1 is semisimple and Sn+1 ,Nn+1 ∈ s. _is proves (i).

It follows from Lemma 2.4 that

γSn+1(Nn+1) = γSn+(Nn)λn (Nn − (Nn)λn) < γSn(Nn)
in the lexicographical order. _is implies that there exists n0 such that γSn0

(Nn0) = 0
and hence [Sn0 ,Nn0] = 0. _is proves (ii), and it is clear A = Sn0 +Nn0 is the Jordan–
Chevalley decomposition of A.
Finally, let π∶ s→ gl(V) be a representation such that π(S) = π(S0) is semisimple

and π(N) = π(N0) is nilpotent. Since π is a representation, if Nn = ∑λ∈Λn(Nn)λ is
the ads(Sn)-decomposition of Nn , then

π(Nn) = ∑
λ∈Λn

π((Nn)λ)

is the adπ(s)(π(Sn))-decomposition of π(Nn). _erefore, assuming that π(Sn) is
semisimple and π(Nn) is nilpotent, it follows, just as above, that π(Sn+1) is semisim-
ple and π(Nn+1) is nilpotent. _is implies that π(A) = π(Sn0)+π(Nn0) is the Jordan–
Chevalley decomposition of π(A).

Proof of_eorem 1.1 _eorem 1.2 shows that _eorem 1.1 is true when F is alge-
braically closed, since in this case, Lie’s _eorem allows us to assume that s ⊂ t.

In general, let F̄ be an algebraic closure of F. Suppose A, S ,N ∈ s, where A =
S + N , S is semisimple, and N is nilpotent. Let A = S′ + N ′ be the JCD of A in
gl(n,F), as ensured in [HK, §7.5]. _eminimal polynomial of S′, say p, is a product of
distinctmonic irreducible polynomials overF [HK, §7.5]. SinceF has characteristic 0,
it follows that p has distinct roots in F̄, whence S′ is diagonalizable over F̄. _erefore,
A = S′ + N ′ is the JCD of A in gl(n, F̄). Let s̄ be the F̄-linear span of s in gl(n, F̄).
_en s̄ is a solvable subalgebra of gl(n, F̄). As the theorem is true over F̄, we infer
S′ ,N ′ ∈ s̄. _us, S′ ,N ′ ∈ gl(n,F)∩ s̄ = s. _is completes the proof of_eorem 1.1.

3 Jordan–Chevalley Decomposition in a Lie Algebra

_eorem 3.1 An element x of a Lie algebra g has an abstract JCD if and only if x
belongs to the derived algebra [g, g], in which case the semisimple and nilpotent parts
of x also belong to [g, g].

Necessity _is is clear, since any linearmap from g to gl(V) such that dim π(g) = 1,
and π([g, g]) = 0 is a representation.

Suõciency ByAdo’s theorem, we can assume that g is a Lie algebra ofmatrices. Fix a
Levi decomposition g = gs ⋉r and let n = [g, r]. We know that n is nilpotent (see [FH,
Lemma C.20]). If x ∈ [g, g], then x = a + r for unique a ∈ gs and r ∈ n. If a = as + an
is the JCD of the matrix a, since gs is semisimple, it follows that as , an ∈ gs = [gs , gs]
(see, for instance, [Hu, §6.4]). Let s = Fas ⊕ Fan ⊕ n ⊂ [g, g]. Since [s, s] ⊂ n and n
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is nilpotent, we obtain that s is a solvable Lie algebra. We now apply _eorem 1.1 to
the Lie algebra s with S = as , N = an + r. We obtain that if x = S′ + N ′ is the JCD of
x, then S′ ,N ′ ∈ s ⊂ [g, g].
Finally, let π∶g → gl(V) be a representation of g. Since r ∈ n, it follows that

π(r) is nilpotent (see [FH, Lemma C.19] or [B1, Ch.1, §5]). Since gs is semisimple,
π(S) = π(as) is semisimple and π(an) is nilpotent. Since s is solvable, it follows
from Lie’s _eorem that π(N) = π(an + r) is nilpotent. It follows from _eorem 1.2
(applied over a ûeld extension ofF) that π(x) = π(S′)+π(N ′) is the JCD of π(x).
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