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We construct a strongly local regular Dirichlet form on the golden ratio Sierpinski
gasket, which is a self-similar set without a finitely ramified cell structure, via a
study on the trace of an electrical network on an infinite graph. The Dirichlet form
is the unique one that is self-similar in the sense of an infinite iterated function
system, and is decimation invariant with respect to a graph-directed construction.
The proof is based on a fixed point problem of a renormalization map, inspired by
Sabot’s celebrated work for finitely ramified fractals. Lastly, the Hunt process
associated with the Dirichlet form satisfies a two-sided sub-Gaussian heat kernel
estimate.
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1. Introduction

The golden ratio Sierpinski gasket G is a typical example of a self-similar set satis-
fying the finite type property ([2], see definition 2.1.), which arises in the study
of the Hausdorff dimension of self-similar sets with overlaps [26, 31, 32]. Let
q0 =

(
1
2 ,

√
3

2

)
, q1 = (0, 0), q2 = (1, 0) be the three vertices of an equilateral triangle

in R
2, and

F0(x) = ρ2(x− q0) + q0,

F1(x) = ρ(x− q1) + q1, F2(x) = ρ(x− q2) + q2,

with ρ =
√

5−1
2 being the golden ratio. The gasket G is the invariant set associated

with the iterated function system (IFS for short) {F0, F1, F2}, i.e. G is the unique
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Figure 1. The golden ratio Sierpinski gasket G.

non-empty compact set satisfying

G =
2⋃
i=0

FiG.

See figure 1.
The large overlap F1G ∩ F2G makes G different from the existing examples of

self-similar sets on which Brownian motions are constructed.
First, any effort to disconnect the bottom line of G requires the removal of

infinitely many points, so there is not a finitely ramified cell structure [35] on
G. Well-known classes of fractals with finitely ramified cell structures include
Lindstrøm’s nested fractals [27], Kigami’s post-critically finite (PCF) self-similar
sets [20, 21], finitely ramified graph-directed fractals [9, 19], and some Julia sets
of polynomials [1, 14, 33] or rational functions [10]. See [8, 16, 24] for pioneering
works on the Sierpinski gasket, and also books [3, 22] for systematic discussions.

Second, although there is a graph-directed construction related with G (see § 2),
by dividing G into blocks of nearly the same size, the graph is much more com-
plicated. As a result, the deep and famous constructions on the Sierpinski carpet
[4–6] by Barlow and Bass, and on certain symmetric fractals [25] by Kusuoka and
Zhou would be extremely difficult here. See also [7] for a theorem of uniqueness on
the Sierpinski carpet.

Instead, thanks to the golden ratio, there is an ‘infinite cell structure’ on G. For
the first level, we consider the cell F0G and its images under compositions of F1, F2.
The union of these cells covers G except the bottom line. For each such cell, we can
find a finite word w, and a contraction map Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm

, so that
the cell can be written as FwG. We name the collection of all such words W1, and
construct a resistance form [22] on G, that is self-similar in the sense of the infinite
IFS {Fw}w∈W1 . Roughly speaking, we have the following theorem, see theorems
6.5, 6.6 and 6.8 for detailed and formal results.

Theorem 1.1. There exists a unique strongly local regular resistance form (E ,F)
on G such that f ∈ F if and only if f ◦ Fw ∈ F for all w ∈W1 and

∑
w∈W1

ρ−θw E(f ◦
Fw, f ◦ Fw) <∞, where ρw is the similarity ratio of Fw and 0 < θ < 1 is a constant.
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In addition,

E(f, f) =
∑
w∈W1

ρ−θw E(f ◦ Fw, f ◦ Fw).

Moreover, the form is decimation invariant with respect to the graph-directed
construction of G.

The form (E ,F) is then a strongly local regular Dirichlet form on L2(G, μH),
where μH is the normalized Hausdorff measure on G. In addition, there is an asso-
ciated diffusion process on G. (Readers are suggested to refer the book [15] for more
explanations.) Although, our construction is based on an infinite IFS, the behaviour
of the process is same on each cell before hitting the boundary, up to a time scaling,
since any cell can be decomposed in a same manner.

In addition, by following the well-established method of Hambly and Kumagai
[18], which is organized in Barlow’s book [3], we can obtain a sub-Gaussian heat
kernel estimate (see § 7). We refer to [8, 13, 23] for earlier results on transition
density estimates on fractals.

Theorem 1.2. There is a symmetric transition density p(t, x, y) associated with the
form (E ,F) on G. In addition, there are constants c1, c2, c3, c4 so that

c1t
−dH/β exp

(
−c2

(
d(x, y)β

t

) 1
β−1
)

� p(t, x, y) � c3t
−dH/β exp

(
−c4

(
d(x, y)β

t

) 1
β−1
)
,

for 0 < t � 1, with β = θ + dH , where dH ≈ 1.6824 is the Hausdorff dimension of
G, and d represents the Euclidean metric.

The main difficulty in proving this result is establishing an estimate for the
resistance metric R on G of the form c1 d(x, y)θ � R(x, y) � c2 d(x, y)θ for some
constant c1, c2 > 0.

We organize the structure of the paper as follows. In § 2, we will briefly introduce
some facts about the geometry of G. From § 3 to 5, we study the trace of forms on an
infinite graph. In § 3, we establish the resistance forms on the graph. In § 4, we study
the trace map and a related renormalization map. We will show the joint continuity
of the renormalization map. In § 5, we show that there is a unique solution to a
renormalization problem. With all these preparations, we construct the resistance
form on G in § 6, and at the same time we derive an upper-bound estimate for the
resistance metric. Lastly, we obtain the transition density estimate through a lower
bound for the resistance metric in § 7.

Before ending this section, we remark that the result in this paper has a natural
extension, by replacing 0 < ρ < 1 to be a real root of xn − 2x+ 1 with n � 4, and
taking the contraction ratios corresponding to F0, F1, F2 to be 1 − ρ, ρ, ρ. Indeed,
by doing so, we obtain a class of gaskets that possess a similar overlapping structure
of G, see figure 2.
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Figure 2. A gasket with 0 < ρ < 1 being a root of x4 − 2x + 1 = 0.

2. Preliminary

The golden ratio Sierpinski gasket G is a typical example of a self-similar set with
overlaps but satisfying the finite type property.

Let K be a general self-similar set associated with an IFS {Fi}N−1
i=0 with con-

traction ratios {ρi}N−1
i=0 with respect to the Euclidean metric. For m � 1, we call

w = w1w2 · · ·wm with wi ∈ {0, 1, . . . , N − 1}, a word of length m (denoted by |w|),
and call ∅ the empty word. We denote the set of all words by W̃∗. For any word
w ∈ W̃∗, we write Fw = Fw1 ◦ Fw2 · · · ◦ Fw|w| , and let F∅ be the identity map for
consistency. Let ρ∗ = min{ρi : 0 � i < N}.

Definition 2.1 finite type property. A self-similar set K is of finite type if there
are only finitely many maps h = F−1

w Fv with w, v ∈ W̃∗ and FwK ∩ FvK �= ∅, and
with similarity ratio ρh ∈ (ρ∗, 1/ρ∗).

The finite type property of K, formulated in algebraic terms, was introduced in
[2] by Bandt and Rao. It guarantees the existence of an ‘almost non-overlapping’
graph-directed construction (see [2, 31] for details) of K, which is quite useful for
calculating the Hausdorff dimension of K. See [26, 32] for more flexible variants of
the finite type property.

It is easy to verify that G satisfies the finite type property, noticing that F122G =
F211G. In particular, it has the following graph-directed construction [28].

Definition 2.2 a graph-directed construction of G.

(a). Let K1 = G and K2 = G \ F22G.

(b). Let Γ(S,E) be a directed graph with the vertex set S = {1, 2}, and the edge
set E = {ei}6

i=1, where e1 = (1, 2), e2 = (1, 1), e3 = (2, 1), e4 = (2, 2), e5 =
(2, 2), e6 = (2, 1).

(c). Define ψe1 = Id, ψe2 = F22, ψe3 = F0, ψe4 = F1, ψe5 = F21, ψe6 = F20.
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Figure 3. A graph-directed construction of G.

Clearly, we have

K1 =
2⋃
i=1

ψei
Kei,2 and K2 =

6⋃
i=3

ψei
Kei,2 ,

where we use the notation ei = (ei,1, ei,2) for a directed edge. In addition, there exist
bounded open sets O1 and O2 such that

⋃2
i=1 ψei

Oei,2 ⊂ O1 and
⋃6
i=3 ψei

Oei,2 ⊂
O2, where the unions are disjoint. See figure 3 for an illustration.

Then similar to the open set condition situation, one can calculate the exact
value of the Hausdorff dimension of G to be

dH =
log η

−2 log ρ
≈ 1.6824

with η being the largest root of x3 − 6x2 + 5x− 1. In addition, the associated
Hausdorff measure of G is positive and finite. See details in [31] by Ngai and Wang.

Throughout this paper, we use d to denote the Euclidean metric, and take μH to
be the normalized Hausdorff measure on G with respect to d, i.e. μH(G) = 1. For
p, q ∈ G, let

dg(p, q) = inf{|γ| : γ is a path connecting p, q, and γ ⊂ G},
be the geodesic metric between p, q. It is not hard to verify the following lemma.

Lemma 2.3.

(a). Let Bs(p) = {q ∈ G : d(p, q) < s}. There are constants c1, c2 > 0 such that

c1s
dH � μH(Bs(p)) � c2s

dH , ∀p ∈ G, 0 < s � 1.

(b). There exists a constant c � 1 such that

d(p, q) � dg(p, q) � cd(p, q), ∀p, q ∈ G.
The statement (a) is a well-known fact (for example, see [12, corollary 6.4.4]).

The proof of (b) relies on the finite type property. The rough idea is to link p, q
with a bounded number of cells of diameter approximating to d(p, q).
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Figure 4. The infinite graph (V1,∼). (The bottom line equals to V̄1 \ V1.)

By the compactness of G (for example, see [3, lemma 2.1.1]), there is always
a path admitting the infimum length between p, q. So, the metric space (G, dg)
satisfies the so-called midpoint property, i.e. for any p, q ∈ G, there exists p′ so that
dg(p, p′) = dg(p′, q) = 1

2dg(p, q). The space (G, dg, μH) is then a fractional metric
space, see [3, definition 3.2].

We will return to look at the geometric properties of G listed in this section.
But first, from § 3 to 5, we will instead consider an infinite IFS and the associated
infinite graph.

3. Resistance forms on the infinite graph V1

The golden ratio Sierpinski gasket G can be realized as an invariant set of an infinite
IFS. For convenience, we introduce some notation. For any word w,w′ ∈ W̃∗, we
write ww′ for the concatenation of w,w′. For w = w1w2 · · ·wm and 0 � l � m,
we write [w]l = w1w2 · · ·wl. The following notation is a little different from the
standard ones.

Notation. Choose a set of finite words W1 ⊂ ⋃∞
n=0{1, 2}n × {0} so that

1. for any w ∈ ⋃∞
n=0{1, 2}n × {0}, there exists w′ ∈W1 such that Fw = Fw′ ;

2. for different words w,w′ ∈W1, we have Fw �= Fw′ .

In addition, based on W1, we introduce some more notations.

(a) For n � 1, define W1,n = {w ∈W1 : |w| = n};
(b) For m � 2, define Wm := Wm

1 = {w1w2 · · ·wm : wi ∈W1, 1 � i � m};
(c) Write V0 = {qi}2

i=0 and for m � 1, Vm =
⋃
w∈Wm

FwV0. Denote V̄m the
closure of Vm;

(d) For distinct p, q ∈ V1, we denote p ∼ q if and only if p, q ∈ FwV0 for some
w ∈W1, which induce an infinite graph (V1,∼). See figure 4 for an illustration.
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Obviously, we have

G =
⋃

w∈W1

FwG,

and thus {Fw}w∈W1 is an infinite i.f.s associated with G. See [30] for more details
about infinite IFSs. The advantage of this IFS lies in the fact that

FwG ∩ Fw′G = FwV0 ∩ Fw′V0, ∀w �= w′ ∈W1.

Remark. For n � 1, if we rename the vertices {Fwq0}w∈W1,n
to be {p(n)

i }Nn
i=1 with

Nn := #W1,n, so that for each i, p(n)
i is on the left of p(n)

i+1. Then it directly calculates
that d(p(n)

i , p
(n)
i+1) is either ρn or ρn+1, and thus Nn � ρ−n.

In addition, for p, q ∈ V1 with d(p, q) < ρn+2, there always exist w,w′ ∈ {1, 2}n
such that p ∈ FwV1, q ∈ Fw′V1 and FwV1 ∩ Fw′V1 �= ∅. In fact, by a direct observa-
tion, p /∈ ⋃n+1

n′=1{p(n′)
i }Nn′

i=1 , and so we can find w̃ ∈ {1, 2}n+1 such that p ∈ Fw̃V1,
and one can then see that q ∈ ⋃ {Fw′V1 : w,w′ ∈ {1, 2}n, Fw̃V1 ⊂ FwV1, Fw′V1∩
FwV1 �= ∅}, since otherwise d(p, q) >

√
3

2 · ρn+1 � ρn+2.
In the rest of this section, we consider a class of resistance forms generated by

decimation. For convenience of readers, we recall the general definition of resistance
forms in the following. See [22] for more details.

Definition 3.1. Let X be a set, and l(X) be the space of all real-valued functions
on X. A pair (E ,F) is called a (non-degenerate) resistance form on X if it satisfies
the following conditions:

(RF1) F is a linear subspace of l(X) containing constants and E is a nonnega-
tive symmetric quadratic form on F ; E(f) := E(f, f) = 0 if and only if f is
constant on X.

(RF2) Let ‘∼’ be an equivalence relation on F defined by f ∼ g if and only if f − g
is constant on X. Then (F/ ∼, E) is a Hilbert space.

(RF3) For any finite subset V ⊂ X and any u ∈ l(V ), there exists a function f ∈ F
such that f |V = u.

(RF4) For any distinct p, q ∈ X, R(p, q) := sup{ |f(p)−f(q)|2
E(f) : f ∈ F , E(f) > 0} is

finite.

(RF5) If f ∈ F , then f̄ = min{max{f, 0}, 1} ∈ F and E(f̄) � E(f).

Sometimes, we write F = Dom(E), and abbreviate (E ,F) to E when no confusion
occurs. It is well-known ([22]) that R(p, q) defined in (RF3) is a metric onX, named
the effective resistance metric.
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On the finite set V0, a resistance form D always has the form

D(f, g) =
1
2

∑
i,j

ai,j (f(qi) − f(qj)) (g(qi) − g(qj)) , ∀f, g ∈ l(V0), (3.1)

where ai,i = 0 and the 3 × 3 matrix (ai,j) is positive, symmetric and irreducible.
For convenience, we write M for the collection of all resistance forms on V0. We
view M as a subset of R

3, which is not closed with the induced topology.
Given a resistance form D, we define a resistance form on V1 associated with D

in a self-similar manner, respecting the infinite IFS {Fw}w∈W1 .

Definition 3.2. For r > 0, D ∈ M, we define ΨrD as

ΨrD(f, g) =
∑
w∈W1

r−|w|+1D(f ◦ Fw, g ◦ Fw),

with Dom(ΨrD) = {f ∈ l(V1) : ΨrD(f) <∞}.
It is not hard to show that (ΨλD,Dom(ΨrD)) is a resistance form on V1. However,

to get a good resistance form, we need to restrict the range of r.

Proposition 3.3. Let D ∈ M and r < 1, then Dom(ΨrD) ⊂ C(V̄1) by a natu-
ral identification. In addition, if ρ < r < 1, then (ΨrD,Dom(ΨrD)) extends to a
resistance form on V̄1, with the associated resistance metric R(p, q) satisfying the
estimate

R(p, q) � 4
r3(1 − r)

R∗
0(D) d(p, q)

log r
log ρ , ∀p, q ∈ V̄1, (3.2)

where R∗
0(D) = maxp,q∈V0 R0(p, q) with R0 being the resistance metric on V0

associated with D.

Proof. By scaling, R(p, q) � R∗
0(D)rn−1 for any distinct p, q ∈ FwV0 with w ∈W1,n

and n � 1. For w ∈ {1, 2}n, write [w]l = w1w2 · · ·wl and pl = F[w]l(q0), with 0 �
l � n, then

R(pi, pj) �
j−1∑
l=i

R(pl, pl+1) � R∗
0(D)

j−1∑
l=i

rl < R∗
0(D)

ri

1 − r
, ∀0 � i < j � n.

In particular, this implies that R(p, q) � 2rn

1−rR
∗
0(D) for any p, q ∈ FwV1 and w ∈

{1, 2}n. Now, if p, q ∈ V1 and d(p, q) < ρn+2, then by the remark before definition
3.1, there exist w,w′ ∈ {1, 2}n such that p ∈ FwV1, q ∈ Fw′V1, and FwV1 ∩ Fw′V1 �=
∅, which implies that R(p, q) � 4rn

1−rR
∗
0(D). As a consequence, we have

R(p, q) � 4
r3(1 − r)

R∗
0(D) d(p, q)

log r
log ρ , ∀p, q ∈ V1. (3.3)

On the other hand, for any f ∈ Dom(ΨrD), by (RF4), we immediately have

|f(p) − f(q)| � (R(p, q)ΨrD(f))1/2 . (3.4)

Combining (3.3) and (3.4), we then get Dom(ΨrD) ⊂ C(V̄1) by a natural identifi-
cation.
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To show the second assertion, we let (X,R) be the completion of (V1, R), and
recall [22, theorem 2.3.10] to get that (ΨλD,Dom(ΨrD)) extends to be a resistance
form on X. It suffices to show that the identity map Id : V1 → V1 extends to an
homeomorphism from (V̄1, d) to (X,R) under the assumption ρ < r < 1. First, by
(3.3), Id is continuous from (V1, d) to (V1, R). Next, let f ∈ l(V1) be a restriction
of a linear function on R

2. We have

ΨrD(f) =
∑
w∈W1

r−|w|+1D(f ◦ Fw) =
∞∑
n=1

∑
w∈W1,n

r−n+1D(f ◦ Fw)

=
∞∑
n=1

#W1,nr
−n+1ρ2(n+1)D(f |V0),

where the last equality follows from the fact that f is linear. Since #W1,n � ρ−n,
we have ΨrD(f) <∞ when r > ρ, so that f ∈ Dom(ΨrD). Noticing that for any
points p �= q ∈ V̄1, we can find a linear function f such that f(p) �= f(q), we have
Id is injective. Finally, due to the fact that (V̄1, d) is a compact Hausdorff space
and (X,R) is the completion of (V1, R), we then have that Id is an homeomorphism
from (V̄1, d) to (X,R). This implies that (ΨrD,Dom(ΨrD)) is a resistance form on
V̄1, and (3.2) follows immediately from (3.3). �

Remark. The restriction ρ < r < 1 is sharp. If r � ρ, there is no f ∈ Dom(ΨrD)
such that f(q1) = 0 and f(q2) = 1. In fact, for any f ∈ C(V̄1) with f(q1) = 0 and
f(q2) = 1, by the remark before definition 3.1, the total energy of f on the union of
the cells FwV0, w ∈W1,n ∪W1,n+1 (noticing that this union will induce a connected
subgraph in (V1,∼), and the resistance between Fn1 q0 and Fn2 q0 is about rnρ−n) will
be bounded away from 0 as n→ ∞.

4. A renormalization map

In proposition 3.3, we have shown that ΨrD extends to be a resistance form on V̄1

when ρ < r < 1. It is natural to trace it back to V0, noticing that V0 ⊂ V̄1.

Definition 4.1. Let (D1,F1) be a resistance form on V̄1, we write

[D1]V0(u) = inf{D1(f) : f |V0 = u, f ∈ F1}, ∀u ∈ l(V0).

Note that by a standard electric network theory, there exists a unique function f so
that D1(f) attains the infimum above; also [D1]V0 induces a resistance form on V0

by defining

[D1]V0(u, v) :=
1
4

([D1]V0(u+ v) − [D1]V0(u− v)) .

For ρ < r < 1 and D ∈ M, we define RrD = [ΨrD]V0 , and call Rr the renormal-
ization map. Sometimes, we also write R(r,D) := Rr(D).

The main purpose of this section is to show the continuity of the map R(r,D).

Theorem 4.2. The map R(r,D) is jointly continuous from (ρ, 1) ×M to M.
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To prove theorem 4.2, we need a study on the regularity of the resistance form
ΨrD.

Proposition 4.3. Let D ∈ M and ρ < r1 < r2 < 1. Then

(a) Dom(Ψr1D) depends only on r1, and we have Dom(Ψr1D) ⊂ Dom(Ψr2D).

(b) Dom(Ψr1D) is dense in Dom(Ψr2D) in the sense that for any f ∈ Dom(Ψr2D)
and ε > 0, there exists g ∈ Dom(Ψr1D) such that

Ψr2D(f − g) < ε, and f |V0 = g|V0 .

Moreover, Dom(Ψr1D) is dense in C(V1) so that the resistance form is regular.

Proof. (a) is obvious since all D ∈ M are comparable up to multiplicative constants,
we only need to prove (b). Let f ∈ Dom(Ψr2D), and choose n large enough so that

∞∑
l=n

∑
w∈W1,l

r−l+1
2 D(f ◦ Fw) < ε. (4.1)

For convenience, we rename the vertices {Fwq0}w∈W1,n
to be {pi}Ni=1 with N =

#W1,n, so that for each i, pi is on the left of pi+1. Then, noticing that the effective
resistance between q1 and p1 (symmetrically, q2 and pN ) is bounded above by a
multiple of r−n, by (RF4), it is not hard to see

r−n2

(
N−1∑
i=1

(f(pi) − f(pi+1))
2 + (f(q1) − f(p1))

2 + (f(q2) − f(pN ))2
)

� c1

⎛
⎝ ∞∑
l=n

∑
w∈W1,l

r−l+1
2 D(f ◦ Fw)

⎞
⎠ < c1ε,

where c1 is a constant depending on D and r2, but not on n.
Write xi for the x-coordinate of pi, so we have 0 < x1 < x2 < · · · < xN < 1. We

introduce a piecewise linear function u on R
2 such that

1. u(x, y) depends only on x;

2. u(q1) = f(q1), u(q2) = f(q2), and u(pi) = f(pi), 1 � i � N ;

3. u(x, 0) is linear on each interval (0, x1), (xN , 1) and (xi, xi+1), 1 � i � N − 1.

We define g ∈ l(V1) as

g(p) =

{
f(p), if p ∈ ⋃n−1

l=1

⋃
w∈W1,l

{Fwq0},
u(p), if p ∈ ⋃∞

l=n

⋃
w∈W1,l

{Fwq0}.

https://doi.org/10.1017/prm.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.28


Brownian motion on the golden ratio Sierpinski gasket 709

By a similar estimate to that applied in the proof of proposition 3.3, one can check
that g ∈ Dom(Ψr1D), and

∞∑
l=n

∑
w∈W1,l

r−l+1
2 D(g ◦ Fw)

� c2r
−n
2

(
N−1∑
i=1

(f(pi) − f(pi+1))
2 + (f(q1) − f(p1))

2 + (f(q2) − f(pN ))2
)
,

where c2 depends only on D and r2. So we have Ψr2D(f − g) � c3ε for some con-
stant c3. Since ε can be arbitrarily small, we have that Dom(Ψr1D) is dense in
Dom(Ψr2D). Finally, the claim that Dom(Ψr1D) is dense in C(V̄1) follows from
the same argument. �

Proof of theorem 4.2. Let rn → r ∈ (ρ, 1) and Dn → D ∈ M. Also, let u ∈ l(V0).
First, we show that

lim sup
n→∞

R(rn,Dn)(u) � R(r,D)(u). (4.2)

We define f to be the unique function in Dom(ΨrD) such that f |V0 = u and

R(r,D)(u) = ΨrD(f).

By proposition 4.3, for any ε > 0, there is fε such that fε|V0 = u, fε ∈ Dom(Ψrn
Dn)

for any n � 1, and

ΨrD(fε) � ΨrD(f) + ε.

As a consequence, we have

lim sup
n→∞

R(rn,Dn)(u) � lim
n→∞Ψrn

Dn(fε) = ΨrD(fε) � R(r,D)(u) + ε,

where the equality is due to the dominated convergence theorem. Since ε can be
arbitrarily chosen, we get (4.2).

Next, for each n, let fn be the unique function in Dom(Ψrn
Dn) such that fn|V0 =

u and

R(rn,Dn)(u) = Ψrn
Dn(fn).

Then {fn}n�1 is uniformly bounded by the Markov property (RF5). In addition,
Ψrn

Dn(fn) � R(r∗,Dn)(u) with r∗ = infn�1 rn, so {Ψrn
Dn(fn)}n�1 is a bounded

sequence. By estimates (3.2) and (3.4), we have

|fn(p) − fn(q)| � c

(
d(p, q)

log r∗
log ρ sup

n�1
Ψrn

Dn(fn)
)1/2

, ∀n � 1,∀p, q ∈ V̄1,

where r∗ = supn�1 rn and c2 = supn�1{ 4
r3n(1−rn)R

∗
0(Dn)}, and so {fn}n�1 is also

equicontinuous. Thus, there is a subsequence {fnk
}k�1 such that fnk

converges
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uniformly to a function f ∈ C(V̄1). Clearly, f is an extension of u. By Fatou’s
lemma,

R(r,D)(u) � ΨrD(f) � lim inf
k→∞

Ψrnk
Dnk

(fnk
) = lim inf

k→∞
R(rnk

,Dnk
)(u).

Combining this with (4.2), we see that

R(r,D)(u) = lim
k→∞

R(rnk
,Dnk

)(u).

Since the argument works for any sequence (r′n,D′
n) → (r,D), we actually have

R(r,D)(u) = lim
n→∞R(rn,Dn)(u).

The theorem follows immediately since u can be any function in l(V0). �

5. A fixed point problem

In this section, analogous to the case of PCF self-similar sets (see [22, 34]), we
consider the renormalization equation

RrD = λD, (5.1)

with λ > 0. We will prove that for each given ρ < r < 1, there always exists a
positive λ such that (5.1) has a solution D in M. Nevertheless, this is not enough
for the construction of a satisfying resistance form on G for our later purposes. In
order that cells of same size are assigned with the same renormalization factors, we
will in addition require λ = r2, i.e.

RrD = r2D. (5.2)

The existence and uniqueness of such a solution is the main purpose of this section.
It is natural to consider resistance forms on G that are symmetric with respect

to the reflection symmetry of G. So we look at the resistance forms on V0 which are
symmetric in the sense that a0,1 = a0,2 in (3.1). We denote MS for the set of all
such resistance forms.

Theorem 5.1.

(a). For each ρ < r < 1, there exists a unique pair of λ(r) and D(r) ∈ M (up to
constants) satisfying (5.1), where λ(r) is decreasing and continuous in r, and
D(r) is in MS.

(b). There exists a unique ρ < r < 1 such that (5.2) has a unique (up to constants)
solution D ∈ M.

We will first prove that for each r, there exist a unique λ(r) such that (5.1) has
a solution D(r) in MS , then prove that D(r) is indeed a unique solution (up to
constants) in M. The existence and uniqueness of a solution to (5.2) will follow
from the properties of λ(r). We divide these into two subsections.
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5.1. The existence of a symmetric solution

We begin with some simple observations.

Lemma 5.2. Let ρ < r < 1 be fixed, and suppose that there is a solution to (5.1).
Then the constant λ depends only on r.

Proof. This follows from a standard argument like the finite graph case [29]. Sup-
pose that D,D′ are two solutions to (5.1) with λ, λ′ being the corresponding
constant. Let u ∈ l(V0) so that D′(u)

D(u) = supv 	=constants
D′(v)
D(v) := θ, and let f be the

harmonic extension of u with respect to ΨrD. Then

λ′D′(u) = RrD′(u) � ΨrD′(f) � θΨrD(f) = θRrD(u) = θλD(u).

This implies that λ′ � λ. A same argument also shows that λ � λ′. �

Inspired by lemma 5.2, we can view the constant λ in (5.1) as a function of r.
On the other hand, the problem of solvability of (5.1) can be transferred to a fixed
point problem.

Definition 5.3.

(a) Define

M̃S =
{
D ∈ M : D(f) = a (f(q0) − f(q1))

2 + a (f(q0) − f(q2))
2

+ (1 − a) (f(q1) − f(q2))
2
, 0 < a � 1

}
,

and for 0 < s � 1,

M̃[s,1]
S =

{
D ∈ M : D(f) = a (f(q0) − f(q1))

2 + a (f(q0) − f(q2))
2

+ (1 − a) (f(q1) − f(q2))
2
, s � a � 1

}
.

(b) For each D ∈ MS, there is a unique constant c such that cD ∈ M̃S, and we
denote the resulting form TD. We define R̃r : MS → M̃S to be the map given
by R̃r = T ◦ Rr. As before, we write R̃(r,D) = R̃r(D).

The following lemma will play an essential role.

Lemma 5.4. For ρ < r0 < r1 < 1, there exists 0 < s � 1 such that R̃ : [r0, r1] ×
MS → M̃[s,1]

S .

Proof. Let D ∈ MS , r0 � r � r1 and R be the resistance metric on V1 associ-
ated with ΨrD. For convenience, we write D(f) = a(f(q0) − f(q1))2 + a(f(q0) −
f(q2))2 + b(f(q1) − f(q2))2, with a > 0, b � 0.

First, by the series law for resistances, for any f ∈ l(V1), we have

ΨrD(f) �
∞∑
n=0

ar−n
(
f(Fn1 q0) − f(Fn+1

1 q0)
)2 � a(1 − r) (f(q0) − f(q1))

2
,

so we have R(q0, q1) � 1
a(1−r) � 1

a(1−r1) .
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Next, let f be the linear function on R
2 such that f(q1) = 0, f(q2) = 1 and

f(q0) = 1
2 , so f only depends on the x-coordinate. We introduce a ‘horizontal’

edge relation ‘∼h’ on V1: for distinct p, q ∈ V1, denote

p ∼h q if there exists w ∈W1 so that p, q ∈ {Fwq1, Fwq2}.
For each p ∈ V1, we write

[p]h = {q ∈ V1 : q ∼h p, or q ∼h q′, q′ ∼h p for some q′ ∈ V1}.
Then we modify f on V1 into a function g ∈ l(V1) as

g(p) =

∑
q∈[p]h

f(q)

#[p]h
, ∀p ∈ V1.

By doing this we have

1. g(p) = g(q) if [p]h = [q]h;

2. |g(p) − g(q)| � c1ρ
n if p, q ∈ FwV0 with w ∈W1,n.

Thus, we have

ΨrD(g) =
∞∑
l=1

∑
w∈W1,l

r−l+1D(g ◦ Fw)

� 2c21a
∞∑
l=1

r−l+1ρ2l#W1,l

� c2a

∞∑
l=1

r−lρl =
c2ρ

r − ρ
a � c2ρ

r0 − ρ
a,

where we use the estimate #W1,l � ρ−l. Thus, g extends to g ∈ C(V̄1) by propo-
sition 3.3, and it is direct to check that g|V0 = f |V0 . As a consequence, we get
R(q1, q2) � r0−ρ

c2ρ
a−1.

Due to the above two estimates, there exists c3 > 0 independent of D such that

R(q0, q1)
R(q1, q2)

� c3.

Then an effective resistance calculation gives that R̃(r,D) ∈ M̃[ 1
2c3

,1]

S . The lemma
follows. �

By using lemmas 5.2 and 5.4 and theorem 4.2, we can easily prove the following
proposition.

Proposition 5.5. Let ρ < r < 1, there always exists a solution to (5.1) in MS,
with λ uniquely determined by r. In addition, regarding λ as a function of r, λ(r)
is decreasing and continuous in r.
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Proof. First, we have R̃r : M̃[s,1]
S → M̃[s,1]

S for some s > 0 by lemma 5.4. Together
with theorem 4.2, the existence of a fixed point of R̃r is then an immediate
consequence.

Next, let r1 < r2, and assume that Rr1D1 = λ(r1)D1 and Rr2D2 = λ(r2)D2. Let
u ∈ l(V0) so that D2(u)

D1(u) = supv 	=constants
D2(v)
D1(v)

:= θ, and let f be the harmonic
extension of u with respect to Ψr1D1, then we have λ(r2)D2(u) � Ψr2D2(f) �
θΨr1D1(f) = θλ(r1)D1(u). So we get λ(r2)�λ(r1).

Finally, let rn → r, and let Dn ∈ M̃S be a sequence of solutions to Rrn
Dn =

λ(rn)Dn. Clearly, we have ρ < infn�1 rn < supn�1 rn < 1, so {Dn}n�1 ⊂ M̃[s,1]
S for

some s > 0 by lemma 5.4. Thus, there exists a subsequence {nk}k�1 such that Dnk

converges to some D ∈ M̃S and λ(rnk
) converges. By theorem 4.2, we conclude that

RrD = (limk→∞ λ(rnk
))D. So λ(r) = limk→∞ λ(rnk

). Since the argument works for
any sequence rn → r, λ(r) is continuous in r. �

We have an easy estimate of λ(r).

Lemma 5.6. For ρ < r < 1, we have
(

1
1−r − r

2+2r+2r2

)−1

� λ(r) � 2
2+r .

Proof. We consider a function u ∈ l(V0) with u(q0) = 0 and u(q1) = u(q2) = 1.
Without loss of generality, we assume the solution D ∈ MS has D(u) = 2. To get
an upper bound for λ(r), we construct an extension f ∈ l(V1) of u by setting

f(p) =

⎧⎪⎨
⎪⎩

0, if p = q0,
2

2+r , if p ∈ {F1q0, F2q0},
1, if p ∈ F1V1 ∪ F2V1 \ {F1q0, F2q0}.

Then the upper bound follows easily from the following estimate:

RλD(u) � ΨrD(f) =

((
2

2 + r

)2

+ 2r−1

(
1 − 2

2 + r

)2
)
D(u) =

2
2 + r

D(u).

To get the lower bound, we look at a subgraph in (V1,∼), whose vertices are
{F li q0}i,l with i ∈ {1, 2} and l � 0, together with

pi,0 = Fiq0, pi,1 = FiFjq0, pi,2 = FiFjFiq0,

pi,3 = FiFjF
2
i q0, pi,4 = F 2

i Fjq0, pi,5 = F 2
i q0,

with i, j ∈ {1, 2} and j �= i, and edges inherited from (V1,∼) (with horizontal edges
deleted), see figure 5. Let f ∈ l(V1) be the harmonic extension of u, denote cl =
r−l−1 for l ∈ {0, 1, 2}, and cl = rl−6 for l ∈ {3, 4}, then the lower bound follows
from the estimate that

RrD(u) = ΨrD(f) �
∑

i=1,2

( ∞∑
l=0

r−l
(
f(F l

i q0) − f(F l+1
i q0)

)2
+

4∑
l=0

cl

(
f(pi,l) − f(pi,l+1)

)2)

� 2

(
1

1 − r
− r

2 + 2r + 2r2

)−1

=

(
1

1 − r
− r

2 + 2r + 2r2

)−1

D(u),
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Figure 5. The subgraph of (V1,∼) constructed in lemma 5.6.

where the last inequality can be done by an easy computation of the effective
resistances on the subgraph (for i ∈ {1, 2}, firstly connecting the resistors along
{pi,l}5

l=0 in series, secondly connecting the resulting effective resistor with the
resistor between pi,0 and pi,5 in parallel; lastly connecting all the resistors in
series). �

Using proposition 5.5 and lemma 5.6, we arrive at the main result of this
subsection, concerning the solvability of (5.2).

Theorem 5.7. There exists a unique ρ < r < 1 such that (5.2) has a solution D ∈
MS.

Proof. By proposition 5.5, we see that there is a continuous function λ(r) so that
Rλ(D) = λ(r)D has a solution. Noticing that

λ(ρ) �
(

1
1 − ρ

− ρ

2 + 2ρ+ 2ρ2

)−1

> 1 − ρ = ρ2, and λ(1) � 2
3
< 1,

there exists ρ < r < 1 such that λ(r) = r2 by lemma 5.6. The uniqueness follows
from the fact that λ(r) is decreasing in r, while r2 is strictly increasing. �

Remark. We can see the uniqueness of r from another point of view. Let θ = log r
log ρ ,

we will see in § 7 that θ + dH is the walk dimension of the resulting diffusion process
on the metric measure space (G, d, μH), whose uniqueness is shown in [17, theorem
4.6] under some weak conditions on the heat kernel.

5.2. The uniqueness

In this subsection, we consider the uniqueness of the solution to (5.1) or (5.2).
The proof is inspired by Sabot’s work [34].

Theorem 5.8. Let ρ < r < 1 and D ∈ MS be a symmetric solution to (5.1). Then
D is the unique solution in M to (5.1).
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For fixed ρ < r < 1 and D ∈ MS satisfying (5.1), for convenience, we always
write

1. hs for the harmonic function with hs(q0) = 0, hs(q1) = hs(q2) = 1, and denote
Es = {f ∈ l(V0) : f(q0) = 0, f(q1) = f(q2) = c, c ∈ R};

2. ha for the harmonic function with ha(q0) = 0, ha(q1) = −ha(q2) = 1, and
denote Ea = {f ∈ l(V0) : f(q0) = 0, f(q1) = −f(q2) = c, c ∈ R}.

Both hs, ha are harmonic with respect to ΨrD on V̄1 \ V0, i.e. ΨrD(hs, f) =
ΨrD(ha, f) = 0 for any f ∈ Dom(ΨrD) such that f |V0 = 0.

Lemma 5.9. For r, D as above, we have

hs(F1q0) = hs(F2q0) = λ(r), ha(F1q0) = −ha(F2q0) = η,

for some |η| < λ(r).

Proof. For convenience, we write D in the form D(f) = a(f(q0) − f(q1))2 +
a(f(q0) − f(q2))2 + b(f(q1) − f(q2))2, with a > 0, b � 0.

First, let h = 1 − hs, we have RrD(hs, h) = −2aλ(r). On the other hand, let
f ∈ l(V1) be defined as f(p) = δq0,p, then clearly f ∈ Dom(ΨrD), and f |V0 = h|V0 .
Since hs is harmonic,

ΨrD(hs, h) = ΨrD(hs, f) = −ahs(F1q0) − ahs(F2q0).

This shows the first assertion since RrD(hs, h) = ΨrD(hs, h).
Next, by the symmetry of D, there exists a number η such that ha(F1q0) =

−ha(F2q0) = η. We need to show that |η| < λ(r). We consider the matrix M such
that

(h(F1q0), h(F2q0))
t = M (h(q1), h(q2))

t
,

holds for any harmonic function h with h(q0) = 0. Due to the Perron–Frobenius
theorem, it suffices to show that each entry of M is positive. This can be
deduced by proving the harmonic function h1 with boundary value h1(q1) =
1, h1(q0) = h1(q2) = 0 is positive on V1 \ V0. To see this, we assume there exists
p ∈ V1 \ V0 such that h1(p) = 0. Let ψp ∈ Dom(ΨrD) be defined as ψp(q) = δp,q,
then ΨrD(ψp, h1) = 0, so h1(p) is the weighted average of its neighbours. Thus, h1

is zero on the neighbours of p. Repeating the argument, we see that h1|V1 = 0. A
contradiction. �

Proof of theorem 5.8. Assume there is another solution D′ ∈ M to (5.1).
Firstly, we will show that D′ is also symmetric. By diagonalizing D′ with respect

to D, we have two 1-dimensional non-constant subspaces L1, L2 of l(V0) such that

1. L1, L2 are orthogonal with respect to both D and D′;

2. D′|L1 = κ1D|L1 and D′|L2 = κ2D|L2 , with 0 < κ1 < κ2.
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Let u ∈ L2 and hu be the harmonic extension of u with respect to ΨrD. Then

λ(r)D′(u) = κ2λ(r)D(u) = κ2ΨrD(hu) =
∑
w∈W1

r−|w|+1κ2D(hu ◦ Fw)

�
∑
w∈W1

r−|w|+1D′(hu ◦ Fw) = ΨrD′(hu) � λ(r)D′(u).

This implies that for each w ∈W1, D′(hu ◦ Fw) = κ2D(hu ◦ Fw), and thus hu ◦
Fw ∈ L2 + constants. In particular, we have hu ◦ F0 ∈ L2 + constants, which
means L2 + constants is an invariant space under the mapping u to hu ◦ F0. By
lemma 5.9, we see that L2 + constants is either Es + constants or Ea + constants.
Thus, we have D′ ∈ MS .

Secondly, from the above argument, it is not hard to see that hs ◦ Fw ∈ Es +
constants and ha ◦ Fw ∈ Ea + constants, for any w ∈W1.

Lastly, arbitrarily pick a D̃ ∈ MS , we will prove that D̃ must also solve (5.1).
However, this will make R̃r(MS) = M̃S , which obviously contradicts Lemma 5.4.
To achieve this purpose, let h̃s and h̃a be the harmonic functions with respect
to ΨrD̃, with the same boundary value on V0 as hs, ha. By following the same
argument as [34, lemma 5.9] due to Sabot, we can see that h̃s = hs and h̃a = ha.
For convenience of readers, we reproduce the proof here. Write g = hs − h̃s. Also,
for each w ∈W1, let gw,s ∈ Es + constants, gw,a ∈ Ea + constants such that gw =:
g ◦ Fw = gw,s + gw,a. Then, denoting hw,s =: hs ◦ Fw, we can see that

ΨrD̃(g) = ΨrD̃(hs, g) =
∑
w∈W1

r−|w|+1D̃(hw,s, gw) =
∑
w∈W1

r−|w|+1D̃(hw,s, gw,s)

= c
∑
w∈W1

r−|w|+1D(hw,s, gw,s)

= c
∑
w∈W1

r−|w|+1D(hw,s, gw) = cΨrD(hs, g) = 0,

for some constant c, with hs,w =: hs ◦ Fw, where the first equality is due to the fact
that g|V0 = 0. Thus, g = 0 as desired. As a consequence, we can easily see that, D̃
is a solution to (5.1), so we arrive at the desired contradiction. �

Finally, theorem 5.1 immediately follows from proposition 5.5, theorems 5.7 and
5.8.

6. Construction of the Dirichlet form on G
We will construct a resistance form on the golden ratio Sierpinski gasket G in this
section. Let ρ < r < 1, D be the unique solution to (5.2), i.e. RrD = r2D. We will
focus on this standard form in most contents. For short, we write

θ =
log r
log ρ

, ρw =
|w|∏
n=1

ρwn
, rw = ρθw,

with ρ0 = ρ2 and ρ1 = ρ2 = ρ. Obviously, ρw is the contraction ratio of Fw.
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The following definition is similar to the construction in [22], though we use the
infinite graphs at each level.

Definition 6.1.

(a) For m � 0 and f ∈ C(V̄m), we write D(m)(f) =
∑
w∈Wm

r−1
w

D(f ◦ Fw), and F (m) = {f ∈ C(V̄m) : D(m)(f) <∞}. In addition, for f, g ∈
F (m), we define

D(m)(f, g) =
∑

w∈Wm

r−1
w D(f ◦ Fw, g ◦ Fw).

(b) Define F = {f ∈ C(G) : limm→∞ D(m)(f) <∞}. For f, g ∈ F , define

E(f, g) = lim
m→∞D(m)(f, g).

It follows from the definition of ΨrD, D(1) = r−2ΨrD. The limit in (b) always
exists due to fact that

D(m+1)(f) =
∑

w∈Wm+1

r−1
w D(f ◦ Fw) =

∑
w∈Wm

r−1
w r−2ΨrD(f ◦ Fw)

�
∑

w∈Wm

r−1
w D(f ◦ Fw) = D(m)(f).

In the rest of this section, we will show that (E ,F) is a good form.

Lemma 6.2. For m � 0, (D(m),F (m)) is a resistance form on V̄m. In addition, let

Rm(p, q) = sup
f∈F(m)

|f(p) − f(q)|2
D(m)(f)

,

then we have Rn(p, q) = Rm(p, q) if p, q ∈ V̄m and n � m.

Proof. (RF1) and (RF5) are trivial. We only need to verify (RF2)–(RF4). For con-
venience, we focus on (D(2),F (2)) only, while for larger m, the same proof works
inductively. (RF2). Let {fk}k�1 be a Cauchy sequence in F (2). Then, fk|V̄1

con-
verges in F (1) to some f̃ in F (1), since (D(1),F (1)) is a resistance form. Also, for
each w ∈W1, fk ◦ Fw converges in F (1) to a function f̃w. Now, define f ∈ l(V̄2)
such that f ◦ Fw = f̃w and f |V̄1\V1

= f̃ . We show that f ∈ C(V̄2). It suffices to
prove that f is continuous at any point p ∈ V̄1 \ V1. In fact, for any ε, there
exists δ and N such that 1. for q ∈ Bδ(p) ∩ V̄1, we have |f(p) − f(q)| < ε; 2. for
w ∈ ⋃∞

n=N W1,n and q, q′ ∈ FwV̄1, we have |f(q) − f(q′)| < ε. This follows from the
fact that D(1)(f ◦ Fw) � rw supk�1 D(2)(fk). The continuity of f follows immedi-
ately. Lastly, by using Fatou’s lemma, we can directly check that fk converges to
f in F (2). (RF3). First, we observe that the minimal energy extension of f ∈ F (1)

to l(V2) is continuous by a same argument as in (RF2). Let V be a finite set and
u ∈ l(V ). First, we always have f1 ∈ F (1) such that f1|V ∩V̄1

= u|V ∩V̄1
. Then we can

extend f1 to be a desired function in F (2). (RF4). Let p, q ∈ V̄2 and f ∈ F (2). If
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p ∈ V̄1, we let p′ = p; otherwise we choose p′ ∈ V1 so that p, p′ ∈ FwV̄1 for some
w ∈W1, and thus

D(2)(f) � r−1
w D(1)(f ◦ Fw) � c1 (f(p) − f(p′))2 ,

for some c1 > 0. Also, we define q′ in the same manner. Note that D(2)(f) �
D(1)(f) � c2(f(p′) − f(q′))2 for some c2 > 0, it then follows that

D(2)(f) � min{c1, c2}
(
(f(p) − f(p′))2 + (f(p′) − f(q′))2 + (f(q′) − f(q))2

)
� c3 (f(p) − f(q))2 ,

for some c3 > 0. (RF4) follows immediately. Thus, we have proved that (D(2),F (2))
is a resistance form on V̄2. The claim that R2(p, q) = R1(p, q) for p, q ∈ V̄1 is obvious.
The same arguments can be used inductively for m � 3. �

In some situations, it is convenient to involve words in W̃∗.

Lemma 6.3. Let w ∈ W̃∗ and m be the number of 0′s in w. Then we have

D(1)(f ◦ Fw) � rwD(m+1)(f),

for any f ∈ F (m+1). As a consequence, there is a constant c > 0 such that, for any
p, q ∈ FwV̄1, we have

Rm+1(p, q) � cd(p, q)θ.

Proof. Noticing that {wτ : τ ∈W1} ⊂Wm+1, the first statement follows. The sec-
ond statement follows from the first statement and proposition 3.3: for any p, q ∈
FwV̄1,

Rm+1(p, q) � rwR1(F−1
w p, F−1

w q) � crwd(F−1
w p, F−1

w q)θ = cd(p, q)θ,

holds for some constant c > 0, where the first inequality follows from the first
statement, and the second inequality follows from proposition 3.3. �

Using lemmas 6.2 and 6.3, we have the following estimate of the resistance metric.

Lemma 6.4. For m � 0 and p, q ∈ V̄m, define R̃(p, q) = Rm(p, q). Then R̃(p, q) is
well defined on (

⋃
m�0 V̄m) × (

⋃
m�0 V̄m), and we have R̃(p, q) � cd(p, q)θ for some

c > 0.

https://doi.org/10.1017/prm.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.28


Brownian motion on the golden ratio Sierpinski gasket 719

Proof. First, we claim that there is a constant c1 > 0 such that

R̃(p, q) � c1ρ
θ
w, ∀w ∈ W̃∗,∀p, q ∈ FwG ∩ (

⋃
m�0

V̄m).

We first consider the case q ∈ FwV̄1. Assume that p ∈ FwV̄n for some n � 1, then
we can find τ ∈Wn−1 such that p ∈ FwFτ V̄1. We can then find a sequence

q = p0, p1, · · · , p|τ |+1 = p,

such that pi ∈ FwF[τ ]i−1 V̄1 ∩ FwF[τ ]i V̄1 for 1 � i � |τ |. As a consequence, by using
lemma 6.3, we see that

R̃(p, q) �
|τ |∑
i=0

c2 d(pi, pi+1)θ �
|τ |∑
i=0

c2(ρwρi)θ � c2
1 − ρθ

ρθw,

where c2 is the same constant in lemma 6.3. For general q, we only need to set
c1 = 2c2

1−ρθ ρ
θ
w. Now, let p, q ∈ ⋃∞

m=0 V̄m. We choose w,w′ ∈ W̃∗ such that p ∈ FwG,
q ∈ Fw′G and

ρd(p, q) � ρw, ρw′ < ρ−1 d(p, q).

In addition, we can find a chain

w = w(0), w(1), · · · , w(k) = w′

such that min{ρw, ρw′} � ρw(i) < ρ−2 min{ρw, ρw′} of length at most c3, where c3 is
a constant independent of p, q. By choosing a sequence p = p0, p1, · · · , pk+1 = q such
that pi ∈ Fw(i−1) V̄1 ∩ Fw(i) V̄1, 1 � i � k, we get the desired estimate as above. �

Now, we can show that (E ,F) is a good form.

Theorem 6.5. (E ,F) defined in definition 6.1 is a strongly local regular resistance
form on G.

Proof. First, we claim that (E ,F) is a resistance form on
⋃
m�0 V̄m. (RF1) and

(RF5) are obvious given lemma 6.2. Observing that by iterating the minimal energy
extension, we can extend any f ∈ F (m) to f ∈ F thanks to the upper-bound esti-
mate of the resistance metric in lemma 6.4. (RF2), (RF3) and (RF4) are then easy
to show with lemma 6.2. In addition, we see that

R̃(p, q) = R(p, q) := sup
f∈F

|f(p) − f(q)|2
E(f)

, ∀p, q ∈
⋃
m�0

V̄m.

Next, to prove that (E ,F) is a resistance form on G, we need to show that F
separates points in G, just like in proposition 3.3. It suffices to prove that F is
dense in C(G). Let u ∈ C(G), we fix N large enough so that |u(x) − u(y)| < ε
if x, y ∈ FwK and |w| � N . We can apply proposition 4.3 to create f ∈ F such
that ‖f − u‖L∞(G) < 2ε. First, we find f1 ∈ F (1) such that 1. ‖f1 − u|V̄1

‖L∞ < ε;
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2. f1(p) = u(p) for any p ∈ ⋃Nn=1

⋃
w∈W1,n

FwV0. Then we apply harmonic exten-

sion to f1 on V̄2 \
⋃N
n=1

⋃
w∈W1,n

FwV̄1. On the cells FwV̄1 with |w| < N , we apply
the same construction to get f2, but with N − 2 replacing N this time. After
k = [N/2] + 1 times, we get fk ∈ F (k) such that ‖fk − u|V̄k

‖L∞ < 2ε. Since all cells
have size smaller than ρN , by harmonically extending, we get f ∈ F such that
‖f − u‖L∞(G) < 2ε. Thus, (E ,F) is regular resistance form on G. It remains to
show that the form is strongly local. Let f, g ∈ F with supp(f) ∩ supp(g) = ∅, then
there exists ε > 0 such that d(supp(f), supp(g)) > ε. Thus, we have D(n)(f, g) = 0
for large n, because the supports of f and g are suitably separated by n-cells for
large n. By taking the limit, we see that E(f, g) = 0. Clearly 1 ∈ F with E(1) = 0,
and it follows that the form is strongly local. �

In the remaining part of this section, we would like to characterize (E ,F) as the
unique self-similar form associated with the infinite IFS {Fw}w∈W1 .

Theorem 6.6. The resistance form (E ,F) satisfies the following properties:

(a) F ⊂ C(G).

(b) For each f ∈ F , we have f ◦ Fw ∈ F for all w ∈W1, and in addition,

E(f) =
∑
w∈W1

ρ−θw E(f ◦ Fw).

(c) Conversely, let f ∈ C(G), if f ◦ Fw ∈ F for all w ∈W1, and
∑
w∈W1

ρ−θw E(f ◦
Fw) <∞, then f ∈ F .

Moreover, (E ,F) (up to constants) and θ are uniquely determined by the above
properties.

Proof. The claimed properties of (E ,F) are immediate consequences of the
construction.

The uniqueness follows by a well-known argument, but in the infinite graph ver-
sion. Let (E ′,F ′) be another form satisfying the above properties with θ′ replacing
θ. Define D′ to be the trace of E ′ onto V0, and write r′w = ρθ

′
w , r′ = ρθ

′
. For any

u ∈ l(V0), let hu be the harmonic extension of u to F ′, then we can see that

D′(u) = E ′(hu) =
∑
w∈W1

r′−1
w E ′(hu ◦ Fw) �

∑
w∈W1

r′−1
w D′ ((hu ◦ Fw)|V0)

� r′−2Rr′D′(u),

where Rr′ is the renormalization map introduced in definition 4.1, and we use
properties (a) and (b) in the inequalities.

On the other hand, we can perform the harmonic extension of u in two steps:
first, we extend u to f1 ∈ C(V̄1) so that f1 minimizes Ψr′D′, then we take harmonic
extension of f1 on each cell FwG, w ∈W1, to f ∈ C(G), by using property (a) and
the Markov property (RF5). In addition, f ∈ F ′ by the property (c). Then, by
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property (b),

r′−2Rr′D′(u) = r′−2Ψr′D′(f1) =
∑
w∈W1

r′−1
w E ′(f ◦ Fw) = E ′(f) � D′(u).

Thus, we get Rr′D′ = r′2D′, which implies that D′ = D and θ′ = θ by theorem 5.1.
Finally, by a similar argument, one can easily find that the restriction of E ′ to V̄m
is D(m), and the claim that E ′ = E follows immediately by taking the limit. �

Finally, the form (E ,F) is decimation invariant with respect to the graph-directed
construction in definition 2.2.

Definition 6.7. Using the same notation as in definition 2.2, let (E1,F1) = (E ,F),
and define (E2,F2) as follows:

{
E2(f, g) =

∑
w∈W1,FwG⊂K2

ρ−θw E(f ◦ Fw, g ◦ Fw),
F2 = {f ∈ C(K2) : f ◦ Fw ∈ F ,∀w ∈W1 such that FwG ⊂ K2, E2(f) <∞}.

It is not hard to verify that (E2,F2) is a resistance form on K2. Moreover, we
have

Theorem 6.8. Recall the notation of definition 2.2, and write ρej
for the similarity

ratio of ψej
, 1 � j � 6. Let (Ei,Fi), i = 1, 2 be defined as in definition 6.7. Then,

for fi ∈ Fi, i = 1, 2, we have fej,1 ◦ ψej
∈ Fej,2 for 1 � j � 6 and

E1(f1) =
2∑
j=1

ρ−θej
Eej,2(f1 ◦ ψej

), E2(f2) =
6∑
j=3

ρ−θej
Eej,2(f2 ◦ ψej

).

Conversely, let f1 ∈ C(K1), if f1 ◦ ψej
∈ Fej,2 for j = 1, 2, then f1 ∈ F1. The same

holds for (E2,F2).

Remark. At the end of this section, we remark that a same construction can be
applied to get some non-standard self-similar forms on G with respect to the infi-
nite IFS {Fw}w∈W1 , by starting with any solution Rr′D′ = λ(r′)D′. Theorems 6.5
and 6.8 still hold for the forms, with slight changes of the renormalization factors.
Nevertheless, the good heat kernel estimate (theorem 7.4) will not hold, but it is
possible to get a heat kernel estimate in the form of Hambly and Kumagai’s on
PCF self-similar sets [18].

7. Transition density estimate

Let μH be the normalized Hausdorff measure on G. (E ,F) becomes a local regular
Dirichlet form on L2(G, μH) (L2(G) for short) in a standard way (see [22, theorem
2.4.1]). By the celebrated result [15, theorem 7.2.1], there is a Hunt process X =
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(Px, x ∈ G,Xt, t � 0) associated with (E ,F) such that

E
x[f(Xt)] = Ptf(x), a.e. x ∈ G,

where (Pt)t�0 is the associated semigroup. In this last section, we will show that
X is a fractional diffusion. We recall from Barlow’s book [3, § 3], for the definition
of this fractional diffusion.

Definition 7.1. A Markov process X = (Px, x ∈ G,Xt, t � 0) is a fractional diffu-
sion on the fractional metric space (G, dg, μH) (see § 2) if (a). X is a conservative
Feller diffusion with state space G; (b). X is μH-symmetric; (c). X has a sym-
metric transition density p(t, x, y) = p(t, y, x), t > 0, x, y ∈ G, which satisfies the
Chapman–Kolmogorov equations and is jointly continuous for t > 0; (d). There
exist a constant β and c1–c4 > 0, such that for 0 < t � 1,

c1t
−dH/β exp

(
−c2

(
dg(x, y)β

t

) 1
β−1
)

� p(t, x, y)

� c3t
−dH/β exp

(
−c4

(
dg(x, y)β

t

) 1
β−1
)
,

where dH is the Hausdorff dimension of G.

Since dg � d by lemma 2.3, it suffices to consider the Euclidean metric d in the
following.

We will closely follow Barlow’s book [3] and Hambly and Kumagai’s paper [18].
We only provide some essential estimates, including a Nash inequality and an
estimate of the resistance metric R.

For convenience, for 0 < s < 1, we write W̃s = {w ∈ W̃∗ : ρw � s < ρ([w]|w|−1)},
and by identifying words representing the same cells, we get a quotient class Ŵs.

Proposition 7.2 Nash inequality. Let dS = 2dH

dH+θ with θ = log r
log ρ , and f ∈ F , we

have

‖f‖2+4/dS

L2(G) � c
(
E(f) + ‖f‖2

L2(G)

)
‖f‖4/dS

L1(G),

for some constant c > 0 independent of f .

Proof. The proof is essentially the same as that for PCF self-similar sets [18]. We
reproduce it here for convenience of readers. First, we claim that for any f ∈ F ,
‖f‖2

L2(G) � c1(E(f) + ‖f‖2
L1(G)) for some constant c1 > 0 independent of f . In fact,

let f̄ =
∫
G f dμH and g = f − f̄ , it suffices to check that ‖g‖2

L2(G) � c2E(f) for some
c2 > 0, which follows from

‖g‖2
L2(G) =

1
2

∫
G

∫
G

(g(x) − g(y))2 dμH(x) dμH(y)

=
1
2

∫
G

∫
G

(f(x) − f(y))2 dμH(x) dμH(y) � c2E(f),
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where the last inequality is due to (RF4) and proposition 3.3. Next, write fw =
f ◦ Fw for w ∈ W̃∗ for short. Then for 0 < s < 1,

‖f‖2
L2(G) �

∑
w∈Ŵs

ρdH
w ‖fw‖2

L2(G) � c1
∑
w∈Ŵs

ρdH
w

(
E(fw) + ‖fw‖2

L1(G)

)

� c3s
dH+θ

∑
w∈Ŵs

ρ−θw E(fw) + c4s
−dH

∑
w∈Ŵs

(ρdH
w ‖fw‖L1(G))2

� c5

(
sdH+θE(f) + s−dH‖f‖2

L1(G)

)
,

for some c3 − c5 > 0, where in the last inequality, we use the observation
that

∑
w∈Ŵs

ρ−θw E(fw) � c′E(f) for some c′ � 1. In the case that E(f) >
‖f‖2

L1(G), we choose s such that s2dH+θE(f) = ‖f‖2
L1(G), then ‖f‖2

L2(G) �

2c5E(f)
dH

2dH+θ ‖f‖
2dH+2θ

2dH+θ

L1(G) , and so the desired result follows immediately. In the case
that E(f) � ‖f‖2

L1(G), we have ‖f‖2
L2(G) � c1(E(f) + ‖f‖2

L1(G)) � 2c1‖f‖2
L1(G), and

the result still follows. �

The Nash inequality provides an upper-bound estimate p(t, x, y) � c1t
−dS/2.

In addition, |p(t, x, y) − p(t, x, y′)| � c2t
−1−dS/2R(y, y′),∀0 < t � 1, x, y, y′ ∈ G. See

[11] for a proof.

Proposition 7.3. Let R(·, ·) be the resistance metric associated with (E ,F) on G.
Then there exist c1, c2 > 0 such that

c1 d(p, q)θ � R(p, q) � c2 d(p, q)θ, ∀p, q ∈ G.
In addition, for p ∈ G and A ⊂ G, define R(p,A) = sup{E(f)−1 : f ∈ F , f(p) =
1, f |A = 0}. Then there exists c3, c4 > 0 such that

c3s
θ � R (p,Bcs(p)) � c4s

θ,

where Bs(p) = {q ∈ G : d(p, q) < s} with p ∈ G and 0 < s < 1, and Bcs(p) is the
complement of Bs(p) in G.

Proof. We already have the estimate R(p, q) � c2 d(p, q)θ from lemma 6.4 and
theorem 6.5. Now we show R(p,Bcs(p)) � c3s

θ for p ∈ G and 0 < s < 1. Define

Up,s,0 =
⋃

w∈Ŵp,s,0

FwG with Ŵp,s,0 = {w ∈ Ŵsρ2 : p ∈ FwG},

Up,s,1 =
⋃

w∈Ŵp,s,1

FwG with Ŵp,s,1 = {w ∈ Ŵsρ2 : FwG ∩ Up,s,0 �= ∅}.

Clearly, we have Up,s,0 ⊂ Up,s,1 ⊂ Bs(p). Since (E ,F) is regular, there exists fp,s ∈
F so that fp,s|Uc

p,s,1
= 0 and fp,s|Up,s,0 = 1. As G satisfies the finite type property,

there exists a finite class {(pi, si)}Ni=1 such that for any p ∈ G and 0 < s < 1, there
exists 1 � i � N and an affine map ψ such that ψ : Up,s,l → Upi,si,l for l = 0, 1,
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which maps cells corresponding to Ŵp,s,l to those corresponding to Ŵpi,si,l. In
addition, we require that ψ maps the boundary of Up,s,l to the boundary of Upi,si,l,
which only depend on how the outside cells of approximately same size intersect
Upi,si,1. Thus, we can assume that

fp,s(q) =

{
fpi,si

◦ ψ(q), if q ∈ Up,s,1,

0, if q ∈ U cp,s,1.

By a similar observation as in lemma 6.3, there exists m ∈ Z such that

D(n)(fpi,si
) � ρθψD(n+m)(fp,s),

where ρψ is the similarity ratio of ψ. So we have E(fp,s) = ρ−θψ E(fpi,si
) � c−1

3 s−θ

for some constant c3 independent of p, s, i. Since fp,s|Bc
s(p) = 0 and fp,s(p) = 1, we

get the estimate R(p,Bcs(p)) � c3s
θ.

Finally, the estimates R(p, q) � c1 d(p, q)θ follows from the fact that R(p, q) �
R(p,Bcd(p,q)(p)) � c3d(p, q)θ, and R(p,Bcs(p)) � c4s

θ follows from the fact that
R(p,Bcs(p)) � R(p, q) � c2s

θ for some q ∈ G satisfying d(p, q) = s. �

By the resistance metric estimate in proposition 7.3, the Ahlfors regularity of the
measure μH (lemma 2.3) and the resulted estimates from the Nash inequality, there
exist a lower-bound estimate p(t, x, y) � c3t

−dS/2 and an estimate of the hitting
time c4sθ+dH � E

xτ(x, s) � c5s
θ+dH , where τ(x, s) = inf{t � 0 : Xt /∈ Bs(x)}. See

[3, § 8] for details. Finally, by [3, theorem 3.1.1] of Barlow or by following [18], we
can finally find that our diffusion is a fractional diffusion.

Theorem 7.4. The Hunt process X = (Px, x ∈ G,Xt, t � 0) associated with the
form (E ,F) on L2(G, dH) is a fractional diffusion, with β = θ + dH , in the sense
of definition 7.1.
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