Canad. Math. Bull. Vol. 62 (2), 2019 pp. 349–354 http://dx.doi.org/10.4153/CMB-2018-023-7 © Canadian Mathematical Society 2018

Jordan-Chevalley Decomposition in Lie Algebras

Leandro Cagliero and Fernando Szechtman

Abstract. We prove that if $\mathfrak s$ is a solvable Lie algebra of matrices over a field of characteristic 0 and $A \in \mathfrak s$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of A belong to $\mathfrak s$ if and only if there exist $S, N \in \mathfrak s$, S is semisimple, S is nilpotent (not necessarily S is semisimple, S is nilpotent (not necessarily S is ni

1 Introduction

All Lie algebras and representations considered in this paper are finite dimensional over a field \mathbb{F} of characteristic 0. An important question concerning a given representation $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ of a Lie algebra \mathfrak{g} is (*cf.* [B2, Ch. VII, §5])

(*) Does $\pi(\mathfrak{g})$ contain the semisimple and nilpotent parts of the Jordan–Chevalley decomposition (JCD) in $\mathfrak{gl}(V)$ of $\pi(x)$ for a given $x \in \mathfrak{g}$?

For semisimple Lie algebras, this is true for any representation and this classic result is a cornerstone of the representation theory of semisimple Lie algebras (see [Hu, §6.4 and Ch. VI] or [FH, §9.3 and Ch. 14]). We are interested in the classification of indecomposable representations of certain families of non semisimple Lie algebras (see [CS2, CS3]), and an extension of the classical result to more general Lie algebras will prove useful in this endeavour. In a different direction, the recent article [Ki], studies the existence of a Jordan–Chevalley–Seligman decomposition in prime characteristic.

The question (*) led us to study the existence and uniqueness of abstract JCD's in arbitrary Lie algebras [CS]. Recall that an element x of a Lie algebra $\mathfrak g$ is said to have an abstract JCD if there exist unique $s,n\in\mathfrak g$ such that x=s+n, [s,n]=0 and given any finite dimensional representation $\pi\colon\mathfrak g\to\mathfrak g\mathfrak l(V)$ the JCD of $\pi(x)$ in $\mathfrak g\mathfrak l(V)$ is $\pi(x)=\pi(s)+\pi(n)$. The Lie algebra $\mathfrak g$ itself is said to have an abstract JCD if every one of its elements does. The main results of [CS] are Theorems 1 and 2, and they respectively state that a Lie algebra has an abstract JCD if and only if it is perfect, and an element of a Lie algebra $\mathfrak g$ has an abstract JCD if and only if it belongs to $[\mathfrak g,\mathfrak g]$. These theorems, though related to question (*), do not provide a satisfactory answer to it.

The purpose of this note is two-fold: on one hand we prove Theorem 1.1 below, which directly addresses question (*) and allows us to derive from it [CS, Theorems 1 and 2]. On the other hand, we recently realized that there is a gap in the original

Received by the editors January 8, 2018; revised May 14, 2018.

Published electronically July 23, 2018.

Author L. C. was supported in part by CONICET and SECYT-UNC grants.

Author F. S. was supported in part by an NSERC discovery grant.

AMS subject classification: 17-08, 17B05, 20C40, 15A21.

Keywords: solvable Lie algebra, Jordan-Chevalley decomposition, representation.

proof of [CS, Theorems 1 and 2], since [CS, Lemma 2.1] is not true. Therefore, we leave [CS, Theorems 1 and 2] in good standing by giving a correct proof derived from Theorem 1.1.

Theorem 1.1 Let $\mathfrak s$ be a solvable Lie algebra of matrices, let $A \in \mathfrak s$, and assume that A = S + N with $S, N \in \mathfrak s$, S semisimple, N nilpotent (we are not assuming [S, N] = 0). Then the semisimple and nilpotent summands of the JCD of A belong to $\mathfrak s$.

This theorem is a consequence of the following result.

Theorem 1.2 Let \mathbb{F} be algebraically closed. Given a square matrix A = S + N with S semisimple and N nilpotent, let $\{S_n\}$ and $\{N_n\}$ be sequences defined inductively by

$$S_0 = S$$
 and $N_0 = N$,

and, if $[S_n, N_n] \neq 0$, let $(N_n)_{\lambda_n}$ be a non-zero eigenmatrix of $\operatorname{ad}(S_n)$ corresponding to a non-zero eigenvalue λ_n appearing in the $\operatorname{ad}(S_n)$ -decomposition of N_n , and let

$$S_{n+1} = S_n + (N_n)_{\lambda_n}$$
 and $N_{n+1} = N_n - (N_n)_{\lambda_n}$.

(The sequences depend on the choice of the non-zero eigenvalues.)

If $\{S, N\}$ generates a solvable Lie algebra \mathfrak{s} , then (independently of the choice of the eigenvalues)

- (i) S_n is semisimple, N_n is nilpotent, and S_n , $N_n \in \mathfrak{s}$ for all n,
- (ii) there is n_0 such that $[S_{n_0}, N_{n_0}] = 0$.

In particular, $A = S_{n_0} + N_{n_0}$ is the Jordan–Chevalley decomposition of A with both components $S_{n_0}, N_{n_0} \in \mathfrak{s}$. Moreover, if $\pi : \mathfrak{s} \to \mathfrak{gl}(V)$ is a representation such that $\pi(S)$ is semisimple and $\pi(N)$ is nilpotent, then $\pi(A) = \pi(S_{n_0}) + \pi(N_{n_0})$ is the Jordan–Chevalley decomposition of $\pi(A)$.

2 Jordan-Chevalley Decomposition of Upper Triangular Matrices

This section is devoted to proving Theorem 1.2, and thus we assume that \mathbb{F} is algebraically closed. Let \mathfrak{t} denote the Lie algebra of upper triangular $n \times n$ matrices over \mathbb{F} , let $\mathfrak{t}' = [\mathfrak{t}, \mathfrak{t}]$, and let \mathfrak{s} be a Lie subalgebra of \mathfrak{t} .

Lemma 2.1 Let $S, X, N \in \mathfrak{s}$ and assume that $\mathrm{ad}_{\mathfrak{s}}(S)(N) = \lambda N$, with $\lambda \in \mathbb{F}$, and $\mathrm{ad}_{\mathfrak{s}}(S)(X) = \mu X$, with $0 \neq \mu \in \mathbb{F}$ (in particular, $X \in \mathfrak{t}'$). Then

$$\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X))(N) = \sum_{j=0}^{n-1} \frac{(-\mu)^{-j}}{j!} \operatorname{ad}_{\mathfrak{s}}(X)^{j}(N)$$

is an eigenmatrix of $ad_{\mathfrak{s}}(S+X)$ of eigenvalue λ , and it belongs to \mathfrak{s} . In particular, S is semisimple if and only if S+X is semisimple.

Proof Since $X \in \mathfrak{t}'$, we see that $-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)$ is a nilpotent derivation of \mathfrak{s} , so $\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)) \in \operatorname{Aut}(\mathfrak{s})$. In particular, $\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X))(N) \in \mathfrak{s}$ and

$$\begin{aligned} \left[\exp\left(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)\right)(S), \exp\left(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)\right)(N) \right] \\ &= \exp\left(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)\right) \left(\left[S, N\right]\right) \\ &= \lambda \exp\left(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X)\right)(N). \end{aligned}$$

But $[S, X] = \mu X$ yields $\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X))(S) = S + X$, so $\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X))(N)$ is an eigenmatrix of $\operatorname{ad}_{\mathfrak{s}}(S + X)$ of eigenvalue λ . Consequently, if $\operatorname{ad}_{\mathfrak{t}}(S)$ is semisimple then $\exp(-\mu^{-1} \operatorname{ad}_{\mathfrak{t}}(X))$ transforms a basis of eigenmatrices of $\operatorname{ad}_{\mathfrak{t}}(S)$ into a basis of eigenmatrices of $\operatorname{ad}_{\mathfrak{t}}(S + X)$.

To complete the proof it is sufficient to show that a matrix $A \in \mathfrak{t}$ is semisimple if and only if $\operatorname{ad}_{\mathfrak{t}}(A)$ is semisimple. The 'only if' part is clear. Conversely, if $\operatorname{ad}_{\mathfrak{t}}(A)$ is semisimple and $A = A_s + A_n$ is the JCD of A, then A_s , $A_n \in \mathfrak{t}$ (both are polynomials in A), and it follows that $\operatorname{ad}_{\mathfrak{t}}(A) = \operatorname{ad}_{\mathfrak{t}}(A_s) + \operatorname{ad}_{\mathfrak{t}}(A_n)$ is the JCD of $\operatorname{ad}_{\mathfrak{t}}(A)$. By uniqueness, $\operatorname{ad}_{\mathfrak{t}}(A_n) = 0$, and this implies that $A_n = 0$, since $A_n \in \mathfrak{t}'$ and the centralizer of \mathfrak{t} in \mathfrak{t}' is 0.

Let $S \in \mathfrak{s}$ be semisimple. Let Λ be the set of eigenvalues of $\mathrm{ad}_{\mathfrak{s}}(S)$, and for each $\lambda \in \Lambda$, let $\mathfrak{s}_{\lambda} \subset \mathfrak{s}$ be the corresponding eigenspace. Given $N \in \mathfrak{s}$, let

$$N=\sum_{\lambda\in\Lambda}N_{\lambda},$$

where each $N_{\lambda} \in \mathfrak{s}_{\lambda}$. We refer to the above as the $\mathrm{ad}_{\mathfrak{s}}(S)$ -decomposition of N.

For k = 0, ..., n-1, let \mathfrak{t}_k be the subspace of \mathfrak{t} consisting of those matrices whose non-zero entries lay only on the diagonal (i,j) such that j-i=k. Given $N \in \mathfrak{t}$, let $d_k(N) \in \mathfrak{t}_k$ be defined so that $N = \sum_{k=0}^{n-1} d_k(N)$. We now introduce a function that will used to measure how close two matrices are to commuting with each other.

Definition 2.2 Let $S, N \in \mathfrak{S}$, with S semisimple, and let $N = \sum_{\lambda \in \Lambda} N_{\lambda}$ be the decomposition of N as a sum of eigenmatrices of $\mathrm{ad}_{\mathfrak{S}}(S)$. For $k = 0, \ldots, n-1$, let

$$C_{S,k}(N) = \{ \lambda \in \Lambda : \lambda \neq 0 \text{ and } d_k(N_\lambda) \neq 0 \},$$

let $c_{S,k}(N)$ be the number of elements in $C_{S,k}(N)$ ($c_{S,0}(N) = 0$, since $\lambda \neq 0$ implies that $N_{\lambda} \in \mathfrak{t}'$), and let

$$\gamma_{S}(N) = (c_{S,1}(N), \ldots, c_{S,n-1}(N)) \in \mathbb{Z}_{\geq 0}^{n-1}.$$

It is clear that $c_{S,k}(N) \leq \dim \mathfrak{s}$ for all k and [S,N] = 0 if and only if $\gamma_S(N) = (0,\ldots,0)$.

Lemma 2.3 Let $S, X, N \in \mathfrak{S}$ with S semisimple and $\operatorname{ad}_{\mathfrak{S}}(S)(X) = \mu X$, with $0 \neq \mu \in \mathbb{F}$. Let $k_0 \geq 1$ be the lowest k such that $d_k(X) \neq 0$ ($\mu \neq 0$ implies $X \in \mathfrak{t}'$ and hence $k_0 \geq 1$). Then $C_{S+X,k}(N) = C_{S,k}(N)$ for all $k \leq k_0$.

Proof We first point out that it follows from Lemma 2.1 that S + X is semisimple, and thus it makes sense to consider $C_{S+X,k}(N)$.

Let

$$N=\sum_{\lambda\in\Lambda}N_{\lambda},\qquad N_{\lambda}\in\mathfrak{s},$$

be the $ad_{\mathfrak{s}}(S)$ -decomposition of N. Let

$$\widetilde{N}_{\lambda,0} = \exp\left(-\mu^{-1}\operatorname{ad}_{\mathfrak{s}}(X)\right)(N_{\lambda}),$$

and, for $j \ge 1$, let $\widetilde{N}_{\lambda,j} = \frac{\mu^{-j}}{j!} \operatorname{ad}_{\mathfrak{s}}(X)^{j} (\widetilde{N}_{\lambda,0})$.

It follows from Lemma 2.1 that $\widetilde{N}_{\lambda,j}$ is an eigenmatrix of $\mathrm{ad}_{\mathfrak{s}}(S+X)$ of eigenvalue $\lambda+j\mu$. Since

$$N_{\lambda} = \exp(\mu^{-1} \operatorname{ad}_{\mathfrak{s}}(X))(\widetilde{N}_{\lambda,0}) = \widetilde{N}_{\lambda,0} + \widetilde{N}_{\lambda,1} + \widetilde{N}_{\lambda,2} + \cdots,$$

it follows that

$$N = \sum_{\lambda \in \Lambda} \sum_{j \geq 0} \widetilde{N}_{\lambda,j} = \sum_{\lambda \in \Lambda} \widetilde{N}_{\lambda,0} + \sum_{\lambda \in \Lambda} \sum_{j \geq 1} \widetilde{N}_{\lambda,j}$$

and this leads to the decomposition of N as a sum of eigenmatrices of $\mathrm{ad}_{\mathfrak{s}}(S+X)$ (after adding up those $\widetilde{N}_{\lambda,j}$ with the same eigenvalue).

Let $k \le k_0$ (recall that k_0 is the lowest k such that $d_k(X) \ne 0$). Since $k_0 \ge 1$, it follows that

$$d_k(\widetilde{N}_{\lambda,j}) = \begin{cases} d_k(N_{\lambda}) & \text{if } j = 0, \\ 0 & \text{if } j \ge 1. \end{cases}$$

This implies $C_{S+X,k}(N) = C_{S,k}(N)$.

Lemma 2.4 Let $S,N\in\mathfrak{S}$, with S semisimple, and let $N=\sum_{\lambda\in\Lambda}N_{\lambda}$ be the $\mathrm{ad}_{\mathfrak{S}}(S)$ -decomposition of N. Assume that there is $\lambda_0\in\Lambda$ with $\lambda_0\neq0$ such that $N_{\lambda_0}\in\mathfrak{S}_{\lambda_0}$ is non-zero. Then

$$\gamma_{S+N_{\lambda_0}}(N-N_{\lambda_0})<\gamma_S(N)$$

in the lexicographical order. (The pair $(S + N_{\lambda_0}, N - N_{\lambda_0})$ is closer to commuting than the pair (S, N).)

Proof Let k_0 be the lowest k such that $d_k(N_{\lambda_0}) \neq 0$ ($k_0 \geq 1$, since $N_{\lambda_0} \in \mathfrak{t}'$). It is clear that

(2.1)
$$c_{S,k}(N - N_{\lambda_0}) = \begin{cases} c_{S,k}(N) & \text{if } k < k_0, \\ c_{S,k_0}(N) - 1 & \text{if } k = k_0, \end{cases}$$

and thus $\gamma_S(N-N_{\lambda_0}) < \gamma_S(N)$.

It follows from Lemma 2.3 that, for $k \le k_0$,

$$c_{S+N_{\lambda_0},k}(N-N_{\lambda_0})=c_{S,k}(N-N_{\lambda_0}),$$

and this, combined with (2.1), implies $\gamma_{S+N_{\lambda_0}}(N-N_{\lambda_0}) < \gamma_S(N)$ in the lexicographical order.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Since $\{S, N\}$ generates a solvable Lie algebra \mathfrak{s} , and \mathbb{F} is algebraically closed, it follows from Lie's Theorem that we can assume $S, N \in \mathfrak{s} \subset \mathfrak{t}$, and since N is nilpotent, $N \in \mathfrak{t}'$.

We will prove (i) by induction. Assume (i) is true for S_n and N_n and let us suppose that $[S_n, N_n] \neq 0$. Since $\lambda_n \neq 0$, we have $(N_n)_{\lambda_n} \in \mathfrak{t}'$, and hence N_{n+1} is nilpotent. It follows from Lemma 2.1 that S_{n+1} is semisimple and S_{n+1} , $N_{n+1} \in \mathfrak{s}$. This proves (i).

It follows from Lemma 2.4 that

$$\gamma_{S_{n+1}}(N_{n+1}) = \gamma_{S_n+(N_n)_{\lambda_n}}(N_n - (N_n)_{\lambda_n}) < \gamma_{S_n}(N_n)$$

in the lexicographical order. This implies that there exists n_0 such that $\gamma_{S_{n_0}}(N_{n_0}) = 0$ and hence $[S_{n_0}, N_{n_0}] = 0$. This proves (ii), and it is clear $A = S_{n_0} + N_{n_0}$ is the Jordan–Chevalley decomposition of A.

Finally, let $\pi:\mathfrak{s}\to\mathfrak{gl}(V)$ be a representation such that $\pi(S)=\pi(S_0)$ is semisimple and $\pi(N)=\pi(N_0)$ is nilpotent. Since π is a representation, if $N_n=\sum_{\lambda\in\Lambda_n}(N_n)_\lambda$ is the $\mathrm{ad}_{\mathfrak{s}}(S_n)$ -decomposition of N_n , then

$$\pi(N_n) = \sum_{\lambda \in \Lambda_n} \pi((N_n)_{\lambda})$$

is the $\operatorname{ad}_{\pi(\mathfrak{s})}(\pi(S_n))$ -decomposition of $\pi(N_n)$. Therefore, assuming that $\pi(S_n)$ is semisimple and $\pi(N_n)$ is nilpotent, it follows, just as above, that $\pi(S_{n+1})$ is semisimple and $\pi(N_{n+1})$ is nilpotent. This implies that $\pi(A) = \pi(S_{n_0}) + \pi(N_{n_0})$ is the Jordan–Chevalley decomposition of $\pi(A)$.

Proof of Theorem 1.1 Theorem 1.2 shows that Theorem 1.1 is true when \mathbb{F} is algebraically closed, since in this case, Lie's Theorem allows us to assume that $\mathfrak{s} \subset \mathfrak{t}$.

In general, let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} . Suppose A, S, $N \in \mathfrak{S}$, where A = S + N, S is semisimple, and N is nilpotent. Let A = S' + N' be the JCD of A in $\mathfrak{gl}(n,\mathbb{F})$, as ensured in [HK, §7.5]. The minimal polynomial of S', say p, is a product of distinct monic irreducible polynomials over \mathbb{F} [HK, §7.5]. Since \mathbb{F} has characteristic 0, it follows that p has distinct roots in $\overline{\mathbb{F}}$, whence S' is diagonalizable over $\overline{\mathbb{F}}$. Therefore, A = S' + N' is the JCD of A in $\mathfrak{gl}(n,\overline{\mathbb{F}})$. Let $\overline{\mathfrak{s}}$ be the $\overline{\mathbb{F}}$ -linear span of \mathfrak{s} in $\mathfrak{gl}(n,\overline{\mathbb{F}})$. Then $\overline{\mathfrak{s}}$ is a solvable subalgebra of $\mathfrak{gl}(n,\overline{\mathbb{F}})$. As the theorem is true over $\overline{\mathbb{F}}$, we infer S', $N' \in \overline{\mathfrak{s}}$. Thus, S', $N' \in \mathfrak{gl}(n,\mathbb{F}) \cap \overline{\mathfrak{s}} = \mathfrak{s}$. This completes the proof of Theorem 1.1.

3 Jordan-Chevalley Decomposition in a Lie Algebra

Theorem 3.1 An element x of a Lie algebra \mathfrak{g} has an abstract JCD if and only if x belongs to the derived algebra $[\mathfrak{g},\mathfrak{g}]$, in which case the semisimple and nilpotent parts of x also belong to $[\mathfrak{g},\mathfrak{g}]$.

Necessity This is clear, since any linear map from \mathfrak{g} to $\mathfrak{gl}(V)$ such that dim $\pi(\mathfrak{g}) = 1$, and $\pi([\mathfrak{g},\mathfrak{g}]) = 0$ is a representation.

Sufficiency By Ado's theorem, we can assume that \mathfrak{g} is a Lie algebra of matrices. Fix a Levi decomposition $\mathfrak{g} = \mathfrak{g}_s \ltimes \mathfrak{r}$ and let $\mathfrak{n} = [\mathfrak{g}, \mathfrak{r}]$. We know that \mathfrak{n} is nilpotent (see [FH, Lemma C.20]). If $x \in [\mathfrak{g}, \mathfrak{g}]$, then x = a + r for unique $a \in \mathfrak{g}_s$ and $r \in \mathfrak{n}$. If $a = a_s + a_n$ is the JCD of the matrix a, since \mathfrak{g}_s is semisimple, it follows that a_s , $a_n \in \mathfrak{g}_s = [\mathfrak{g}_s, \mathfrak{g}_s]$ (see, for instance, [Hu, §6.4]). Let $\mathfrak{s} = \mathbb{F} a_s \oplus \mathbb{F} a_n \oplus \mathfrak{n} \subset [\mathfrak{g}, \mathfrak{g}]$. Since $[\mathfrak{s}, \mathfrak{s}] \subset \mathfrak{n}$ and \mathfrak{n}

is nilpotent, we obtain that $\mathfrak s$ is a solvable Lie algebra. We now apply Theorem 1.1 to the Lie algebra $\mathfrak s$ with $S=a_s$, $N=a_n+r$. We obtain that if x=S'+N' is the JCD of x, then $S',N'\in\mathfrak s\subset [\mathfrak g,\mathfrak g]$.

Finally, let $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation of \mathfrak{g} . Since $r \in \mathfrak{n}$, it follows that $\pi(r)$ is nilpotent (see [FH, Lemma C.19] or [B1, Ch.1, §5]). Since \mathfrak{g}_s is semisimple, $\pi(S) = \pi(a_s)$ is semisimple and $\pi(a_n)$ is nilpotent. Since \mathfrak{s} is solvable, it follows from Lie's Theorem that $\pi(N) = \pi(a_n + r)$ is nilpotent. It follows from Theorem 1.2 (applied over a field extension of \mathbb{F}) that $\pi(x) = \pi(S') + \pi(N')$ is the JCD of $\pi(x)$.

References

- [B1] N. Bourbaki, Lie Groups and Lie Algebras: chapters 1-3. Springer-Verlag, Berlin, 1989.
- [B2] _____, Lie Groups and Lie Algebras: chapters 7-9. Springer-Verlag, Berlin, 2005.
- [CS] L. Cagliero and F. Szechtman, Jordan-Chevalley decomposition in finite dimensional Lie algebras. Proc. Amer. Math. Soc. 139(2011), no. 11, 3909–3913. http://dx.doi.org/10.1090/S0002-9939-2011-10827-X
- [CS2] _____, The classification of uniserial \$\(\frac{1}{2}\) \preceq V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol. J. Algebra 386(2013), 142−175. http://dx.doi.org/10.1016/j.jalgebra.2013.03.022
- [CS3] _____, On the theorem of the primitive element with applications to the representation theory of associative and Lie Algebras. Canad. Math. Bull. 57(2014), no. 4, 735–748. http://dx.doi.org/10.4153/CMB-2013-046-9
- [FH] W. Fulton and J. Harris, Representation theory: A first course. Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0979-9
- [HK] K. Hoffman and R. Kunze, Linear algebra. Second ed., Prentice-Hall, New Jersey, 1971.
- [Hu] J. E. Humphreys, Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
- [Ki] K.-T. Kim, Criteria for the existence of a Jordan-Chevalley-Seligman decomposition. J. Algebra 424(2015), 376–389. http://dx.doi.org/10.1016/j.jalgebra.2014.09.028

CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Córdoba, Argentina e-mail: cagliero@famaf.unc.edu.ar

Department of Mathematics and Statistics, University of Regina, Regina, SK e-mail: fernando.szechtman@gmail.com