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THE DIAGONAL STRONG REFLECTION PRINCIPLE
AND ITS FRAGMENTS

SEAN D. COX AND GUNTER FUCHS

Abstract. A diagonal version of the strong reflection principle is introduced, along with fragments of
this principle associated with arbitrary forcing classes. The relationships between the resulting principles
and related principles, such as the corresponding forcing axioms and the corresponding fragments of the
strong reflection principle, are analyzed, and consequences are presented. Some of these consequences are
“exact” versions of diagonal stationary reflection principles of sets of ordinals. We also separate some of
these diagonal strong reflection principles from related axioms.

§1. Introduction. Fuchs [10] introduced fragments of Todorčević’s strong reflec-
tion principle SRP (see [1, p. 57]) for forcing classes Γ other than the class SSP of
all stationary set preserving forcings. The focus was on the class of all subcomplete
forcings, and the goal was to find a principle that relates to the forcing axiom for Γ
in much the same way that SRP relates to MM, the forcing axiom for SSP, namely
such that:

(1) The forcing axiom for Γ, FA(Γ), implies Γ-SRP.
(2) Letting SSP be the class of all stationary set preserving forcing notions, SRP

is equivalent to SSP-SRP.
(3) Letting SC be the class of all subcomplete forcing notions, SC-SRP captures

many of the major consequences of SCFA, the forcing axiom for subcomplete
forcing.

Subcomplete forcing was introduced by Jensen [16, 17], and shown to be iterable
with revised countable support. The main feature of subcomplete forcing that
makes it interesting is that subcomplete forcing notions cannot add reals, and
as a consequence, SCFA is compatible with CH. In fact, Jensen [15] showed that
SCFA is even compatible with ♦, and hence does not imply that the nonstationary
ideal on �1 is �2-saturated. On the other hand, SCFA does have many of the major
consequences of Martin’s Maximum, such as the singular cardinal hypothesis. Since
SRP is known to imply that the nonstationary ideal on �1 is �2-saturated, and that
CH fails, finding a fragment of SRP for subcomplete forcing was subtle, but in [10],
a principle satisfying the two desiderata listed above was found. While the original
strong reflection principle can be formulated as postulating that every projective
stationary subset of [Hκ]� contains a continuous ∈-chain, for regular κ ≥ �2, the
subcomplete fragment of SRP asserts this only for spread out sets, and for κ > 2� .
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1282 SEAN D. COX AND GUNTER FUCHS

Naturally, there are limitations to the extent to which (3) can be true. Thus,
Larson [18] introduced a diagonal version of simultaneous reflection of stationary
sets of ordinals, called OSR�2 , which follows from Martin’s Maximum, but not from
SRP. This principle can be generalized to any regular cardinal κ greater than �2,
and it was shown in [11] that SRP does not even imply the weakest versions of these
principles, while Fuchs [9] showed that these principles do follow from SCFA, as
long as κ > 2� . Since SC-SRP is weaker than SRP, this shows that SC-SRP does not
capture these diagonal reflection principles either, which do follow from SCFA.

Since these ordinal diagonal reflection principles are underlying the results on the
failure of weak square principles under SCFA shown in [9], we push here further in
this direction, to find a principle of reflection of generalized stationarity that does
capture these consequences of SCFA/MM, and that can be relativized to an arbitrary
forcing class (resulting in the “fragments” of the principle), just like SRP. We call the
resulting principle the diagonal strong reflection principle, DSRP. It unifies both the
(relevant fragment) of SRP and certain diagonal reflection principles the first author
introduced in [3]. It also gives rise to some new kinds of exact diagonal reflection
principles for sets of ordinals.

For the most part, we will be working with a technical simplification of the notion
of subcompleteness, called ∞-subcompleteness and introduced in [12]. This leads to
a simplification of the adaptation of projective stationarity to the context of this
version of subcompleteness. Working with the original notion of subcompleteness
adds some technicalities, but does not change much.

The article is organized as follows. In Section 2, we will give some background
on generalized stationarity, subcomplete forcing, and some material from [10] on
the fragments of SRP. Then, in Section 3, we will formulate the Γ-fragment of
the diagonal strong reflection principle in full generality, for an arbitrary forcing
class Γ. In the subsequent Sections 4 and 5, we will treat the cases where Γ is the
class of all stationary set preserving forcing notions, or the class of all subcomplete
forcing notions, respectively, and formulate these principles combinatorially. Here,
the notion of a spread out set will make a reappearance, emphasizing its naturalness.
Then, in Section 6, we will derive consequences of the principles mentioned above.
We divide these consequences in two parts: first, Section 6.1 contains consequences
that filter through an appropriate version of the diagonal reflection principles of [3],
while Section 6.2 contains some consequences that don’t, among them some new
principles of simultaneous stationary reflection that can be viewed as diagonal
reflection principles, enriched with exactness (in a sense to be made explicit).

In Section 7, we say a few words about limitations of some of the principles under
investigation. We separate the diagonal stationary reflection principle from MM, we
show a localized version of this separation for the subcomplete fragment of these
principles, and we show that the diagonal reflection principle of [3] does not limit
the size of 2�1 .

We close with a few open questions in Section 8.

§2. Some background. This section summarizes some definitions and facts we
will need. For more detail, we refer to [10]. We begin by introducing some notation
around generalized stationarity (see [14] for an overview article).
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Definition 2.1. Let κ be a regular cardinal, and let A ⊆ κ be unbounded. Let
κ ⊆ X . Then

lift(A, [X ]�) = {x ∈ [X ]� | sup(x ∩ κ) ∈ A}

is the lifting of A to [X ]� . Now let S ⊆ [X ]� be stationary. IfW ⊆ X ⊆ Y , then we
define the projections of S to [Y ]� and [W ]� by

S ↑ [Y ]� = {y ∈ [Y ]� | y ∩ X ∈ S}

and

S ↓ [W ]� = {x ∩W | x ∈ S}.

Definition 2.2. Let κ be a regular uncountable cardinal, and let S ⊆ [Hκ]� be
stationary. A continuous ∈-chain through S of length � is a sequence 〈Xi | i < �〉
of members of S, increasing with respect to ∈, such that for every limit j < �,
Xj =

⋃
i<j Xi .

Definition 2.3 (Feng and Jech [5]). Let D be a set (usually of the form Hκ, for
some regular uncountable κ) with �1 ⊆ D. Then a set S ⊆ [D]� with

⋃
S = D is

projective stationary (in D) if for every stationary set T ⊆ �1, the set {X ∈ S | X ∩
�1 ∈ T} is stationary.

The following is not the original formulation of SRP due to Todorčević, but it
was shown by Feng and Jech to be an equivalent way of expressing the principle.

Definition 2.4. Let κ ≥ �2 be regular. Then the strong reflection principle at κ,
denoted SRP(κ), states that whenever S is projective stationary in Hκ, then there
is a continuous ∈-chain of length �1 through S. The strong reflection principle SRP
states that SRP(κ) holds for every regular κ ≥ �2.

Definition 2.5. Let Γ be a class of forcing notions. The forcing axiom for Γ,
denoted FA(Γ), states that whenever P is a forcing notion in Γ and 〈Di | i < �1〉
is a sequence of dense subsets of P, there is a filter F ⊆ P such that for all i < �1,
F ∩Di �= ∅.

Definition 2.6. We write SSP for the class of all forcing notions that preserve
stationary subsets of �1.

The principle FA(SSP) is known as Martin’s Maximum, MM. The next definition
introduces the canonical forcing that can be used to show that Martin’s Maximum
implies SRP.

Definition 2.7. PS is the forcing notion consisting of continuous ∈-chains
through S of countable successor length, ordered by end-extension.

Fact 2.8 (Feng and Jech). Let κ ≥ �2 be an uncountable regular cardinal. Then
a stationary set S ⊆ [Hκ]� is projective stationary iff PS ∈ SSP.

The concept of projective stationarity was generalized in [10] as follows.

Definition 2.9. Let Γ be a forcing class. Then a stationary subset S ofHκ, where
κ ≥ �2 is regular, is Γ-projective stationary iff PS ∈ Γ.
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Generalizing the above formulation of SRP, we arrive at the fragments of this
principle, as introduced in [10].

Definition 2.10. Let Γ be a forcing class. Let κ ≥ �2 be regular. The strong
reflection principle for Γ at κ, denoted Γ-SRP(κ), states that whenever S ⊆ [Hκ]� is
Γ-projective stationary, then S contains a continuous chain of length�1. The strong
reflection principle for Γ, Γ-SRP, states that Γ-SRP(κ) holds for every κ ≥ �2.

By design, FA(Γ) implies Γ-SRP. Let us now turn to subcompleteness and its
simplification, ∞-subcompleteness, introduced in [12].

Definition 2.11. A transitive model N of ZFC– is full if there is an ordinal
� > 0 such that L�(N ) |= ZFC– and N is regular in L�(N ), meaning that if a ∈ N ,
f : a −→ N and f ∈ L�(N ), then ran(f) ∈ N . A set X is full if the transitive
isomorph of 〈X,∈ ∩X 2〉 is full.

Definition 2.12. The density of a poset P, denoted �(P), is the least cardinal �
such that there is a dense subset of P of size �.

Definition 2.13. A forcing notion P is subcomplete if there is a cardinal � which
verifies the subcompleteness of P, which means that P ∈ H� , and for any ZFC–

model N = LA� with � < � and H� ⊆ N , any 	 : N̄ ≺ N such that N̄ is countable,
transitive and full and such that P, �, 
 ∈ ran(	), any Ḡ ⊆ P̄ which is P̄-generic over
N̄ , any s̄ ∈ N̄ , and any ordinals �̄0, ... , �̄n–1 such that �̄0 = On ∩ N̄ and �̄1, ... , �̄n–1

are regular in N̄ and greater than �(P̄)N̄ , the following holds. Letting 	(〈�̄ , P̄, 
̄〉) =
〈�,P, 
〉, and setting S̄ = 〈s̄ , �̄ , P̄〉, there is a condition p ∈ P such that whenever
G ⊆ P is P-generic over V with p ∈ G , there is in V[G ] a 	′ such that:

(1) 	′ : N̄ ≺ N ,
(2) 	′(S̄) = 	(S̄),
(3) (	′)“Ḡ ⊆ G ,
(4) sup 	“�̄i = sup 	′“�̄i for each i < n.

P is ∞-subcomplete iff the above holds, with condition (4) removed.
We denote the classes of subcomplete and ∞-subcomplete forcing notions by SC

and ∞-SC, respectively.

The following definition, again from [10], is designed to capture ∞-SC-projective
stationarity.

Definition 2.14. Let D be a set (usually of the form D = Hκ, for some
uncountable regular cardinal κ). A set S ⊆ [D]� with

⋃
S = D is spread out (in D)

if for every sufficiently large cardinal � with S ∈ H� , whenever �, A, X, and a
are such that H� ⊆ LA� = N |= ZFC–, � < �, S, a, � ∈ X , N |X ≺ N , and N |X is
countable and full, then there are a Y such that N |Y ≺ N and an isomorphism
� : N |X −→ N |Y such that �(a) = a and Y ∩Hκ ∈ S.

The remaining definitions and results are from [10].

Definition 2.15. Let D be a set. A set S ⊆ [D]� with
⋃
S = D is weakly spread

out if there is a set b such that the condition described in Definition 2.14 is true of
all X with S, �, b ∈ X .
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Fact 2.16. Let κ be an uncountable regular cardinal. A stationary set S ⊆ [Hκ]�

is spread out iff it is weakly spread out.

The following theorem is the analog of Fact 2.8 for ∞-subcompleteness, giving
us a combinatorial characterization of ∞-SC-projective stationarity.

Theorem 2.17. Let κ be an uncountable regular cardinal, and let S ⊆ [Hκ]� . Then
S is spread out iff S is ∞-SC-projective stationary.

Spread out sets are stationary, and in fact projective stationary.

Observation 2.18 [10, Observation 2.28]. If a set S ⊆ [D]� is spread out in D,
with �1 ⊆ D, then S is projective stationary in D.

Spread out sets satisfy some natural closure properties.

Observation 2.19. Let κ be an uncountable regular cardinal, let S ⊆ [Hκ]� be
spread out, and let C ⊆ [Hκ]� be club. Then S ∩ C is spread out.

Observation 2.20. Let A ⊆ B ⊆ C , and suppose S is spread out in B. Then both
S ↓ [A]� and S ↑ [C ]� are spread out.

The natural analogs of these closure properties are known to hold for projective
stationary sets as well. We will use the following standard notation frequently.

Definition 2.21. Let κ be an ordinal, and let � be a regular cardinal. Then we
write

Sκ� = {α < κ | cf(κ) = �}.
The following provides an important collection of spread out sets.

Lemma 2.22. Let κ > 2� be a regular cardinal, and let B ⊆ Sκ� be stationary. Then
the set

S = {X ∈ [Hκ]� | sup(X ∩ κ) ∈ B} = lift(B, [Hκ]�)

is spread out.

§3. The diagonal strong reflection principle for a forcing class. The idea for the
diagonal strong reflection principle is that instead of guaranteeing the existence of a
continuous ∈-chain of length�1 through each projective stationary set individually,
it postulates the existence of such a sequence through a whole collection S of
(appropriate) sets. The way the sequence passes through the sets is designed so
as to give it a “diagonal” flavor. The following definition makes this precise.

Definition 3.1. Let S be a collection of stationary subsets of [Hκ]� . Let �T =
〈Ti | i < �1〉 be a sequence of pairwise disjoint stationary subsets of �1, and let X
be a set. Then 〈 �Q, �S〉 is a diagonal chain through S up to X with respect to �T if:

(1) �Q = 〈Qi | i < �1〉 is a continuous ∈-chain of countable subsets of Hκ:
(a) For all i < �1, Qi ∈ Qi+1.
(b) And for limit � < �1, Q� =

⋃
i<� Qi .

(2) �S = 〈Si | i < �1〉 is a sequence of members of S, such that whenever i ∈ Tj ,
then Qi ∈ Sj .
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(3) Hκ ∩ X =
⋃
α<�1

Qα , and for all α < �1, 〈Qi | i < α〉 ∈ Hκ ∩ X .
(4) S ∩ X = {Si | i < �1}.

We also formulate a slightly simpler version of this concept, independent of the
particular sequence �T . All we need is S, a collection of stationary subsets of [Hκ]� .
Then 〈Qi | i < �1〉 is a diagonal chain through S up to X if:

(1) �Q = 〈Qi | i < �1〉 is a continuous ∈-chain of countable subsets of Hκ.
(2) For every S ∈ X ∩ S, the set {i < �1 | Qi ∈ S} is stationary in �1.
(3) Hκ ∩ X =

⋃
i<�1
Qi , and for all α < �1, 〈Qi | i < α〉 ∈ Hκ ∩ X .

Such a chain is exact if in addition,

(4) for every i < �1, Qi ∈
⋃

(X ∩ S).

Observation 3.2. Let S, κ, �T be as in Definition 3.1, and suppose that 〈 �Q, �S〉 is a
diagonal chain through S up to X with respect to �T . Then:

(1) �Q is a diagonal chain through S up to X.
(2) If

⋃
i<�1
Ti = �1, then �Q is an exact diagonal chain through S up to X.

(3) If κ ≥ �2 is regular, 〈Hκ ∩ X,∈〉 ≺ 〈Hκ,∈〉, �T ∈ X and
⋃
i<�1
Ti contains a

club, then there is a diagonal chain 〈 �R, �S〉 through S up to X with respect to
some 〈T̄i | i < �1〉 such that

⋃
T̄i = �1. Hence, �R is an exact diagonal chain

through S up to X.

Proof. We outline the straightforward proof of (3). By elementarity ofHκ ∩ X ,
and since �T ∈ X , it follows that there is a club C ⊆

⋃
i<�1
Ti in X. Hence, the

monotone enumeration f of C is also in X. Define for i < �1:

Ri = Qf(i), T̄i = f–1“Ti .

It is then easy to check that �̄T is a partition of �1 into stationary sets and 〈 �R, �S〉
is a diagonal chain through S with respect to �̄T , as wished. Since f ∈ X and for
all α < �1, �Q�α ∈ X , it follows that for all α < �1, �R�α ∈ X , as 〈Hκ ∩ X,∈〉 ≺
〈Hκ,∈〉. �

We introduce a canonical forcing to add diagonal chains. It is a variation of
a forcing notion from Cox [3], which, in turn, is based on a poset defined by
Foreman [6].

Definition 3.3. Let κ ≥ �2 be regular, �T = 〈Ti : i < �1〉 be sequence of
pairwise disjoint stationary subsets of �1, and let S be a nonempty collection of
stationary subsets of [Hκ]� . The poset PDSRP

S, �T consists of conditions of the form

p = 〈 �Qp, �Sp〉,
where, for some �p, �p < �1:

(1) �Qp = 〈Qpα | α ≤ �p〉 is a continuous ∈-chain of elements of [Hκ]� .
(2) �Sp = 〈Spi | i < �p〉 is a sequence such that for every i < �p, Spi ∈ S.
(3) Whenever α ≤ �p and i < �1 are such that α ∈ Ti , then i < �p andQpα ∈ Spi .

The ordering is by extension of functions in both coordinates.

Let us note some basic properties of this forcing notion.
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Fact 3.4. Letκ be an uncountable regular cardinal, ∅ �= S ⊆ P([Hκ]�) a collection
of stationary subsets, and �T an �1-sequence of pairwise disjoint stationary subsets
of �1, and let P = PDSRP

S, �T . Then:

(1) For every countable ordinal �, the set of conditions p with �p, �p ≥ � is dense in
PS .

(2) For every a ∈ Hκ, the set of conditions p such that there is an α ≤ �p with
a ∈ Qpα is dense in P.

(3) For every S ∈ S, the set of conditions p such that there is an i < �p such that
Spi = S is dense.

Proof. We need some facts before being able to prove this. The first fact is a
generalization of a result from [8].

Fact 1: Let 〈Ai | i < �1〉 be a sequence of stationary subsets of�1, and let t : �1 −→
�1 be a function. Then, for any �, α < �1, with α > 0, there is a normal (that is,
strictly increasing and continuous) function f : α −→ �1 such that for all � < α,
f(�) ∈ At(�) and f(0) > � .

Proof of Fact 1. Let �, α, 	 be countable ordinals, α a limit. Say that � is
α-approachable from 	 if for every � < �, there is a normal function f : [	, 	 +
α] −→ [�, �] such that for all � ∈ [	, 	 + α], f(�) ∈ At(�), and f(	 + α) = �. We
refer to such a function as a nice function from [	, 	 + α] to [�, �].

We will prove by induction on limit ordinals α < �1: for every 	 < �1, the set
of � < �1 such that � is α-approachable from 	 is unbounded in �1. This clearly
proves Fact 1.

If α = �, then let 	 < �1 be given. Fixing any � < �1, we have to find a countable
� ≥ � that is α-approachable from 	. To this end, let

� ∈

⎛⎝At(	+�) ∩
⋂

	≤�<	+�

Lim(At(�))

⎞⎠ \ �.

Given any � < �, it is then easy to define f : [	, 	 + �] −→ [�, �] recursively so
that f is strictly increasing, f(	) > �, for � < �, f(�) ∈ At(�), and sup{f(	 + n) |
n < �} = �. Thus, setting f(	 + �) = � yields a nice function from [	, 	 + �] to
[�, �], as wished.

Now suppose this has been proven for α. We have to show the claim for α + �.
To this end, fix 	 < �1. Given an arbitrary � < �1, we have to find a countable
� ≥ � which is α + �-approachable from 	. LetD = {� < �1 | � is α-approachable
from 	}. Inductively, this set is unbounded in �1. Let

� ∈

⎛⎝At(	+α+�) ∩ Lim(D) ∩
⋂

	+α≤�<	+α+�

Lim(At(�))

⎞⎠ \ �.

To see that � is α + �-approachable from 	, let � < �. Let � ∈ (D ∩ �) \ (� + 1).
Since � is α-approachable from 	, there is a nice function f̄ from [	, 	 + α] to
[�, �]. As in the case α = �, we can extend f̄ to a normal and cofinal function
f̄′ : [	, 	 + α + �) −→ �, such that for each n < �, f̄′(	 + α + n) ∈ At(	+α+n).
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Since � = sup ran(f̄′) and � ∈ At(	+α+�), we can extend f̄′ to a nice function from
[	, 	 + α + �] to [�, �] by specifying that f(	 + α + �) = �.

Finally, suppose α is a limit of limit ordinals, and the claim has been proven for
all limit ordinals below α. Fixing 	, � < �1, we have to find a countable � > � which
is α-approachable from 	. Let 〈sn | n < �〉 be increasing and cofinal in α, s0 = 0.
Let 	n = 	 + sn. Let

Dn = {� < �1 | � is (sn+1 – sn)-approachable from 	n}.

Inductively, Dn is unbounded in �1, for each n < �. Let

� ∈
(
At(	+α) ∩

⋂
n<�

Lim(Dn)

)
\ �.

To see that � is α-approachable from 	, fix � < �. Find an increasing sequence
〈�n | n < �〉 cofinal in � such that �0 > � and �n ∈ Dn, for all n < �. Using the
definition ofDn, we can now find a sequence of functions 〈fn | n < �〉 such that:

• fn is a nice function from [	n, 	n+1] to [�n, �n+1].
• fn+1(	n+1) = �n+1 = fn(	n+1).

Thus, the union
⋃
n<� fn is a function that can be extended to a nice function from

[	, 	 + α] to [�, �] by mapping 	 + α to �. �

Fact 2: If 〈Si | i < �1〉 is a sequence of stationary subsets of [Hκ]� and
〈Ti | i < �1〉 is a sequence of pairwise disjoint stationary subsets of �1, then for
any � < �1, there is a continuous ∈-chain 〈Qα | α < �〉 such that for all α < �, if
α ∈ Ti , then Qα ∈ Si .

Proof of Fact 2. This is a strengthening of [5, Lemma 1.2], and the proof of
that lemma can be adapted to the present situation. Let Q be the forcing to add a
continuous ∈-chain of countable subsets ofHκ, of length �1, by initial segments of
successor length. This forcing is 	-closed. Let 〈Qα | α < �1〉 be a sequence added by
Q, i.e., �Q =

⋃
G , for some Q-generic G. In V [G ], every Si is still stationary, so the

set Ai = {α < �1 | Qα ∈ Si} is stationary in V [G ]. So by Fact 1, applied in V [G ]
to the function t : �1 −→ �1 defined by

t(�) =
{
i, if � ∈ Ti ,
0, if � ∈ �1 \

⋃
j<�1
Tj,

there is a normal function f : � −→ �1 such that for all α < �, f(α) ∈ At(α), which
means that if α ∈ Ti , then f(α) ∈ Ai , and this means that Qf(α) ∈ Si . So, the
sequence �Q′ = 〈Qf(α) | α < �〉 is as wished, and it belongs to V, since Q is countably
distributive. �

We can now prove clauses (1), (2), and (3) simultaneously. Fix a conditionp ∈ PS ,
and let � < �1, a ∈ Hκ and S ∈ S be given. We may assume that � > �p. We may
also assume that �p + 1 ∈

⋃
i<�1
Ti , for if not, then we may just define �T ′ to be

like �T , except that �p + 1 ∈ T ′
0, say. Then p ∈ PDSRP

S, �T ′ , and an extension of p in PDSRP
S, �T ′

with the desired properties is also an extension of p in PDSRP
S, �T . So let’s let i0 be such

that �p + 1 ∈ Ti0 .
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Since it is trivial to extend the second coordinate of a condition, we may assume
that �p > �, that for every α ≤ �, if i < �1 is such that α ∈ Ti , then i < �p, and
that there is some i < �p such that Spi = S, taking care of clause (3). In order to
be able to use Fact 2 now, we have to perform a little index translation, shifting
by �p + 1. Thus, let’s define a sequence �T ′ = 〈T ′

i | i < �1〉 by letting T ′
i = {� <

�1 | (�p + 1) + � ∈ Ti}. Let’s also define �S = 〈Si | i < �1〉 by

Si =

⎧⎨⎩
Spi , if i < �p, i �= i0,
{x ∈ Spi0 | {a,Qp�p} ⊆ x}, if i = i0,
Sp0 , if i ≥ �p.

Clearly, �S is a sequence of stationary subsets of [Hκ]� , and �T ′ is a sequence of
pairwise disjoint stationary subsets of �1, so we may apply Fact 2 to give us a
continuous ∈-chain 〈R� | � < �̄〉, where �̄ = (� + 1) – (�p + 1), such that for all
i < �̄, if i ∈ T ′

j , then Ri ∈ Sj . The condition q = 〈 �Qp� �R, �Sp〉 is then an extension
of p with all the desired properties. This is because for i < �̄, if �p + 1 + i ∈ Tj , then
i ∈ T ′

j , so that Qq�p+1+i = Ri ∈ Sj = Sqj , and in particular, Qq�p = Qp�p ∈ Q
q
�p+1, as

Qq�p+1 ∈ Si0 . �

The following lemma is an immediate consequence of Fact 3.4.

Lemma 3.5. Let G be generic for PDSRP
S, �T , where S is a nonempty collection of

stationary subsets of [Hκ]� and �T is an �1-sequence of pairwise disjoint stationary
subsets of �1. Let �Q =

⋃
p∈G

�Qp and �S =
⋃
p∈G

�Sp. Then:

(1) �Q is a continuous ∈-chain of length �V1 whose union isHVκ .
(2) �S is a sequence of length �V1 , and S = {Si | i < �V1 }.
(3) For all i < �1 and all α ∈ Ti , we have that Qα ∈ Si .

We should now define the instances of the diagonal strong reflection principle.

Definition 3.6. Let S be a collection of stationary subsets of [Hκ]� , where
κ > �1 is regular, �T is an �1-sequence of pairwise disjoint stationary subsets of �1,
and � a sufficiently large regular cardinal (so that S ⊆ H� , that is, � > 2<κ). Then
the diagonal strong reflection principle for 〈S, �T 〉, DSRP(S, �T ), says that

{X ∈ [H� ]�1 | �1 ⊆ X and there is a diagonal chain through S up to X wrt. �T}
is stationary in H� .

The diagonal strong reflection principle for S, DSRP(S), says that

{X ∈ [H� ]�1 | �1 ⊆ X and there is a diagonal chain through S up to X}

is stationary in H� .
The exact diagonal strong reflection principle for S, eDSRP(S), says that

{X ∈ [H� ]�1 | �1 ⊆ X and there is an exact diagonal chain through S up to X}

is stationary in H� .
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Remark 3.7. Let S, κ and �T be as in Definition 3.6. Then we have the following
implications:

(1) DSRP(S, �T ) =⇒ DSRP(S).
(2) If

⋃
i<�1
Ti = �1, then DSRP(S, �T ) =⇒ eDSRP(S).

Lemma 3.8. Let S be a nonempty collection of stationary subsets of [Hκ]� , and
let �T be an �1-sequence of pairwise disjoint stationary subsets of �1 such that
FA({PDSRP

S, �T }) holds. Then DSRP(S, �T ) holds.

Proof. Let P = PDSRP
S, �T . Let � be a sufficiently large regular cardinal, and let

A = 〈H�,∈,P,S, �T , F,<∗〉, where F is some function from H<�� to H� and <∗ is a
well-order ofH� . Let

A = {X ∈ [H� ]�1 | �1 ⊆ X and there is a diagonal chain through S up to X}.

To show that A is stationary, it suffices to show that there is an X ∈ A such that
A|X ≺ A and X ∩ �2 ∈ �2 (see [13, Exercise 38.10]). By the argument of the proof
of [20, Lemma 2.53], it follows from FA({P}) that there is an X ∈ [H� ]�1 with
�1 ⊆ X and A|X ≺ A, such that there is a G which is (X,P)-generic (meaning that
G is a filter inP such that for every dense subsetD ⊆ PwithD ∈ X ,G ∩D ∩ X �= ∅).
Since �1 ⊆ X , it follows that X ∩ �2 ∈ �2. To see that X ∈ A, let �Q =

⋃
p∈G

�Qp
and �S =

⋃
p∈G

�Sp. It then follows from Lemma 3.5 that 〈 �Q, �S〉 is a diagonal chain

through 〈X,S〉 with respect to �T . To see that for α < �1, �Q�α = 〈Qi | i < α〉 ∈
Hκ ∩ X , note that the set Dα of conditions p ∈ P with �p ≥ α is dense in P and
an element of X. Hence, there is a p ∈ G ∩Dα ∩ X . The restriction of the first
component of p to α is then also in X, and it is the sequence �Q�α. �

Definition 3.9. Let �T be an �1-sequence of pairwise disjoint stationary subsets
of �1, let κ > �1 be regular, and let S ⊆ P([Hκ]�) be a nonempty family of
stationary sets. Let Γ be a forcing class. Then we say that 〈S, �T 〉 is Γ-projective
stationary if PDSRP

S, �T ∈ Γ. We say that S is Γ-projective stationary if there is a �T such

that 〈S, �T 〉 is Γ-projective stationary.

Motivated by Lemma 3.8, it thus makes sense to define:

Definition 3.10. For a forcing class Γ and a regular κ > �1, the Γ-fragment of
the diagonal strong reflection principle at κ, Γ-DSRP(κ), says that whenever S is
a collection of stationary subsets of [Hκ]� and �T is an �1-sequence of pairwise
disjoint stationary subsets of �1 such that 〈S, �T 〉 is Γ-projective stationary, then
DSRP(S, �T ) holds.

And generally, Γ-DSRP says that Γ-DSRP(κ) holds for every regular κ > �1.
If Γ = SSP, then we may omit mention of Γ.

Another way to express Lemma 3.8 is as follows:

Lemma 3.11. Let Γ be a forcing class. Then FA(Γ) implies Γ-DSRP.

§4. The stationary set preserving fragment of the diagonal strong reflection
principle. The appeal of the principle Γ-DSRP is that it can be formulated in a
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way that’s purely combinatorial and does not directly refer to the forcing class Γ in
the cases of main interest to us. We treat the case where Γ is the class of all stationary
set preserving forcing notions in the present section. Thus, we have to analyze which
pairs 〈S, �T 〉 are SSP-projective stationary, and to this end, we will employ a few
definitions.

Definition 4.1. Let κ > �1 be regular, S ⊆ [Hκ]� , and A ⊆ �1. Then S is
projective stationary on A if for every set B ⊆ A that is stationary in �1, the set
{M ∈ S |M ∩ �1 ∈ B} is a stationary subset of [Hκ]� .

Remark 4.2. Note that projective stationarity on A is vacuous unless A is a
stationary subset of �1.

The following definition is designed to capture SSP-projective stationarity of pairs
〈S, �T 〉.

Definition 4.3. Let κ > �1 be regular, and let S ⊆ P([Hκ]�) be a nonempty
collection of stationary subsets of [Hκ]� . Let �T be a sequence of pairwise disjoint
stationary subsets of �1. Then S is projective stationary on �T if the following hold:

(a) For every i < �1, and for every S ∈ S, S is projective stationary on Ti .
(b)

⋃
S is projective stationary on {α ∈

⋃
i<�1
Ti | ∀� < α α /∈ T�}.

Note that clause (b) can be expressed as saying that
⋃

S is projective stationary
on

⋃
i<�1
Ti \ �i<�1Ti , and is vacuous if this set is nonstationary (see Remark 4.2).

Let’s say that �T is maximal in this case. This is equivalent to saying that for every
stationary subset A ⊆

⋃
i<�1
Ti , there is an i < �1 such that A ∩ Ti is stationary. In

fact, maximality simplifies the whole concept considerably.

Remark 4.4. If κ > � is regular, �T is an �1-sequence of pairwise disjoint
stationary subsets of �1 that is maximal, and S is a collection of stationary subsets
of [Hκ]� , then S is projective stationary on �T iff every S ∈ S is projective stationary
on D =

⋃
i<�1
Ti .

Thus, if �T is a maximal partition of �1 into stationary sets, then S is projective
stationary on �T iff every S ∈ S is projective stationary.

Proof. For the direction from left to right, if A is a stationary subset of D,
then by maximality of �T , there is an i < �1 such that A ∩ Ti is stationary, so that
condition (a) of Definition 4.3 implies that {M ∈ S |M ∩ �1 ∈ A} is stationary,
for every S ∈ S. Vice versa, if S is projective stationary on D, then condition (a)
of Definition 4.3 follows immediately, and by the remark above, condition (b) is
vacuous by the maximality of �T . �

Maximal partitions always exist (see [10, Remark 3.17]), and we don’t have a use
for nonmaximal ones, so the reader may think of this special case in what follows
with no loss. Nevertheless, we carry out the analysis in the more general setting.

The assumptions of the following lemma could be weakened, but the present form
suffices for our purposes.

Lemma 4.5. Let κ be an uncountable regular cardinal, ∅ �= S ⊆ P([Hκ]�) a
collection of stationary subsets, and �T an �1-sequence of pairwise disjoint stationary
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subsets of �1, and let P = PDSRP
S, �T . If every S ∈ S is projective stationary on T0, then P

is countably distributive.

Proof. We have to show that, given a sequence �D = 〈Dn | n < �〉 of dense open
subsets of P, the intersection Δ =

⋂
n<� Dn is dense in P. So, fixing a condition

p ∈ P, we have to find a q ≤ p in Δ. We may assume that S = Sp0 is defined.

Let � be a regular cardinal much greater than κ, say � > 22|P| , and consider the
model N = 〈H�,∈, <∗,P, �D,p〉, where <∗ is a well-ordering of H�.

Since S ′ = {X ∈ S | X ∩ �1 ∈ T0} is stationary, we can let M = N|X ≺ N be a
countable elementary submodel with X ∩Hκ ∈ S ′, so that X ∩ �1 ∈ T0.

Since M is countable, we can pick a filter G which is M-generic for P and
contains p. Let

q̄ = 〈 �Qq̄, �Sq̄〉 =

〈 ⋃
r∈G

�Qr,
⋃
r∈G

�Sr
〉
.

Using items (1) and (2) of Fact 3.4, it follows that � := dom( �Qq̄) = dom( �Sq̄) =
X ∩ �1, and that

⋃
i<� Q

q̄
i = X ∩Hκ ∈ S. Thus, if we set q = 〈 �Qq̄�(X ∩Hκ), �Sq̄〉,

then q ∈ P, and q extends every condition in G. Moreover, since Dn ∈M , for each
n < �, it follows that G meets each Dn, and hence that p ≥ q ∈ Δ, as desired. �

We are now ready to prove our characterization of the pairs that areSSP-projective
stationary.

Theorem 4.6. Let κ > �1 be regular, S ⊆ P([Hκ]�) a nonempty collection of
stationary subsets of [Hκ]� , and �T an �1-sequence of pairwise disjoint stationary
subsets of �1. The following are equivalent:

(1) S is projective stationary on �T .
(2) 〈S, �T 〉 is SSP-projective stationary.

Proof. Let D =
⋃
i<�1
Ti , let t : D −→ �1 be defined by α ∈ Tt(α), and set

P = PDSRP
S, �T .

(1) =⇒ (2): Let A ⊆ �1 be stationary, p ∈ P and Ċ ∈ VP such that p �P “Ċ is a
club subset of�1.” We will find a condition q ≤ p inP that forces that Ċ intersects Ǎ.
Let � be a sufficiently large regular cardinal, say � > 22κ .
Case 1: There is an i0 < �1 such that A ∩ Ti0 is stationary.

In this case, fix such an i0. By assumption, for every S ∈ S, {M ∈ S |M ∩ �1 ∈
A ∩ Ti0} is stationary. By strengthening p if necessary, we may assume that
i0 < �

p. Let N ≺ 〈H�,∈, p, Ċ ,P,S, �T ,<∗〉 be a countable elementary submodel
such that M = N ∩Hκ ∈ Spi0 and � =M ∩ �1 ∈ A ∩ Ti0 . Let g be P-generic

over N with p ∈ g, and let �Q =
⋃
q∈g

�Qq and �S =
⋃
q∈g

�Sq . Then �Q is a

sequence of length �, and M =
⋃
i<� Qi ∈ Si0 . So since � ∈ Ti0 , q = 〈 �Q�M, �S〉

is a condition that strengthens p and forces that � ∈ Ċ , since Ċ g is club in �. Since
� ∈ A, this means that q forces that Ċ intersects Ǎ, as desired.
Case 2: A \D is stationary.

Let N ≺ 〈H�,∈,S, �T ,P, p, Ċ , <∗〉 be countable with N ∩ �1 = � ∈ A \D. Let
g ⊆ P be N-generic with p ∈ g. Let �Q =

⋃
q∈g

�Qq and �S =
⋃
q∈g

�Sq . Since
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� = dom( �Q) /∈ D, it follows that q = 〈 �Q�(N ∩Hκ), �S〉 ∈ P, and since Ċ g is club
in �, it follows that q forces that �̌ ∈ Ċ , hence that Ǎ ∩ Ċ �= ∅.
Case 3: Cases 1 and 2 fail.

Then A ∩D is stationary and for all i < �1, A ∩ Ti is nonstationary. Fix, for
every i < �1, a club Ci ⊆ �1 disjoint from A ∩ Ti . Let A∗ = A ∩D ∩ (�i<�1

Ci).
Then A∗ is stationary and has the property that for all α ∈ A∗ and all � < α,
α /∈ T� . So A∗ ⊆ Z = {α ∈ D | ∀� < α α /∈ T�}, and by condition (b) of
Definition 4.3,

⋃
S is projective stationary on Z. Thus, we can pick a countable

N ≺ 〈H�,∈,P, p, Ċ , A∗,S, �T 〉 such that � = N ∩ �1 ∈ A∗ and M = N ∩Hκ ∈⋃
S. LetS ∈ S be such thatM ∈ S. Let g ⊆ Pbe N-generic forP. Let �Q =

⋃
q∈g

�Qq
and �S =

⋃
q∈g

�Sq . Then dom( �S) = dom( �Q) = � ∈ A∗, and it follows that t(�) ≥ �.
Thus, t(�) /∈ dom(f), and we can extend �S to some �S ′ of length t(�) + 1 so that
�S ′�� = �S and S ′

t(�) = S. We can then let �Q′ = �Q�M , resulting in a condition

q = 〈 �Q′, �S ′〉 extending p and forcing that � ∈ Ċ ∩ Ǎ∗. Note that A∗ ⊆ A.
Thus, in each case, we have found an extension q of p forcing that Ċ intersects Ǎ.

Thus, the stationarity of A is preserved by P, and since this holds for any stationary
subset of�1,P is stationary set preserving, that is, 〈S, �T 〉 isSSP-projective stationary.

(2) =⇒ (1): LetP be stationary set preserving. We have to show thatS is projective
stationary on �T . This amounts to proving the two conditions listed in Definition 4.3.

For condition (a), let i < �1, S ∈ S, and let A ⊆ Ti be stationary. We have to
show that SA = {M ∈ S |M ∩ �1 ∈ A} is a stationary subset of [Hκ]� . If not,
then let C ⊆ [Hκ]� be club with SA ∩ C = ∅. Let G be P-generic over V, such
that G contains a condition p with i < �p and Spi = S. Let �Q =

⋃
q∈G

�Qq and
�S =

⋃
q∈G

�Sq . In V[G ], A is still stationary, so there is a

� ∈ A ∩ {α < �1 | Qα ∩ �1 = α} ∩ {Qα ∩ �1 | Qα ∈ C}.

But then � = Q� ∩ �1 and Q� ∈ C , and since � ∈ A ⊆ Ti , we have that Q� ∈ Si . So
Q� ∈ SA ∩ C �= ∅. Since C was arbitrary, this shows thatSA is stationary, as claimed.

For condition (b), suppose A ⊆ D is stationary in �1 and has the property that
for all α ∈ A and all � < α, α /∈ T� . Letting S∗ =

⋃
S, we have to show that

S∗
A = {M ∈ S∗ |M ∩ �1 ∈ A}

is stationary. So let C ⊆ [Hκ]� be club. Let G be P-generic, and let �Q =
⋃
q∈g

�Qq
and �S =

⋃
q∈g

�Sq . Let

� ∈ A ∩ {α < �1 | Qα ∩ �1 = α} ∩ {Qα ∩ �1 | Qα ∈ C}.

This is possible, because A is stationary in V[G ]. It follows that � = Q� ∩ �1 ∈
A ⊆ D, so that t(�) is defined and Q� ∈ St(�) ∈ S. It follows that Q� ∈ S∗

A ∩ C . �

Remark 4.7. If the nonstationary ideal on �1 is �2-saturated, then it was shown
in [5] that for every stationary subset S of [Hκ]� , where κ ≥ �2 is regular, there is
a stationary set D ⊆ �1 such that S is projective stationary on D. By the previous
remark, if �T is any partition of such a D into stationary sets, and this partition
is maximal, then S = {T ⊆ [Hκ]� | T is projective stationary on D} is projective
stationary on �T , and S ∈ S.
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§5. The subcomplete fragment of the diagonal strong reflection principle. We will
now carry out the analysis of Section 4 for the class of ∞-subcomplete forcing,
that is, Γ = ∞-SC. Thus, we have to find a description of the pairs 〈S, �T 〉 that
are ∞-SC-projective stationary. To this end, we first make the following definition,
corresponding to the notion of projective stationarity on a subset of �1.

Definition 5.1. Let D be a set, usually of the formHκ, for some regular κ > �1,
and let T ⊆ �1. Then a set S ⊆ [D]� with

⋃
S = D is spread out on T if for all

sufficiently large �, whenever �, A, X and a are such that H� ⊆ LA� = N |= ZFC–,
S, a, T, � ∈ X ≺ N , X is countable and full, and X ∩ �1 ∈ T , then there are aY ≺ N
and an isomorphism � : N |X −→ N |Y such that �(a) = a and Y ∩D ∈ S.

As with projective stationarity on a nonstationary set, this notion is also vacuous
in this case (see Remark 4.2).

Remark 5.2. Let κ > �1 be regular, and let S ⊆ [D]� be stationary in D.
If T ⊆ �1 is nonstationary, then S is spread out on T.

Proof. Let � > κ, and let �, A, X, and a be as in Definition 5.1. In particular,
T ∈ X . By elementarity, X sees that T is not stationary, so there is a club setC ⊆ �1

in X, disjoint from T. Letting � = X ∩ �1, it follows that C ∩ � is unbounded in
�, and hence that � ∈ C . Thus, X ∩ �1 /∈ T , and hence, the condition stated in
Definition 5.1 holds vacuously. �

The following definition, which corresponds to Definition 4.3 in the stationary
set preserving case, is designed to capture ∞-SC-projective stationarity.

Definition 5.3. Let κ > �1 be regular, S a nonempty collection of stationary
subsets of [Hκ]� , and �T a sequence of pairwise disjoint stationary subsets of �1.
Then S is spread out on �T if:

(a) For every i < �1 and for every S ∈ S, S is spread out on Ti .
(b)

⋃
S is spread out on

⋃
i<�1
Ti \ �i<�1Ti .

As before, condition (b) is vacuous if
⋃
i<�1
Ti \ �i<�1Ti is nonstationary, that

is, if �T is maximal, and as before, maximality results in a considerable simplification
of the concept.

Remark 5.4. Let κ > �1 be regular, let �T = 〈Ti | i < �1〉 be a sequence of
pairwise disjoint stationary subsets of �1 that is maximal, and let S be a collection
of subsets of [Hκ]� . Then S is spread out on �T iff every S ∈ S is spread out on⋃
i<�1
Ti .

Thus, if �T is a maximal partition of �1 into stationary sets, then S is spread out
on �T iff every S ∈ S is spread out.

Proof. Set D =
⋃
i<�1
Ti . For the implication from left to right, fix S ∈ S. Let

� be sufficiently large, and let H� ⊆ LA� = N |= ZFC–. Let X be countable and
full, with N |X ≺ N , and assume that �, S,D ∈ X . Fix some a ∈ X . By a version
of Fact 2.16 may also assume that �T ∈ X . But then, Z = D \ �i<�1Ti is also
in X, and Z is nonstationary, by assumption. As in the proof of Remark 5.2, it
follows that � = X ∩ �1 /∈ Z. Now suppose that � ∈ D. Since � /∈ Z, this means that
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� ∈ Ti0 , for some i0 < �. But since S is spread out on Ti0 , there are �, Y such that
� : N |X −→ N |Y ≺ N is an isomorphism that fixes a, and such that Y ∩Hκ ∈ S,
as wished.

The converse is trivial, because if every S ∈ S is spread out on
⋃
i<�1
Ti , then

it is trivially also spread out on each Ti (we may assume that D belongs to the
relevant X). And condition (b) of Definition 5.3 is vacuous, since �T is maximal. �

As before, the reader may focus on the situation where �T is maximal, but we treat
the general case here.

Theorem 5.5. Let κ > �1 be regular, �T an �1-sequence of pairwise disjoint
stationary subsets of �1, and S a nonempty collection of stationary subsets of [Hκ]� .
The following are equivalent:

(1) S is spread out on �T .
(2) 〈S, �T 〉 is ∞-SC-projective stationary.

Proof. Let D =
⋃
i<�1
Ti , let t : D −→ �1 be defined by α ∈ Tt(α), and let

P = PDSRP
S, �T . We treat each implication separately.

(1) =⇒ (2): Assuming thatS is spread out onTi , for every i < �1, we have to show
thatP is∞-subcomplete. To this end, let � be large enough for Definition 5.1 to apply
to every Ti , every S ∈ S, as well as to

⋃
S and D \ �i<�1Ti . Let N = LA� |= ZFC–

withH� ⊆ N , and let P ∈ X ≺ N be countable and full. Let a be some member of X,
and let 	 : N̄ −→ X be the inverse of the Mostowski collapse of X, N̄ transitive. Let
P̄ = 	–1(PS), ā = 	–1(a), and let Ḡ ⊆ P̄ be N̄ -generic. As usual, we may assume that
certain parameters are in X (see [17, p. 116, Lemma 2.5]). Here, we will assume that

S, �T ∈ X . Let κ̄ = 	–1(κ), S̄ = 	–1(S) and �̄T = 	–1( �T ). It follows from Lemma 3.5
that if we set �̄Q =

⋃
{ �Qp̄ | p̄ ∈ Ḡ} and �̄S =

⋃
{ �Sp̄ | p̄ ∈ Ḡ}, then �̄Q and �̄S are

sequences of length �N̄1 .
Let � = X ∩ �1 = �N̄1 .

Case 1: � /∈ D.
In this case we define

q =
〈
〈	(Q̄i) | i < �〉�(X ∩Hκ) , 〈	(S̄i) | i < �〉

〉
.

Then q ∈ P, since X ∩ �1 /∈ D. Moreover, q extends every member of 	“Ḡ .
Thus, q forces that 	 itself satisfies the subcompleteness conditions (1)–(4) of
Definition 2.13.
Case 2: � ∈ D.

Let i0 < �1 be such that � ∈ Ti0 , that is, i0 = t(�).
Case 2.1: i0 < �.

In this case, let S̄ = S̄i0 . S̄ is then in S̄, and so, S = 	(S̄) ∈ S ∩ X . In particular, S
is spread out on Ti0 . Moreover, Ti0 ∈ X . So, since � = X ∩ �1 ∈ Ti0 , we can choose
a Y ≺ N with Y ∩Hκ ∈ S and an isomorphism � : N |X −→ N |Y that fixes a, S
and P. Let 	′ = � ◦ 	 : N̄ ≺ N . Let

q =
〈
〈	′(Q̄i) | i < �〉�(Y ∩Hκ) , 〈	′(S̄i) | i < �〉

〉
.

Since Y ∩Hκ ∈ S, it follows that q ∈ P (note that X ∩ �1 = Y ∩ �1 = � ∈ Ti0 ,
and Y ∩Hκ ∈ S = 	(S̄i0 ) = 	′(S̄i0 )), and whenever G � q is PS -generic over V,
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then 	′“Ḡ ⊆ G . Since 	′(ā) = a, the conditions defining ∞-subcompleteness are
satisfied.
Case 2.2: i0 ≥ �.

In this case, � ∈ Z = D \ �i<�1Ti . By assumption,
⋃

S is spread out on Z.
Moreover,

⋃
S and Z are in X. Let Y, 	′ be such that 	′ : N |X −→ N |Y is an

isomorphism fixing a, S, �T, and P, and such that Y ∩Hκ ∈
⋃

S. Let S ∈ S be such
that Y ∩Hκ ∈ S. Let �S ′ be a sequence of length i0 + 1 extending 〈	′(S̄i) | i < �〉
with S ′

i0
= S and S ′

i ∈ S for every i ≤ i0. Let

q =
〈
〈	′(Q̄i) | i < �〉�(Y ∩Hκ), �S ′〉.

Then q is a condition, forcing that 	′“Ḡ ⊆ Ġ .
(2) =⇒ (1): To prove that condition (a) of Definition 5.3 holds, fix an S ∈ S and

an i0 < �1. Let � be large enough to verify thatP is∞-subcomplete. Let �, a, X,A,N
be as in Definition 5.1. So X ≺ N = LA� is countable and full, S, a, Ti0 ∈ X , and
suppose that � = X ∩ �1 ∈ Ti0 , that is, t(�) = i0. By (a variation of) Fact 2.16, we
may assume that X contains certain parameters we care about. So let us assume that
S, �T ∈ X . Since Ti0 and �T are in X, it follows that i0 ∈ X , and hence that i0 < �. Let

	 : N̄ −→ X be the transitive isomorph of X, and let P̄, S̄, S̄, �̄T be the preimages of
P, S, S, �T under 	, respectively.

Let Ḡ be P̄-generic over N̄ , containing a condition p̄ such that Sp̄i0 = S̄. By
assumption, there is a condition q ∈ P such that whenever G is P-generic over V
and contains q, then there is in V[G ] an elementary embedding 	′ : N̄ −→ N with

	′(ā) = a, 	′(S̄) = S, 	′(S̄) = S, 	′( �̄T ) = �T , and such that 	′“Ḡ ⊆ G . Note that
for any S ′ ∈ S, and any i < �1, S ′ is projective stationary on Ti , since S ′ is even
spread out on Ti . This can be easily shown directly. Hence, by Lemma 4.5, P is
countably distributive, so that 	′ already exists in V. We have already argued that
the union of the first coordinates of conditions in Ḡ is of the form 〈Q̄i | i < �N̄1 〉,
where

⋃
i<� Q̄i = HN̄κ̄ , and that the union of the second coordinates is a sequence

〈S̄i | i < �〉. Now let r ∈ G be a condition with �r ≥ �, and let Y = ran(	′). Then

Qr� =
⋃
i<�

Qri =
⋃
i<�

	′“Q̄i = 	′“HN̄κ̄ = Y ∩Hκ.

Moreover,Y ∩ �1 = X ∩ �1 ∈ Ti0 , so thatQr� ∈ Sri0 = 	′(Q̄i0 ) = S, by clause (3) of
Definition 3.3. Thus, Y ∩Hκ ∈ S, and letting � = 	′ ◦ 	–1, we have that � : N |X ≺
N |Y is an isomorphism fixing a, showing that S is spread out on Ti0 .

To prove condition (b) of Definition 5.3, we start in the same setup, but we assume
that � ∈

⋃
i<�1
Ti \ �i<�1Ti , that is, � ∈ Ti0 , where i0 ≥ �. Let Ḡ be generic over N̄

for P̄, and let q ∈ P force the existence of a 	′ : N̄ ≺ N as before, moving �̄T , P̄, S̄ and
ā the same way as 	, and so that if G is P-generic with q ∈ G , then 	′“Ḡ ⊆ G . As
before, it follows that 	′ ∈ V. Let r ∈ G be such that �r ≥ �. It follows that, letting
Y = ran(	′), Qr� = Y ∩Hκ. So, since � ∈ Ti0 , i0 < �r and Qr� ∈ Sri0 ∈ S. Hence,
Y ∩Hκ ∈

⋃
S, and � = 	′ ◦ 	–1 can serve as our wanted isomorphism. �
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§6. Consequences of the Γ-fragment ofDSRP. Now that we have characterizations
of the pairs 〈S, �T 〉 that are Γ-projective stationary, if Γ is either the class of stationary
set preserving or subcomplete forcing notions, we should like to describe some
consequences of the corresponding Γ-fragment of DSRP. First, let us summarize
the most important consequence of what was done in Sections 4 and 5.

Theorem 6.1. Let Γ be either the class of stationary set preserving or of inf-
subcomplete forcing notions. Let κ > �1 be regular, and suppose that Γ-DSRP(κ)
holds. Then:

(1) If S �= ∅ is such that every S ∈ S is Γ-projective stationary in Hκ, then
eDSRP(S) holds.

(2) IfA ⊆ �1 is a stationary set such that everyS ∈ S �= ∅ is Γ-projective stationary
inHκ on A, then DSRP(S) holds.

Proof. Part (1): if Γ is the class of stationary set preserving forcing notions,
then Γ-projective stationarity is just the usual concept of projective stationarity.
So let S be a nonempty collection of projective stationary sets in Hκ. Let �T be a
maximal partition of�1 into stationary sets. By Remark 4.4, 〈S, �T 〉 is SSP-projective
stationary, so by assumption, DSRP(S, �T ) holds. But since �T is a partition of all
of �1, this implies eDSRP(S), by Remark 3.7.

The case where Γ is the class of all inf-subcomplete forcing notions is handled
similarly. This time, Γ-projective stationarity means being spread out. Given S and
a partition �T as above, it follows by Remark 5.4 that 〈S, �T 〉 is ∞-SC-projective
stationary, so that DSRP(S, �T ) holds, which again implies eDSRP(S), as �T is a
partition of �1.

Part (2) is similar. We can work with a maximal partition �T of A into stationary
sets now. �

The relationship between the diagonal strong reflection principle and other
diagonal reflection principles is maybe best understood in an analogy to the
relationship between the strong reflection principle and other reflection principles.
In fact, it may be easiest to understand the difference by thinking about Friedman’s
problem and the reflection principle, in the context of reflection of stationary sets of
ordinals. Friedman’s problem at an uncountable regular cardinal κ greater than �1

says that wheneverA ⊆ Sκ� is stationary, then there is a closed subset C of A of order
type �1. Letting � = supC , then, A ∩ � is stationary, that is, A reflects at �. But
A ∩ � is not only stationary; it contains a club. In preparation for the following
subsections, let us define some concepts that capture the difference between reflection
in the usual sense and the kind of reflection resulting from strong reflection
principles. The terminology around exact reflection comes from [10, Definition 3.13].

Definition 6.2. Let κ be an ordinal of uncountable cofinality, and let A ⊆ κ be
stationary in κ. An ordinal � < κ of uncountable cofinality is a reflection point of A
if A ∩ � is stationary in �. It is an exact reflection point of A if A ∩ � contains a club
in �. Given a regular cardinal �, the �-trace of A, Tr�(A), is the set of all reflection
points of A that have cofinality �, and the exact �-trace of A, eTr�(A), is the set of
all exact reflection points of A that have cofinality �.

If S is a collection of stationary subsets of κ, then � is a simultaneous reflection
point ofS if � is a reflection point of everyA ∈ S. It is an exact simultaneous reflection
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point of S if it is a simultaneous reflection point of S and (
⋃

S) ∩ � contains a club
in �. Again fixing a regular cardinal �, the �-trace of S, Tr�(S), is the set of all
simultaneous reflection points of S that have cofinality �, and the exact �-trace
of S, eTr�(S), is the set of all exact simultaneous reflection points of S that have
cofinality �.

Since we will be mainly interested in the case that � = �1, we will drop mention
of � if � = �1, that is, eTr(S) means eTr�1(S).

Thus, Friedman’s problem at κ says that every stationary subset ofSκ� has an exact
reflection point. In fact, let us define the exact versions of some classical reflection
principles for stationary sets of ordinals.

Definition 6.3. Suppose � is a cardinal of uncountable cofinality. Let A ⊆ �.
Let κ be a cardinal, and let � be a regular cardinal. Then Refl�(<κ,A) says that
whenever S is a collection of stationary subsets of A that has cardinality less than κ,
then Tr�(S) �= ∅. We write Refl�(κ,A) for Refl�(<κ+, A).

Similarly, eRefl�(<κ,A) says that whenever S is a collection of stationary subsets
of A that has size less than κ, then eTr�(S) �= ∅. As before, we write eRefl�(κ,A) for
eRefl�(<κ+, A).

And as before, we will drop mention of � if � = �1, so that eRefl(κ,A) means
eRefl�1(κ,A).

We are here most concerned with the principles of the form Refl(�1, A) and
eRefl(�1, A). It is shown in [10] that eRefl(�1, A) is equivalent to a simultaneous
version of Friedman’s Problem that has its origins in [7]:

Observation 6.4 [10, Observation 3.14]. Letκ > �1 be regular and fix a stationary
subset A of κ. The following are equivalent:

(1) Whenever S = {Ai | i < �1} is a set of stationary subsets of A, there is
a partition 〈Ti | i < �1〉 of �1 into stationary sets and a normal function
f : �1 −→ κ such that for every i < �1, f“Ti ⊆ Ai .

(2) eRefl(�1, A) holds.
(3) For any set S of stationary subsets of A that has size �1, eTr(S) is stationary

in κ.

Exact simultaneous reflection has consequences on cardinal arithmetic (and this
was known since [7], even though this was not filtered through the simultaneous
exact reflection principle):

Fact 6.5 [10, Fact 3.15]. Let κ > �1 be regular, and suppose there is a stationary
A ⊆ κ such that eRefl(�1, A) holds. Then κ�1 = κ.

It was shown in [7] that MM implies eRefl(�1, S
κ
�), for any regular κ > �1.

Todorčević showed that already SRP has this consequence, and in [10], it was shown
that the ∞-subcomplete fragment of SRP implies this for κ > 2� .

The strong diagonal reflection principle is a principle of reflection of generalized
stationarity, designed to capture exact versions of diagonal reflection. Note that an
exact reflection point of some collection of stationary sets is a reflection point of
each of those sets, but it is explicitly not a reflection point of the complement of the
union of these stationary sets. Thus, principles of exact reflection provide selective
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reflection: points at which some sets reflect but others don’t. The diagonal reflection
principles, introduced by the first author, talk about reflection of generalized
stationarity, and in a sense, they try to maximize the collection of sets that reflect.
They are thus not designed to produce phenomena of exact reflection. For example,
they do not imply eRefl(�1, A), for any set A stationary in�2, since they don’t imply
that 2�1 = �2, as we will show in Section 7 (compare with Fact 6.5).

We will present in the following two subsections some consequences of fragments
of the diagonal strong reflection principle. First, we will focus on consequences that
don’t have much to do with the exact reflection DSRP provides. These filter through
certain versions of the diagonal reflection principle that were introduced in [3]. In
the subsection after that, we will provide some applications that do make use of the
exact quality of the reflection DSRP provides. These don’t follow from the principles
of [3].

6.1. Consequences that filter through weak diagonal reflection principles. Let us
begin by showing that DSRP implies various “weak” diagonal reflection principles
of [3], as well as some slight modifications thereof. For the present purposes, we say
that a set N is internally approachable if it is the union of an ∈-chain 〈Nα | α < �1〉
such that for every α < �1, 〈N� | � < α〉 ∈ N .

Lemma 6.6. Let κ be regular, and let S ⊆ P([Hκ]�) be a collection of stationary
sets such that DSRP(S) holds. Then:

(1) The principle wDRPIA(S) holds: whenever � is large enough that S ⊆ H� , there
are stationarily manyW ∈ [H� ]�1 such that:
(a) W ∩Hκ is internally approachable.
(b) For every S ∈W ∩ S, S ∩ [W ∩Hκ]� is stationary inW ∩Hκ.

(2) The following slight strengthening of wDRPIA(S) holds: whenever � is large
enough that S ⊆ H� , there are stationarily many W ∈ [H� ]�1 such that for
every S ∈W ∩ S and every regular κ̄ ∈W ∩ [�2, κ], W ∩Hκ̄ is internally
approachable and (S ↓Hκ̄) ∩ [W ∩Hκ̄]� is stationary inW ∩Hκ̄.

Proof. For (1), let � be regular and large enough that S ⊆ H� . We know by
DSRP(S) that there are stationarily manyW ∈ [H� ]�1 such that�1 ⊆W and there is
a diagonal chain �Q through S up to W. We claim that each such W belongs to the
set defined in (1). Note that �Q witnesses that W ∩Hκ is internally approachable.
Now let S ∈W ∩ S. We have to show that S ∩ [W ∩Hκ]� is stationary inW ∩Hκ.
Let

T = {α < �1 | Qα ∈ S}.

Since �Q is a diagonal chain through S up to W, T is stationary. Now let f :
[W ∩Hκ]<� −→W ∩Hκ. We have to find an x ∈ S ∩ [W ∩Hκ]� that’s closed
under f. Clearly, the set of α < �1 such that f“[Qα]<� ⊆ Qα is club in �1. Hence,
there is such an α in T. But then, x = Qα ∈ S is as wished.

For (2), we argue mostly as above. Given a W as above, let �Q be a diagonal chain
through S up to W, and let κ̄ ∈ [�2, κ] ∩W . Then the sequence 〈Qα ∩Hκ̄ | α < �1〉
witnesses thatW ∩Hκ̄ is internally approachable. Letting S ∈ S ∩W , and letting
T be the stationary set of countable α such thatQα ∈ S, we have that for all α ∈ T ,
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Qα ∩Hκ̄ ∈ S ↓Hκ̄. As above, givenf : [W ∩Hκ̄]<� −→W ∩Hκ̄, we can now find
an α ∈ T such that Qα ∩Hκ̄ is closed under f, and Qα ∩Hκ̄ is then in S ↓Hκ̄. �

Remark 6.7. In the notation of the previous lemma, if T ⊆ S, then
wDRPIA(S) =⇒ wDRPIA(T ).

This remark drives a point home that was made earlier: one cannot expect to
get any phenomena of exact reflection from these principles. Yet they will, by
design, imply certain diagonal reflection principles for sequences of stationary sets
of ordinals.

Definition 6.8. The following collections of stationary sets will be focal for our
analysis, for a regular cardinal κ > �1:

Slift(�) = {lift(A, [Hκ]�) ∩ C | A ⊆ Sκ� is stationary in κ and C ⊆ [Hκ]� is club}.
Furthermore, for a forcing class Γ, let SΓ(κ) be the collection of all S ⊆ [Hκ]� that
are Γ-projective stationary in Hκ.

In [3], wDRPIA(κ) was defined as wDRPIA(SSSP(κ)), and wDRPIA states that
wDRPIA(κ) holds for every regular κ ≥ �2. Thus, by Lemma 3.11, Theorem 4.6,
and Lemma 6.6, we have the following implications:

MM =⇒ SSP-DSRP(κ) =⇒ wDRPIA(κ),

for every regular κ > �1. If we similarly define ∞-SC-wDRPIA(κ) to be the principle
wDRPIA(S∞-SC(κ), then we obtain the corresponding implications

∞-SCFA =⇒ ∞-SC-DSRP(κ) =⇒ ∞-SC-wDRPIA(κ),

for any regular κ > �1, using Lemma 3.11, Theorem 5.5, and Lemma 6.6.
We now aim to find a connection to diagonal reflection principles of stationary

sets of ordinals. Combining Theorem 6.15, Lemma 2.22, and Lemma 6.6, we obtain:

Corollary 6.9. Suppose κ is a regular cardinal greater than 2� , and ∞-SC-
DSRP(κ) holds. Then wDRPIA(Slift(κ)) holds.

The same conclusion holds if κ is a regular cardinal greater than �1 and
SSP-DSRP(κ) holds.

The principles of reflection of stationary sets of ordinals we are interested in here
are of the following form.

Definition 6.10 (See [9, 11, 18]). Let � be a regular cardinal, let S ⊆ � be
stationary, and let κ < �. The diagonal stationary reflection principle DSR(<κ, S)
says that whenever 〈Sα,i | α < �, i < jα〉 is a sequence of stationary subsets of S,
where jα < κ for every α < �, then there are an ordinal � < � of uncountable
cofinality and a club F ⊆ � such that for every α ∈ F and every i < jα , Sα,i ∩ � is
stationary in �.

The version of the principle in which jα ≤ κ is denoted DSR(κ, S).
We will denote the collection of all ordinals less than some given ordinal � that

have cofinality κ, for some regular cardinal κ, by S�κ. Usually, in the present context,
the set S above will be of the form S�� , for some regular � > �1.

If F is only required to be unbounded, then the resulting principle is called
uDSR(<κ, S), and if it is required to be stationary, then it is denoted sDSR(<κ, S).
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Of relevance to us is the fact that the principle SRP(�1, S
�2
� ) is equivalent to

the principle OSR�2 of Larson [18]. Larson showed that this principle follows from
Martin’s Maximum, but not from SRP. Adding to this, in [11, Theorem 4.4], it was
shown that SRP does not imply uDSR(1, S��), for � > �2, while [9] shows that for
� > 2� , SCFA implies even the stronger principle DSR(�1, S

�
�). Thus, the strong

reflection principles fail to capture these consequences of MM/SCFA, and our goal
is to show that the diagonal strong reflection principles do capture them; in fact,
even wDRPIA is sufficient.

Note that the assumptions of the following theorem are satisfied if DSRP(κ)
holds, or if κ > 2� and ∞-SC-DSRP(κ) holds, by Corollary 6.9.

Theorem 6.11. Letκ > �1 be regular. ThenwDRPIA(Slift(κ)) =⇒ DSR(�1, S
κ
�).

Proof. Let �S = 〈Sα,i | α < �, i < �1〉 be a matrix of stationary subsets of Sκ� .
Let � be a regular cardinal such that Slift(κ) ⊆ H� . By wDRPIA(Slift(�)), let W ≺
〈Hκ,∈, �S〉 satisfy clauses (1)(a) and (b) of Lemma 6.6.

Let C =W ∩ κ, and let � = sup(C ) < κ. Since W is internally approachable,
it can be written as W =

⋃
i<�1
Wi , where �W is a continuous elementary chain

such that for all i < �1, �W �i ∈W . Thus, if we let �i = sup(Wi ∩ �), then C̄ =
{�i | i < �1} is a closed unbounded subset of C, and since �� is strictly increasing,
the cofinality of � is �1.

(1) For every α ∈ C , and for every i < �1, Sα,i ∩ � is stationary in �.
To see this, fix α ∈ C and i < �1. Note that Sα,i ∈W , and κ, being definable

from �S, is also in W. Hence, S̃α,i = lift(Sα,i , [Hκ]�) ∈W ∩ Slift(κ). It follows that
S̃α,i ∩ [W ∩Hκ]� is stationary in W ∩Hκ. A standard argument shows that this,
in turn, implies that Sα,i ∩ � is stationary in �. In detail, let D ⊆ � be club. Let
E = D ∩ C̄ . Since cf(�) > �, E is club. Let f : C −→ C be defined by f(�) =
min(E \ (� + 1)). Since S̃α,i ∩ [W ∩Hκ]� is stationary, we can pick a set x ∈
S̃α,i ∩ [W ∩Hκ]� closed under f. Let � = sup(x ∩ κ). Since x ∈ S̃α,i , it follows that
� ∈ Sα,i . By definition of f, � is clearly a limit point of E, hence also a limit point
of D. So � ∈ (Sα,i ∩ �) ∩D.

Thus, the club set C̄ witnesses this instance of DSR(�1, S
�
�). �

6.2. Consequences beyond DRP: exact reflection. It was pointed out in the
beginning of this section that principles of exact reflection postulate the existence of
points at which some stationary sets reflect, but others don’t. The fact that the weak
diagonal reflection principle is monotonic in its argument (see Remark 6.7) is an
indication that it does not capture these kinds of exact reflection. The proof of the
following observation shows that sometimes, it is useful to have DSRP(S, �T ) for a
very small collection S of stationary sets indeed.

Observation 6.12. Let Γ = SSP or Γ = ∞-SC. Then Γ-DSRP implies Γ-SRP.

Proof. Let κ ≥ �2, and let S ⊆ [Hκ]� be stationary in Hκ and Γ-projective
stationary. Let �T = 〈Ti | i < �1〉 be a partition of �1 into stationary sets. Let

S = {S}. Then 〈S, �T 〉 is Γ-projective stationary (if Γ = SSP, then this is by
Definition 4.3 and Theorem 4.6, and in case Γ = ∞-SC, it follows from Definition 5.3
and Theorem 5.5). Thus, by Γ-DSRP, DSRP(S, �T ) holds, but if 〈 �Q, �S〉 witnesses
this, then �Q witnesses the required instance of Γ-SRP. �
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It will follow from results in Section 7 that an internally approachable form of the
original principle DRP, which strengthens the principles of the form wDRPIA(κ),
does not imply SRP.

Coming up is a typical example of a consequence of a DSRP type assumption. To
make exact reflection meaningful, we have to add in a constraint, but modulo this
constraint, we get maximal reflection.

Lemma 6.13. Let κ > �1 be a regular cardinal, and let E ⊆ Sκ� be stationary in κ.
Let

S = {lift(A, [Hκ]�) | A ⊆ E is stationary in κ}.
Let � be a sufficiently large cardinal so that S ⊆ H� . Then eDSRP(S) implies that
for stationarily manyW ∈ [H� ]�1 , we have that �1 ⊆W and � = sup(W ∩ κ) is an
exact simultaneous reflection point of {A ∈W | A ⊆ E and A is stationary in κ}.

Note: Again, the assumptions of this lemma hold if SSP-DSRP(κ) holds, or if
κ > 2� and ∞-SC-DSRP(κ) holds.

Proof. LetW ∈ [H� ]�1 be such thatW ≺ 〈H�,S〉,�1 ⊆W , and such that there
is an exact diagonal chain �Q through S up to W. By eDSRP(S), there are stationarily
many such. It then follows in a straightforward way that the set {sup(Qi ∩ κ) | i <
�1} is a club subset of

⋃
{A ∈W | A ⊆ E is stationary}, and since for everyA ⊆ E

stationary in κ that exists in W, the set S = lift(A, [Hκ]�) ∈ S ∩W , we have that
for stationarily many i < �1, Qi ∈ S, which means that sup(Qi ∩ κ) ∈ A, it follows
that � is a reflection point of A. �

The previous lemma is of course most interesting if Sκ� \ E is also stationary in κ.
Let us now strengthen the diagonal reflection principles for sequences of stationary
sets of ordinals, as given in Definition 6.10, so as to arrive at their exact versions,
focusing on the variants most relevant for our purposes.

Definition 6.14. Let κ be a regular cardinal, and let S ⊆ κ be stationary. An
(�1, S)-sequence is a sequence 〈Sα,i | α < κ, i < �1〉 of subsets of S stationary in κ.
Given such a sequence �S, an ordinal � < κ of uncountable cofinality is an exact
diagonal reflection point of �S if there is a set R ⊆ � such that:

(1) R has cardinality �1.
(2) R contains a club in �.
(3) � is an exact simultaneous reflection point of {Sα,i | α ∈ R, i < �1}.

The exact diagonal reflection principle eDSR(�1, S) says that every (�1, S)-sequence
has an exact diagonal reflection point.

Recall that even the simple (non-exact) diagonal reflection principle
DSR(�1, S

�2
� ), does not follow from SRP (see the discussion after Definition 6.10).

The following theorem shows that DSRP implies the exact version.

Theorem 6.15. Let κ > �1 be regular, and let �S = 〈Sα,i | α < κ, i < �1〉 be
an (�1, S

κ
�)-sequence. Let S = {lift(Sα,i , [Hκ]�) | α < κ, i < �1}. Then eDSRP(S)

implies the existence of an exact diagonal reflection point for �S.

Note: By Lemma 6.1, the assumption of this theorem holds if κ > 2� and ∞-SC-
DSRP(κ) holds, or if DSRP(κ) holds. That is, we have that “∞-SC-DSRP(κ) +
κ > 2� is regular” implies eDSR(�1, S

κ
�), as does “DSRP(κ) + κ > �1 is regular.”
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Proof. Let � be a cardinal such thatS ⊆ H� . Let�1 ⊆W ≺ 〈H�,∈, �S〉 have size
�1, and let �Q be an exact diagonal chain through S up to W. Let R =W ∩ κ and
� = sup(R). We claim that � is an exact diagonal reflection point of �S, as witnessed
by R. Let, for j < �1, �j = sup(Qj ∩ κ). Then � = supj<�1

�j and C = {�j | j <
�1} is club in �, � has cofinality�1, andC ⊆ R. This verifies conditions (1) and (2).

To see that � is a reflection point of Sα,i , for every α ∈ R and every i < �1,
fix such α and i. Let Tα,i = {j < �1 | Qj ∈ lift(Sα,i , [Hκ]�)}. Since α, i ∈W , it
follows that lift(Sα,i , [Hκ]�) ∈W ∩ S, and so, Tα,i is stationary in�1. But whenever
j ∈ Tα,i , then �j ∈ Sα,i . So since Tα,i is stationary in �1 and the map j �→ �j is
continuous and strictly increasing, it follows that {�j | j ∈ Tα,i} is stationary in �.
Since {�j | j ∈ Tα,i} ⊆ Sα,i , it follows that � is a reflection point of Sα,i . Thus, � is
a simultaneous reflection point of {Sα,i | α ∈ R, i < �1}.

Finally, since �Q is exact, we have that for every j < �1, Qj ∈ S, for some S ∈
S ∩W , and hence, �j ∈ Sα,i , for some α ∈W ∩ κ and some i < �1. This is because
if S ∈ S ∩W , then since W ≺ 〈H�,∈, �S〉, there is a least pair 〈α, i〉 such that
S = Sα,i , which must be in W. Thus, C ⊆

⋃
α∈R,i<�1

Sα,i , verifying the “exactness”
part of condition (3). �

As a last example, let us state an exact diagonal mutual reflection principle with
a constraint. The formulation is a little tedious, but the principle is quite natural.

Definition 6.16. Let κ be an ordinal of uncountable cofinality. We write Sκ for
the collection of all stationary subsets of κ. Given a set E ⊆ κ, we write Sκ�E for
the collection of all subsets of E that are stationary in κ.

Theorem 6.17. Let K �= ∅ be a set of regular cardinals greater than �1, with
supremum κ̃. Let 〈Eκ | κ ∈ K〉 be a sequence of sets such that for eachκ ∈ K ,Eκ ⊆ Sκ�
is stationary in κ. Now, for every �A ∈

∏
κ∈K Sκ�Eκ, let

S �A = {X ∈ [Hκ̃]� | ∀κ ∈ X ∩K sup(X ∩ κ) ∈ Aκ}

and let

S = {S �A | �A ∈
∏
κ∈K

Sκ�Eκ}.

Assume eDSRP(S) holds and let � be a cardinal sufficiently large so that S ⊆ H� .
Then there are stationarily manyW ∈ [H� ]�1 such that:

(1) �1 ⊆W .
(2) For every κ ∈ K ∩W , �κ = sup(W ∩ κ) is an exact simultaneous reflection

point for (Sκ�Eκ) ∩W .
(3) There is a matrix 〈�κ,i | κ ∈ K ∩W, i < �1〉 such that:

(a) For every κ ∈ K ∩W , there is a �κ < �1 such that the function �κ < i �→
�κ,i is strictly increasing, continuous, and cofinal in �κ.

(b) For every κ ∈ K ∩W and every sufficiently large i < �1,

�κ,i ∈W ∩ Eκ.

(c) For every �A ∈W ∩
∏
κ∈K Sκ�Eκ, there is a stationary subsetT �A ⊆ �1 such

that for every κ ∈ K ∩W and every sufficiently large i ∈ T �A, �κ,i ∈ Aκ.
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Remark 6.18. It was shown in [10, Corollary 3.26] thatS �A is projective stationary,
and so, the assumptions of the theorem follow from DSRP. By [10, Corollary 3.32],
S �A is even spread out if ∞-SC-SRP + CH holds, so the assumptions also follow from
∞-SC-DSRP + CH.

Proof. By assumption, there are stationarily in H� many W ∈ [H� ]�1 with
�1 ⊆W such that there is an exact diagonal chain 〈Qi | i < �1〉 through S up
to W. Define, for κ ∈ K ∩W and i < �1, �κ,i = sup(Qi ∩ κ). It is routine to check
that all the conditions are satisfied. �

§7. Limitations. In this section, we will present some negative results, separating
some of the principles under investigation. The first of these employs methods of
Miyamoto.

Theorem 7.1. Assuming the consistency of a supercompact cardinal, DSRP does
not imply MM; it is consistent with the existence of a Souslin tree.

Proof. Miyamoto [19, Definition 5.4] introduced the forcing axiom
MM(Souslin), which is the forcing axiom for the class of all stationary set
preserving forcing notions that also preserve every �1-Souslin tree, and he
showed [19, Corollary 5.8] that assuming the consistency of a supercompact
cardinal, MM(Souslin)+ “there is a Souslin tree” is consistent. He also showed
that MM(Souslin) implies SRP. All we have to do is observe that MM(Souslin)
also implies DSRP. For this, it clearly suffices to show, given a pair 〈S, �T 〉 that is
SSP-projective stationary, that P = PDSRP

S, �T preserves Souslin trees. So let U be a

Souslin tree, let p ∈ P, and suppose that Ȧ is a P-name such that p forces that Ȧ
is a maximal antichain in T. We have to find an extension q of p that forces Ȧ to
be countable. We may assume that S = Sp0 is defined. So S is projective stationary
on T0. Let � be a sufficiently large regular cardinal, and let X ≺ 〈H�,∈, <∗〉 with
P,S, p, �T ,U ∈ X , and such that � = X ∩ �1 ∈ T0 and X ∩Hκ ∈ S.

Let {tn | n < �} enumerate the �-th level of U, and define

Dn = {r ∈ P ∩M | either r is Incompatible with p, or there is a t ∈ T ∩M
such that t <U tn and r � ť ∈ Ȧ}.

The point is that Dn is dense in P ∩M , as is shown by the argument of [19, Claim
on page 1464]: let a ∈ P ∩M be given. If a is incompatible with p, then a ∈ Dn
and we are done. Otherwise, by strengthening a, we may assume that a ≤P p. Let
D = {t ∈ U | ∃r ≤P a r � ť ∈ Ȧ}. Since a forces Ȧ to be a maximal antichain in U,
it is easy to see that D is predense in U, that is, every element of U is comparable with
some member of D. Since U is a Souslin tree, the set bn = {t ∈ U | t <U tn} ∩M is
U-generic over M, and hence, it intersects D in M, asD ∈M . So let t ∈ bn ∩D ∩M .
Let r ≤ a witness that t ∈ D. Then r ∈ Dn, as witnessed by t.

Note that Dn is not in M. But we may construct an M-generic G by forming
a decreasing chain 〈pn | n < �〉 of conditions in P such that, letting 〈En | n < �〉
enumerate all dense open subsets of P in M, pn ∈ Dn ∩ En (note that Dn is open
as well), and such that p0 ≤ p. Let G be the filter generated by �p. Then, letting
�Q =

⋃
n<�

�Qpn and �S =
⋃
n<�

�Spn , we have that � is the length of �Q, which is the
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same as the length of �S, andM ∩Hκ =
⋃
i<� Qi ∈ S0. Since � ∈ T0, we can define

a condition q by setting

q = 〈 �Q�M, �S〉.
Clearly, q forces that Ȧ is contained inU ��, the restriction of U to levels below �. �

It is now natural to ask for a similar separation between Γ-DSRP and FA(Γ),
where Γ is the class of all subcomplete or all ∞-subcomplete forcing notions. It
was observed in [10] that, assuming the consistency of MM, ∞-SC-SRP does not
imply SCFA, since under the assumption of MM, a model of ZFC can be constructed
in which SRP + ¬uDSR(1, S�3

� ) holds. So this model satisfies ∞-SC-SRP, but not
SCFA, or else it would have to satisfy DSR(�1, S

�3
� ). For the same reason, though,

∞-SC-DSRP fails in this model as well, so this method does not separate ∞-SC-
DSRP fromSCFA. Theorem 7.1 does not achieve this separation either, becauseSCFA
is consistent with the existence of Souslin trees. Furthermore, it was argued in [10]
that the assumption of CH should be added to ∞-SC-SRP, since for regular κ ∈
(�1, 2�), ∞-SC-SRP(κ) holds trivially. Since the models achieving the separations
up to now satisfied SRP, CH fails in them, and so, they don’t achieve a separation
of this kind.

The following theorem does achieve a certain separation at the level �2 in the
presence of CH. This result was alluded to at the end of the article [10], but not made
precise. For this result, it is important that we work with subcompleteness, not
∞-subcompleteness. Since we will be using results of [10] as a black box, the reasons
for this will remain obscure here; let us just say that the problem is the iteration
theorem [10, Theorem 4.17]. The exact relationship between subcompleteness and
∞-subcompleteness is not well understood, but subcompleteness is a potentially
more restrictive requirement than ∞-subcompleteness, so that the principle ∞-SC-
DSRP could be stronger than SC-DSRP. But all the consequences of ∞-SC-DSRP
presented in Section 6 also follow from SC-DSRP, and the subcomplete fragment
of DSRP can be characterized by replacing “spread out” with “fully spread out”
everywhere (see [10, Definition 2.33]). The following definition summarizes the
concepts needed for the statement of the result.

Definition 7.2. For a forcing class Γ and a cardinal κ, BFA(Γ,≤κ), the ≤κ-
bounded forcing axiom for Γ, says that if P ∈ Γ and B is the complete Boolean
algebra of P, and if A is a collection of at most �1 many maximal antichains in B,
each of which has cardinality at most κ, then there is a filter in B that meets each
antichain in A. We write BSCFA(≤κ) in case Γ is the class of all subcomplete forcing
notions.

For a regular cardinal κ ≥ �2 and an uncountable cardinal �, the principle SC-
DSRP(κ, �) asserts that whenever S is a nonempty collection of subsets of [Hκ]�

that are stationary in Hκ, such that S has size at most �, and �T is a sequence of
pairwise disjoint stationary subsets of �1, and 〈S, �T 〉 is SC-projective stationary,
then DSRP(S, �T ) holds.

Before moving to the separation result, let us make an observation related to the
two cardinal version of DSRP introduced in the previous definition.
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Observation 7.3. Let Γ be SSP, ∞-SC or SC. Let S be a collection of up to �1

many sets Γ-projective stationary in Hκ, for some regular κ ≥ �2. Then Γ-SRP(κ)
implies eDSRP(S).

Proof. Let �T be a maximal partition of �1 into stationary sets, and let
〈Si | i < �1〉 enumerate S. Let

S = {x ∈ [Hκ]� | ∀i < �1 x ∩ �1 ∈ Ti −→ x ∈ Si}.

Claim: S is Γ-projective stationary.
Case 1: Γ = SSP.

Then Γ-projective stationarity is just projective stationarity. So let A ⊆ �1 be
stationary. By maximality of �T , let i0 < �1 be such that A ∩ Ti0 is stationary. Since
Si0 is projective stationary,

{x ∈ Si0 | x ∩ �1 ∈ A ∩ Ti0}

is stationary. But this set is contained in {x ∈ S | x ∩ �1 ∈ A}, making the latter set
stationary, and hence S is projective stationary.
Case 2: Γ = ∞-SC.

Then Γ-projective stationarity is being spread out. So let � be a sufficiently large
cardinal, H� ⊆ N = LA� |= ZFC–, N |X ≺ N , X countable and full, �S, �T , S, a ∈ X .
Since �T is maximal, Z = �1 \ �i<�1Ti is not stationary. Since Z ∈ X , it follows
that � = X ∩ �1 /∈ Z. So � ∈ �i<�1Ti . Let � ∈ Ti0 . Then i0 < �. So Si0 ∈ X . Since
Si0 is spread out and Si0 ∈ X , let � : N |X −→ N |Y ≺ N be an isomorphism fixing
�S, �T , S, a, such thatY ∩Hκ ∈ Si0 . SinceY ∩ �1 = X ∩ �1 = � ∈ Ti0 , it follows that
Y ∩Hκ ∈ S, verifying that S is spread out.
Case 3: Γ = SC.

In this case, one has to work with fully spread out sets instead of spread out sets
(see [10, Definition 2.33]). The argument of case 2 goes through.

This proves the claim. Thus, by Γ-SRP(κ), there is a continuous ∈-chain of length
�1 through S, and this easily implies eDSRP(S). �

Theorem 7.4. Let Γ be the class of all subcomplete, uncountable cofinality
preserving forcing notions. If ZFC is consistent with BFA(Γ,≤�2), then ZFC is
consistent with the conjunction of the following statements:

(1) CH,
(2) BFA(Γ,≤�2),
(3) ¬BSCFA(�2),
(4) SC-DSRP(�2, �2).

Note: SC-DSRP(�2, �2) + CH has interesting consequences that go beyond SC-
SRP(�2). For example, it implies eDSR(�2, S

�2
� ) (see Theorem 6.15)—the collection

S used in the proof of this theorem has size κ = �2 in our situation.

Proof. It was shown in [10, Theorem 4.25] that under the assumptions of the
theorem, there is a model in which ZFC holds, together with (1)–(3). So it suffices
to show that (1) + (2) implies (4).

To see this, let 〈S, �T 〉 be SC-projective stationary, where S consists of subsets of
[Hκ]� stationary in Hκ and has cardinality at most �2. Let � be large enough that
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S ⊆ H� , and let

M = 〈H�,∈,S, F,<∗, �T , 0, 1, ... , �, ...〉
be a model of a language of size �1 with some extra predicate F, a well-order <∗,
constant symbols �̇ for every countable ordinal �, and with a constant symbol for
Ti , for every i < �1. We have to find anM ≺ M of size �1, with �1 ⊆M , such that
there is a diagonal chain through S up to M wrt. �T . Let M̄ ≺ M be the transitive
collapse of the hull of H�2 ∪ S in M. So M̄ has cardinality �2, since 2�1 = �2 - it
was shown in [10, Lemma 4.24(2)] that BFA(Γ,≤�2) implies SC-SRP(�2), and this,
in turn, together with CH, implies 2�1 = �2, by [10, Theorem 3.19] and the following
remarks, and [10, Fact 3.15]. Let G be P = PDSRP

S, �T -generic over V. In V[G ], let 〈 �Q, �S〉
be the sequence added by G. Then

⋃
i<�1
Qi = H�2 and S = {Si | i < �1}. So in

V[G ], the following statement is true about M̄: there are sequences �Q′ and �S ′ of
length �M̄

1 such that �Q′ is a continuous ∈-chain unioning up to HM̄
�2

, for every

i < �1, S ′
i ∈ SM̄, and if j < �M̄

1 is such that i ∈ T M̄
j , then Q′

i ∈ S ′
j , and such that

SM̄ = {S ′
i | i < �1}. This is a Σ1 statement about M̄ forced to be true by P, so since

P ∈ Γ and BFA(Γ,≤�2) holds, there are by [10, Fact 4.21] (see also [2, Theorem
1.3]) a transitive modelM̃ of the same language asM̄ and an elementary embedding
j : M̃ ≺ M̄, so that the same Σ1 statement is true about M̃ in V. Note that�1 ⊆ M̃
and j��1 = id , since the language contains constant symbols for all the countable

ordinals. If the witnessing sequences are �̃Q and �̃S, then, letting � : M̄ −→ M be
the inverse of the collapse, it follows that ��H�2 = id , and so, if we define �Q′ by
Q′
i = j(Q̃i) and �S ′ by S ′

i = j(S̃i), then 〈 �Q′, �S ′〉 is a diagonal chain through S up to
M = ran(� ◦ j) with respect to �T , where �1 ⊆M andM ≺ M. �

The last separation result concerns the diagonal reflection principle of [3] and its
relationship to cardinal arithmetic. This principle is stronger than the principles of
the form wDRPIA(κ) we have considered.

Definition 7.5. Let � be an uncountable regular cardinal. The principle
DRP(�, IA) states that there are stationarily many M ∈ [H(��)+]�1 such that
M ∩H� ∈ IA and for every stationary subset R ∈M of [�]� , R ∩ [M ∩ �]� is
stationary inM ∩ �.

The principle DRP(IA) states that DRP(�, IA) holds for all regular � ≥ �2.

Theorem 7.6. DRP(IA) does not limit the size of 2�1 .

Note: This shows that this principle, if consistent, does not imply eRefl(�1, S
�2
� )

(see Fact 6.5). In particular, it does not imply SRP.

Proof. We will show that the theory “CH plus the forcing axiom
FA+�1(	-closed)” is preserved after adding any number of Cohen subsets of �1.
This will suffice, since:

(1) FA+�1(	-closed) implies DRP(�, IA), for all regular � > �1 [3, Theorem 4.1];
and

(2) CH is consistent with FA+�1(	-closed) ([7] shows that forcing with
Col(�1, < κ) when κ is supercompact produces a model satisfying this).
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So assume CH plus FA+�1(	-closed) both hold in V. Pick any cardinal �, and let
P be the countable support product of �-many copies of Add(�1). Since CH holds,
P has the �2-cc, so in particular, P preserves all cardinals ≥ �2, and forces 2�1 ≥ �.
It remains to show that FA+�1(	-closed) is preserved.

Let p be any condition in P, and let Ṙ be a P-name for a 	-closed poset.
Then P ∗ Ṙ is 	-closed. Fix a regular � such that P ∗ Ṙ ∈ H� . Since V models
FA+�1(	-closed), [4, Theorem 4.5] implies that in some generic extension W of V,
there is an elementary embedding j : V ≺ N such that:

(1) crit(j) = �V
2 =: κ.

(2) j � HV
� ∈ N .

(3) |HV
� |N = ℵ1.

(4) HV
� is an element of the (transitivized) wellfounded part of N.

(5) There is some G ∗H ∈ N that is generic over V for (P � p) ∗ Ṙ.
Since P has the κ-cc in V and crit(j) = κ, the map j � P : P → j(P) is a regular

embedding; so if we letG ′ be generic over W for the poset j(P)/j“G , it follows that
G ′ extends j“G , and inW [G ′] the map j lifts to an elementary embedding

j̃ : V [G ] ≺ N [G ′].

Since G ∗H was already in N and was generic over V for P ∗ Ṙ, then in particular
H ∈ N [G ′] and H is generic overV [G ] for R = ṘG . Also, since both j � HV� andG ′

are elements of N, it follows that j̃ � HV� [G ] is an element of N [G ′]. Hence by (the
reverse direction of) [4, Theorem 4.5], the forcing axiom for R holds in V [G ]. �

§8. Open questions. In Section 6.2, we presented consequences of DSRP that
neither follow from SRP nor from DRPIA. However, we have not separated the
conjunction of SRP and DRPIA from DSRP, even though it seems unlikely that this
conjunction implies DSRP. It would be interesting to know how to do that.

Question 8.1. Does SRP + wDRPIA imply eDSR(�1, S
�2
� ), or even DSRP?

Regarding the separation of SC-DSRP(�2, �2) from BSCFA(�2), it would be
interesting to know if this can be improved.

Question 8.2. Can one show thatSC-DSRP(�2) + CH does not implyBSCFA(�2)?
That SC-DSRP + CH does not imply SCFA? How about the ∞-SC-versions of these
separations?
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