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Jordan—Chevalley Decomposition in Lie
Algebras

Leandro Cagliero and Fernando Szechtman

Abstract. 'We prove that if s is a solvable Lie algebra of matrices over a field of characteristic 0 and
A € s, then the semisimple and nilpotent summands of the Jordan-Chevalley decomposition of
A belong to s if and only if there exist S, N € s, S is semisimple, N is nilpotent (not necessarily
[S,N]=0)suchthat A=S+N.

1 Introduction

All Lie algebras and representations considered in this paper are finite dimensional
over a field F of characteristic 0. An important question concerning a given represen-
tation 7: g — gl(V') of a Lie algebra g is (c¢f. [B2, Ch. VII, §5])

(*) Does m(g) contain the semisimple and nilpotent parts of the Jordan-Chevalley
decomposition (JCD) in gl( V') of 7(x) for a given x € g?

For semisimple Lie algebras, this is true for any representation and this classic result
is a cornerstone of the representation theory of semisimple Lie algebras (see [Hu, §6.4
and Ch. VI] or [FH, §9.3 and Ch. 14]). We are interested in the classification of in-
decomposable representations of certain families of non semisimple Lie algebras (see
[CS2,CS3]), and an extension of the classical result to more general Lie algebras will
prove useful in this endeavour. In a different direction, the recent article [Ki], studies
the existence of a Jordan-Chevalley-Seligman decomposition in prime characteristic.
The question (*) led us to study the existence and uniqueness of abstract JCD’s
in arbitrary Lie algebras [CS]. Recall that an element x of a Lie algebra g is said to
have an abstract JCD if there exist unique s, n € g such that x = s + n, [s,n] = 0 and
given any finite dimensional representation 7: g — gl(V') the JCD of n(x) in gl(V)
is m(x) = 7(s) + m(n). The Lie algebra g itself is said to have an abstract JCD if every
one of its elements does. The main results of [CS] are Theorems 1 and 2, and they
respectively state that a Lie algebra has an abstract JCD if and only if it is perfect, and
an element of a Lie algebra g has an abstract JCD if and only if it belongs to [g, g]. These
theorems, though related to question (%), do not provide a satisfactory answer to it.
The purpose of this note is two-fold: on one hand we prove Theorem 1.1 below,
which directly addresses question (x) and allows us to derive from it [CS, Theorems 1
and 2]. On the other hand, we recently realized that there is a gap in the original
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proof of [CS, Theorems 1 and 2], since [CS, Lemma 2.1] is not true. Therefore, we
leave [CS, Theorems 1 and 2] in good standing by giving a correct proof derived from
Theorem 1.1.

Theorem 1.1 Let s be a solvable Lie algebra of matrices, let A € s, and assume that
A=8+NwithS,N €5, S semisimple, N nilpotent (we are not assuming [S,N] = 0).
Then the semisimple and nilpotent summands of the JCD of A belong to s.

This theorem is a consequence of the following result.

Theorem 1.2 Let I be algebraically closed. Given a square matrix A =S + N with S
semisimple and N nilpotent, let {S,, } and {N,, } be sequences defined inductively by

So=8S and Ny=N,

and, if [Sy, N, ] # 0, let (N,,),, be a non-zero eigenmatrix of ad(S,) corresponding to
a non-zero eigenvalue A, appearing in the ad(S, )-decomposition of N, and let

Sn+1:Sn+(Nn))L,, and Nn+1:Nn_(Nn))L,,-

(The sequences depend on the choice of the non-zero eigenvalues.)

If {S, N} generates a solvable Lie algebra s, then (independently of the choice of the
eigenvalues)
(i) S, is semisimple, N, is nilpotent, and S, N,, € s for all n,
(i) there is ng such that [Sp,, Np, | = 0.
In particular, A = Sp, + Ny, is the Jordan-Chevalley decomposition of A with both
components Sy, , Ny, € 5. Moreover, if m:s — gl(V') is a representation such that n(S)
is semisimple and (N is nilpotent, then m(A) = n(Sy,,) + (N, ) is the Jordan-
Chevalley decomposition of m(A).

2 Jordan—Chevalley Decomposition of Upper Triangular Matrices

This section is devoted to proving Theorem 1.2, and thus we assume that F is alge-
braically closed. Let t denote the Lie algebra of upper triangular n x n matrices over
F, let t' = [t,t], and let s be a Lie subalgebra of t.

Lemma 2.1 LetS,X,N € s and assume that ad;(S)(N) = AN, with A € I, and
ads(S)(X) = uX, with 0 # y € F (in particular, X € t'). Then

exp( - p'ad; X)) 2 ad (X)7(N)

is an eigenmatrix of ad; (S + X) of eigenvalue A, and it belongs to s. In particular, S is
semisimple if and only if S + X is semisimple.
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Proof Since X € t/, we see that —u~'ads(X) is a nilpotent derivation of s, so
exp(—p'ads (X)) € Aut(s). In particular, exp(—u " ads (X)) (N) € s and

[exp( —y‘l adg(X)) (S),exp( —[fl adg(X)) (N)]
= exp( —;4_1 ads(X))([S,N])
:/\exp( —‘u_ladﬁ(X))(N).

But [S, X] = uX yields exp(—p ' ads(X))(S) = S + X, so exp(—p " ads (X)) (N) is
an eigenmatrix of ads (S + X) of eigenvalue A. Consequently, if ad¢(S) is semisimple
then exp(—u " ad((X)) transforms a basis of eigenmatrices of ad;(S) into a basis of
eigenmatrices of ad¢(S + X).

To complete the proof it is sufficient to show that a matrix A € t is semisimple if
and only if ad{(A) is semisimple. The ‘only if” part is clear. Conversely, if ad{(A) is
semisimpleand A = A;+ A, is the JCD of A, then A;, A, € t (both are polynomials in
A), and it follows that ad{(A) = ad((A;) + ad¢(A,) is the JCD of ad{(A). By unique-
ness, ad((A,) = 0, and this implies that A,, = 0, since A, € t’ and the centralizer of t
intis 0. [ |

Let S € s be semisimple. Let A be the set of eigenvalues of ad;(S), and for each
A € A, let s) C s be the corresponding eigenspace. Given N € s, let

N=> Ny,
AeA

where each N € 5,. We refer to the above as the ad (S)-decomposition of N.

For k =0,...,n—1,let t; be the subspace of t consisting of those matrices whose
non-zero entries lay only on the diagonal (i, j) such that j — i = k. Given N € t, let
di(N) € t; be defined so that N = Y725 di(N). We now introduce a function that
will used to measure how close two matrices are to commuting with each other.

Definition 2.2 Let S,N € s, with S semisimple, and let N = 37, ., N, be the de-
composition of N as a sum of eigenmatrices of ads(S). For k =0,...,n -1, let

Cs,k(N) = {AeA:A#Oanddk(NA) %0},

let cs x(N) be the number of elements in Cg x(N) (cs,0(N) = 0, since A # 0 implies
that N, € t’), and let

yS(N) = (Cs,l(N),. . ->CS,n—1(N)) € Zgal

It is clear that c5 x(N) < dims for all k and [S,N] = 0 if and only if ys(N) =
(0,...,0).

Lemma 2.3 LetS, X, N € s with S semisimple and ad (S)(X) = uX, with0 # p € F.
Let ko > 1 be the lowest k such that di(X) # 0 (u # 0 implies X € t' and hence ko > 1).
Then Cg,x x(N) = Cs x(N) for all k < ko.

Proof We first point out that it follows from Lemma 2.1 that S + X is semisimple,
and thus it makes sense to consider Cs, x x(N).
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Let

N = ZN,\, N, €5,
AeA

be the ads (S)-decomposition of N. Let
Nio =exp (- u"ads(X)) (N2),

and, for j > 1, let NM = ”]—T adﬁ(X)j(Z’\V]A,O).
It follows from Lemma 2.1 that N, j is an eigenmatrix of ads (S + X)) of eigenvalue
A+ ju. Since
N, = exp(,l/l_1 ads(X)) (N/\,O) = NA,O + N/\,l + N,\,z +ee

it follows that
N=3>Nij=> N+ > N
AeA j>0 AeA AeA j>1

and this leads to the decomposition of N as a sum of eigenmatrices of ads (S + X)
(after adding up those N, ; with the same eigenvalue).
Let k < ko (recall that kg is the lowest k such that di(X) # 0). Since ko > 1, it
follows that
S dk(Ny) ifj=0,
di(Ny,;) =
«(Na.7) {o ifj>1.
This implies Cs, x x(N) = Cs ¢ (N). [ |

Lemma 2.4 Let S,N € s, with S semisimple, and let N = Y ,., Ny be the
ads(S)-decomposition of N. Assume that thereis Lo € A with Ao # 0 such that Ny, € s,
is non-zero. Then

Ys+ny, (N = Ny, ) <ys(N)
in the lexicographical order. (The pair (S + Ny,, N — Ny, ) is closer to commuting than
the pair (S,N).)

Proof Let ko be the lowest k such that di(Ny,) # 0 (ko > 1, since Ny, € t'). Itis
clear that

CS,k(N) ifk<k0,

21 N-Ny,) =
@D esr(N=Nu) {cs,ko(N)—l if k = ko,

and thus ys(N — N, ) < ys(N).
It follows from Lemma 2.3 that, for k < kg,

€s+Ny, k(N = Nyp) = s,k (N = Ny, ),

and this, combined with (2.1), implies ys.n, (N — Ny,) < ys(N) in the lexicograph-
ical order. [ |

We are now in a position to prove Theorem 1.2.
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Proof of Theorem 1.2 Since {S, N} generates a solvable Lie algebra s, and F is alge-
braically closed, it follows from Lie’s Theorem that we can assume S, N € s c t, and
since N is nilpotent, N € t'.

We will prove (i) by induction. Assume (i) is true for S, and N,, and let us suppose
that [S,,, N, ] # 0. Since A, # 0, we have (N,),, € t’, and hence N, is nilpotent. It
follows from Lemma 2.1 that S,,1; is semisimple and S,+1, N+ € 6. This proves (i).

It follows from Lemma 2.4 that

YSn+1(Nn+l) = VSu+ (N, ( Ny - (Nn))tn) <Ys., (Nn)

in the lexicographical order. This implies that there exists 1 such that ys, (Ny,) =0
and hence [S,,, N, | = 0. This proves (ii), and it is clear A = S,,, + N, is the Jordan-
Chevalley decomposition of A.

Finally, let 1:s — gl( V') be a representation such that 7(S) = 7(Sp) is semisimple
and 7(N) = m(Ny) is nilpotent. Since 7 is a representation, if N, = 35, (Nn)3 is
the ad (S, )-decomposition of N, then

n(N,) = Z 71( (N,,),\)
AeA,
is the ad,(s)(7(S,))-decomposition of 7(N,). Therefore, assuming that 7(S,) is
semisimple and (N, ) is nilpotent, it follows, just as above, that 71(S,+1) is semisim-
pleand (N, ) is nilpotent. This implies that 7(A) = 7(S,, ) +7(Ny, ) is the Jordan-
Chevalley decomposition of 7(A). [ |

Proof of Theorem 1.1 'Theorem 1.2 shows that Theorem 1.1 is true when F is alge-
braically closed, since in this case, Lie’s Theorem allows us to assume that s c .

In general, let IF be an algebraic closure of F. Suppose A,S,N ¢ s, where A =
S + N, S is semisimple, and N is nilpotent. Let A = S + N’ be the JCD of A in
gl(n,F), as ensured in [HK, §75]. The minimal polynomial of §’, say p, is a product of
distinct monic irreducible polynomials over F [HK, §7.5]. Since [F has characteristic 0,
it follows that p has distinct roots in IF, whence S’ is diagonalizable over IF. Therefore,
A = S' + N’ is the JCD of A in gl(n,TF). Let 5 be the F-linear span of 5 in gl(n, F).
Then § is a solvable subalgebra of gl(n,[F). As the theorem is true over I, we infer
S’,N’" € 5. Thus, S’, N" € gl(n,F)ns5 = s. This completes the proof of Theorem1.1. W

3 Jordan—Chevalley Decomposition in a Lie Algebra

Theorem 3.1 An element x of a Lie algebra g has an abstract JCD if and only if x
belongs to the derived algebra [g, g], in which case the semisimple and nilpotent parts
of x also belong to [g, g].

Necessity 'This is clear, since any linear map from g to gl( V') such that dim 7(g) =1,
and 7([g, g]) = 0 is a representation.

Sufficiency By Ado’s theorem, we can assume that g is a Lie algebra of matrices. Fixa
Levi decomposition g = g, x t and letn = [g, t]. We know that n is nilpotent (see [FH,
Lemma C.20]). If x € [g, g], then x = a + r for unique a € g; and r e n. If a = a + a,
is the JCD of the matrix a4, since g, is semisimple, it follows that as, a,, € gs = [gs 9]
(see, for instance, [Hu, §6.4]). Let s = Fa, @ Fa, @ n c [g, g]. Since [s,5] c nand n
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is nilpotent, we obtain that s is a solvable Lie algebra. We now apply Theorem 1.1 to
the Lie algebra s with S = a;, N = a,, + r. We obtain that if x = §" + N’ is the JCD of
x,then 8',N" es c [g,g].

Finally, let m:g — gl(V) be a representation of g. Since r € n, it follows that
7(r) is nilpotent (see [FH, Lemma C.19] or [B1, Ch.1, §5]). Since g; is semisimple,
7(S) = m(as) is semisimple and 7(a,) is nilpotent. Since s is solvable, it follows
from Lie’s Theorem that 7(N) = 7(a, + r) is nilpotent. It follows from Theorem 1.2
(applied over a field extension of F) that 7(x) = 7(S") +7(N’) isthe JCD of 7(x). W
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