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CENTRALISER NEAR-RING REPRESENTATIONS

by C. J. MAXSON and K. C. SMITH

(Received 7th August 1980)

1. Introduction

Let V be a group, written additively but not necessarily abelian, and let S be a
semigroup of endomorphisms of V. The set C(S; V)={f:V->V\f(T = of for all aeS and
/(0)=0} forms a zero-symmetric near-ring with identity under the operations of
function addition and composition, called the centraliser near-ring determined by S and
V. Centraliser near-rings are very general, for if N is any zero-symmetric near-ring with
1 then there exists a group V and a semigroup S of endomorphisms of V such that

In this paper all near-rings will be finite, zero-symmetric and have an identity
element. For definitions and results concerning near-rings see Pilz [11].

The first centraliser near-ring representation result was given by Wielandt [13]. Here
he announced the characterisation of finite simple near-rings as centraliser near-rings
C(si; V) where si is a group of fixed point free automorphisms of the group V. In 1973,
Betsch [2] extended Wielandt's work to a class of infinite near-rings. Recently, there
have been several investigations into the structure of centraliser near-rings. (See [6], [7],
[8] and [9].) In [7] we established the following result.

Theorem 1.1. Let V be a finite group and si a group of automorphisms of V. Then
C{si;V) is simple if and only if the stabiliser subgroups, stab^(v)={a.e£/\<xv = v}, are
conjugate for all v e V* = V—{0}.

Our investigations in this paper are concerned with the following representation
question. If N is a simple subnear-ring of C({1});F), when is N = C(s#;V) for some
si ^ Aut VI Equivalently, let V be a near-ring module over the simple near-ring N and
for aeN define \a:V-*V by Xav = av, veV. Then N is isomorphic to
N = {Xa\aeN}^C({l}; V), and we interpret a representation of N as a C(si; V) to mean
a representation of N.

This centraliser representation problem is the non-linear analogue of the following
ring theory problem. Let V be an abelian group and let S be a simple subring of End V.
When does there exist a ring R such that S = EndR VI A partial solution to this problem
is a consequence of the Noether-Skolem Theorem [4], page 104, in the setting where
End V is simple.

We now give a short summary of our results. In the next section we consider the
general representation problem giving necessary and sufficient conditions for a
centraliser near-ring representation of a simple near-ring N. In Section 3 we apply these
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results to near-fields and fields where the representation problem is discussed under
various situations.

2. Characterisation Theorems

In this section we give necessary and sufficient conditions on a simple near-ring N,
NcC({l}; V), in order that N = C(st; V) for some j / s A u t V.

Lemma 2.1. Let N be a simple subnear-ring of C({1}; V) and let B = AutN V. If there
exists vu...,v,eV such that {v1,...,v,}s9B(v]) where 0B(v^ is the orbit of V containing vx

determined by the action of B on V, and V=Nvt O . . . ONv, (disjoint union) where each
Nv( is a faithful N-simple, N-subgroup of V, then C(B; V) is simple.

Proof. We show first that elements of Nvt have the same B-stabiliser. Let » be a
nonzero element in Nv{. Since Nv( is iV-simple, Nv = Nvt. If a 6 stabB (v) then <x(v) = v and
a(NVi) = Nvt. Thus a restricted to Nvt is an iV-automorphism of Nvt fixing v. Since Nvt is
iV-simple a must be the identity map on Nvt. From this, we conclude that stabBu
= stabB vt for all v e Nvt.

Let 6B(w) be any B-orbit. Since weNvj for some j , then w = nvj for some neN. But
each vt belongs to the same B-orbit so avj=v, for some aeB. Hence aw = anvJ=navJ

= nV{. This means 0B(w)nNvi£ty for each i. Since all B-stabilisers of elements in 0B(w)
are conjugate and since 6B{w) intersects every Nvt then any two B-stabilisers are
conjugate which implies that C(B; V) is simple.

This leads to the main characterisation result.

Theorem 2.1. Let N be a simple subnear-ring of C({l};V), and let B = AutNK Then
the following are equivalent.

(1) N = C(sf; V) for some si c Aut V.

(2) N = C(B;V).

(3) i. V = Nvi O . . . ONv, where each Nvt is a faithful N-simple N-subgroup of V and
each vt e 0B(i>i).
ii. Let S1 = stabB(v1), then F\xSt = {ve V\av = v for all aeSj} is a subset of Nv1.

Part 3ii may be replaced by 3ii': Fix S1 is N-simple.

Proof. If part (1) is true then si ^B and so C(B; l ^ s C f i ; V). But by definition of B,
NsC(J3; V) and hence (1) implies (2).

If (2) is true then N = C(B; V) and N is simple. Select a nonzero v e V then Nv
= {we K|stabBw = stabBi;} u {0}. Because N = C(B;V) then N acts transitively on the
nonzero elements of Nv (see [7]). Hence Nv is Af-simple. Moreover there exist elements
vlt...,v, all in dgivj such that V—Nvl u ...ONv, and Nvl=FixSj (see [7]).

Assume (3) is true. Then Lemma 2.1 implies C(B;V) is simple. Hence FixSj
= C(B;V)v1. We have Nv^C{B; V)v1 =FixS1; and by (3)ii (or (3)ii'), NVi = C(5; K)^.
But C(B; V)vl is the set of all possible images of vl under functions in C(B; V) and Nvi
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is the set of all possible images of i>t under functions from N, and by assumption
!>!,...,v, belong to the same B-orbit. So N = C(B;V) as desired. Since (2) implies (1) is
obvious, the proof is complete.

In the following theorem we establish the existence of near-rings C({1}; V) which
contain simple subnear-rings that are not centraliser representable on V.

Theorem 2.2. Let N be a simple near-ring. Then there exists an N-module V such that
N has no representation as a centraliser near-ring on V.

Proof. It is shown in [5] that if V is a group and sd a group of automorphisms of V
then C(s/; V) is a simple ring if and only if C($4; V) is a field. Hence a simple ring which
is not a field has no centraliser representation. If N is a field then Theorem 3.2 at the
end of this paper applies. So we may assume N is a simple nonring.

From [2] we have the representation N = C{srf; W) where ^ is a group of
automorphisms acting fixed point free on W. Let V=W-i-W, and for each feN extend
/ to all of V by defining /(£)=(/(*)). In this way V is an N-module and we may regard
N as a subnear-ring of C({1}; V). We will show that N has no centraliser representation
on V.

Assume first that N is not a near-field. Then under the action of st, W has at least
two nonzero orbits. Let wu w2 e W be nonzero elements belonging to different orbits.
We have, as sets, NW)={N?) and NCp = Wro0 + N(w°2)=("ow') + (A) = ( ^ ) - The
cardinality |(jj^)| of NC2) is greater than the cardinality 1(^)1 of JV(^), so N cannot be
centraliser representable on V since part (3)i of Theorem 2.1 implies that |Afu| = |iVw| for
nonzero v, w e V.

Now assume AT is a near-field. Then W = (N, +) and st consists of the right
multiplication maps by elements of N on W. The linear maps in N acting on V= W+ W
are NL = {(6/)| / 6 N is linear on W}. A calculation shows that EndjyL V
= {CJS)|««ej/u ;0}}. We show now that AutwK={Q|a,0ej t f}u{Q|a, /?e . f i /} . For
suppose B=(^^)e Autw V with say at =/=(), a2=/=0. Then for every feN, (J)E V,

or

for every x, yeW. But since a1;a2 are invertible this implies / acts linearly on W and
C($4;W) is a field. Hence one of a1;a2 must be 0. Similarly for a3,a4 and B has the
desired form.

It remains to show that N ± C (Autw V; V). This is done by showing the latter is not
simple. Let si = AutN V and let w be a nonzero element of W. Then stab^ (o)
= { O | 0 6 ^ } j i n d S i a b / D = {(oi).(io)}- S m c e t n e s e t w o stabiliser subgroups are not
conjugates in si, C{$4; V) is not simple.

Turning now to near-fields N in C({1};K), the characterisations as to when N is a
centraliser near-ring on V appear tighter. We again fix some notation. As above let B
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= Autjy V and let So = stabB (v0) for fixed nonzero v0 in V. Also let Fix S0 = {veV\ocv = v
for each a E SO} and Jf0 = normaliser of So in B.

Corollary 2.1. Let N be a near-field in C({1}, V). The following are equivalent.

(1) N = C(s4; V) for some si <= Aut V.

(2) N = C(B;V).

(3) B is transitive on V and Fix So £ Nv0.

(4) B is transitive on V and Fix So is N-simple.

(5) B is transitive on V and JV0/S0 is isomorphic to N*.

Proof. That (1) is equivalent to (2) is clear. Assume N = C(B; V). Since N is a near-
field, B is transitive on V (see [7]), and FixS0^Nv0 from Theorem 2.1. So (2) implies
(3).

To show (3) implies (4), we note that the transitivity of B implies that C(B; V) is a
near-field and so Fix So = C(B; V)v0. But then Fix So = iVt>0. If H is a nonzero N-
subgroup of FixS0 then for some neN, nvo = heH. But then vo = n~1h is in H and so H
= Nvo = FixSo. Hence FixS0 is Af-simple.

Assume (4) is true. Then by Theorem 2.1 N = C(B;V), and from [7] Theorem 3,
N^C(JV0/S0; FixS0) where JV0/S0 acts fixed point free on FixS0. But also
N^C(N*;N) and by the isomorphism result of Ramakotaiah [12], JV0/S0^N*. SO (4)
implies (5).

If (5) holds then N^C(B; V) with C(B; V) a near-field. If K = C(B; V) then K*^JV0/S0

and thus |Ar*|g| /C*|^ |^0/S0 | = |Ar*|. So N = K as desired.

If ATsC({l}; V) is a near-field and if AutN K is transitive on V then C(\utN V; V) is a
near-field containing N. The following example shows that N need not equal
C(AutNV;V).

Example 2.2. Let N = D(5,2,3) be a Dickson near-field of order 56 with centre of
order 52. Then the field Nt = D(5,3,1) is a subnear-field of N of order 53 (see Danes-
Grove [3]). Let F=<N, +>, the additive group of N (or of the Galois field GF(56)). The
field N, acts on V by left multiplication so we may regard Nt (and N) as subnear-rings
of C({l},V). Since AutWi V contains {pn:V^>V\pn(v) = vn, neN, veV}, Aut^ V is
transitive on V. We have NjSC(AutWi K; F)sC(AutN K; K) = 7V and since Afx is a
maximal subnear-field of N (Danes-Grove [3]) then either N1 = C(AutNiV;V) or N
= C(AutWi V; V). We will show that the latter is true.

If Nt = C(AutNi V; V) then Aut^ V is not fixed point free on V since |AutWi K|>|AT1|.
Thus there exists a <1> e AutJyi Fsuch that O^t 1 and<D(l) = l. We will show this is impossible.

Using the notation of Pilz [11], page 244, let g be a generator of the multiplicative
cyclic group GF(56)* used in the construction of N. Let H be the subgroup of GF(56)*
of index 3 generated by g3 and let a be the Galois automorphism of GF(56) defined by
x->x5\ The cosets of H in GF(56)* are H, Hg, Hg2 and the multiplication in N is
defined in terms of the multiplication in GF(56) by a°b=a"'b if beHg' and aoO=0.
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If 0eAu t N i V is as described above we will show that <I> is GF(53)-linear on V as a
vector space over GF(53) and that ®(Hgi) = Hgi, i = 0,1,2.

Since V has dimension 2 over GF(53) and since g3^GF(53) then {l,g3} forms a basis
for V. So every element in V has the form al+/ fe 3 , a,0eGF(53). But al
+ Pog3,a,0eNi since { I , g 3 } c f t If 5eNt then

c5 ° 0(a ° 1 + 0 o g3) = ,5 o (a + j

where «+^4»(g3)effg i . On the other hand

5 o 4>(a o 1 + p o g3) = 0(<5 o (a o 1 + p » g3)) = 0(<5<T'(a ° 1 +j? ° g
3))

= 0(<5ff'al + 5^0? og3)) = ^ J

= S°'<x + 0((<5oi0) o g3) = <5

where 0Lol + pog
3eHgj. Comparing the two results and using the fact that g)£t

we conclude that if oc=/=0 then 8"'= 5"', and so a1 = aJ. This means 0 preserves Hg,Hg2

and thus /f. If aeNu veV then since <J> preserves cosets <S>(aov) = Q>(aa'v) while ao<D(o)
= a"iO(i>). So a"i0{v) = ̂ (aaiv) for all aeGF(53). Hence d> is GF(53)-linear on K

To finish the example it suffices to show that the two dimensional vector space V (the
additive group of GF(F6)) over GF(53) has no nontrivial one-to-one GF(53)-linear maps
d> which preserve the cosets of H in GF(53)* and fix 1. This is done in the following
lemma due to Martin R. Pettet.

Lemma 2.2. (M. R. Pettet) Let H be the subgroup of GF(56)* of index 3. If
<P:GF(56)->GF(56) is a GF(53)-linear group automorphism which preserves the cosets of H
in GF(56)* and such that O(l)= 1, then 0>=l.

Proof. Assume such a 0 exists with 0 ^ 1 . Then there exists such a 0 whose order is
a prime p, i.e. 0 P = 1 . Since GF(53)*S//, / / u { 0 } is the union of 42 one dimensional
GF(53)-subspaces, one of which is GF(53). Since 0 leaves GF(53) fixed it permutes the
other 41 subspaces in H. If 0 does not leave another subspace fixed then, since 41 is a
prime, 0 permutes the 41 subspaces cyclically which means that p=41 . But p = 41 is
impossible since 41 does not divide the order of GL(K/GF(53)), i.e. there is no GF(53)-
automorphism of V of order 41. So 0 leaves GF(53) and at least one other subspace in
/ / u { 0 } invariant. Hence 0 has two linearly independent eigenvectors, say {l,a} and the
matrix of 0 with respect to this basis for V is Q,% ceGF(53)*. Since 0 " = 1 then cp-\
and so p divides |GF(53)*| = 22.31, hence p = 2 or p = 31. If p = 31 then there would be 42
— 31 = 11 fixed subspaces in H u {0} resulting in too many distinct eigenvectors. Thus
p = 2 and the matrix of 0 is (Q J^).

Since 0 preserves the cosets of H this means that a + b<x = a —bix mod H for every
a,beGF(53), not both zero. The above is clearly true if b=0 so if b=£0 we have (a+oc)(a
-a)~leH for every aeGF(53). The map a->(a + a ) ( a - a ) ~ ' from GF(53) into H is one-
to-one. Since there are 125 such elements (a+a)(a—a)"1 in H and 42 GF(53)-subspaces
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in H u {0} there is at least one subspace containing three elements of the form (a + a)(a
—a)"1, say (a+a)(a —a)"1, (b + a)(b - <x)~l, (c + a)(c-a)~ l where

a, b, c, fu f2 e GF(53), all distinct and /x ^ 1 ^ / 2 . From the above we have

(/, - I ) a 2 = (/, + l)(a-b)a + (fl- \)ab
and

(/2 - l)a2 = (f2 + l)(a - c)a+(/2 - l)ac.

This gives two quadratic polynomials over GF(53) having a as a root. Since a
these two polynomials give rise to the same minimal polynomial. From this we have ab
= ac, so b = c or a=0. The latter is impossible since the polynomials are irreducible. But
b = c is also impossible since (b + a)(b — oc)'1 ^(c + a)(c — a)"1. This contradiction shows
cD = 1 as desired.

3. Specialised actions and further examples

We now apply the characterisation theorem of the previous section to obtain results
on specified actions of a near-ring TV on an AT-module V. Recall that when N is a near-
field, V is a near-vector space over N if V=Vl®---@Vt where each Vt is an N-
submodule of V and V~N (see [1]).

Theorem 3.1. Let N be a near-field and V a near-vector space over N. Then N
= C ( J / ; V) for some st c Aut V.

Proof. From the results of Beidleman [1] it is easy to see that Autjy V is transitive
on V. Also if vxeVu then for S1=stab(u1) we have FixS1 = Vl = Nvl. Thus by Theorem
2.1, N = C(#f; V) as desired.

Corollary 3.1. Let F be a field, FcC({l}, V). If F acts linearly on V then F = C(s/; V)
for some s/ £ Aut V.

Proof. If F acts linearly on V then V is a vector space over F and the theorem
applies.

Corollary 3.2. Let F be a field and let V be a monogenic near-ring module over F.
Then F = C{$4; V) for some j ^ s A u t V.

Proof. Let V=Fv0. Then for heF,w,ueV we have w=fv0, u=gv'o for some fgeF
and h(w + u) = h(fvo+gvo)=h(f+g)vo = (hf+hg)v0 = h\v + hu. Thus F acts linearly on V
and Corollary 3.1 applies.

Corollary 3.3. Let F be afield acting on V. Then FQC(B; V) where B = AutF V. If B
is a p-group acting transitively on V then F — C(B; V).
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Proof. From Passman [10], page 34, either B is a cyclic group or else | V| = 32. If B
is cyclic, then from Maxson and Smith [6], B acts fixed point free on V and C(B; V) is a
field. Since V is C(B; V>monogenic, C(B; V) acts linearly on V and thus so does F.
Hence F = C{B;V).

Suppose |F | = 32, and let voeV*. If S = stabu0, we have Fix S = C(B; V)v0 and since
|FixS| divides |K*| = 3 2 - 1 then |FixS| = 3 ' - l where / = 1 or 2. If / = 1 then \C{B;V)\ = 3
and C(B; V)=GF{3) acts linearly on V. If 1 = 2, V is C(B; F)-monogenic and again F acts
linearly on V so F = C(B; V) as desired.

From the above corollaries it is natural to conjecture that for a field F acting on V, F
= C(sf; V) implies V is a vector space over F. This is false, however, as the next
example, due to S. Gagola, provides a field acting non-linearly on V but F = C{$4\ V).

Example 3.1. Let V=GF{pA), where p is a prime different from 3 and let a be the
Galois automorphism x-*x" of GF{p*). For aeGF(pA)* and i = 0,1,2,3 define the maps
Ta,ar-V-+V by Taaiv = avai. It is easy to verify that & = {Ta<ji\aeGF(p4)*, i = 0,1,2,3} is
a group of automorphisms of V. Let

sf = {Taal\if a is a square in GF(p4)*

then i=0 ,2 while if a is not a square then i= 1,3},

a subgroup of SF. Since JZ/ is a transitive automorphism group then C{sf; V) is a near-
field. Also S = stab(l) = {T1><TJ|i = 0,2} and FixS = GF(p2)c V=GF(pA). If AT(S) is the
normaliser of S in rf then it is easy to verify that N{S)/S^GF(p2)*. Thus

We now show that the field C(s/; V) does not act linearly on V. Suppose feC(s/; V).
Then fTa<a> = Ta „,/ implies f{a) = af(l)"'. If a is a square then f(a) = af{\), while if a is
not a square then f(a) = af(Vf. Thus / is completely determined by its action on 1.
Since leFixS we have /(l)eFixS. Now suppose feC(s/;V) acts linearly on V.
Suppose beV is not a square. Consider 1 + b. If \+b is a square then / ( l + b)=(l
+ b)/(l)=/(l) + fo/(l), while /(l)+/(fc)=/(l) + 6/(ir. Comparing the two results gives
/(1)°=/(1), or /(l)eGF(p). If 1 + b is not a square then / ( I+b) = (l+b)/(l)<T=/(l)ff

+ b/(l)°, while f(l)+f(b)=f(l) + bf(l)a. Again /(l)eGF(p). Hence feC(tf; V) is linear
on V if and only if / ( l )e GF(p). Therefore the field C(sf; V) does not act linearly on V.

We conclude by defining a class of actions of a field F on a vector space V that
cannot give rise to centraliser near-rings. But first a lemma from linear algebra.

Lemma 3.1. (S. Gagola) Let V be a finite dimensional vector space over a finite field
F, and let W,Y be proper subspaces of V. If F = GF(2), assume one of W and Y is not a
maximal subspace. Then there is a basis BofV such that Bs V — (WVJ Y).

Proof. If F = GF(2) we may assume one of W and Y is maximal, while if
we may assume that W and Y are both maximal. If W=Y (or if Y<zW in the case F
= GF(2)) let ueK- (WuY) and let wu...,wn.t be a basis for W. Then B = {v,v

u...,v + wn.l} is a basis for V contained in V—{W<o Y) as desired.
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If W±Y, thendimK+dim(l^ny) = dimW+dimKIf F±GF(2) then n + dim(WnY)
= 2(n-l ) or dim(Wr\ Y)=n-2. Let w1,...,wn_2 be a basis for Wn Y. Select wn-teW,
ye Y such that {w1,...,w,-2,wB-1} is a basis for W and {H^,...,wn_2,_y} is a basis for Y.
Let j> = wn_1+.y, an element of V—(WnY). Let aeF*, a ^ l , then B = {u+wlt...,v
+ wn_2, wn_i +y, awn_! +3;} is a basis for V of the desired type.

If F = GF(2) then we may assume diml^=«—1, dim Y=n — 2 and Y<£W. Let
{w1,...,wn_2} be a basis for Wn Y, {wl,...,wn_2,wn_,} be a basis for Ŵ  and
{w,,..., wn_3,_y} be a basis for Y. If u = wn_, + y, then B = {u +w,, ...,u + wn_3, j; + wn_2,
vvn_2 + .y, wn 1 +y} is a basis of the desired type.

As an application of this lemma, let V be a vector space over the field F and suppose
the function f:V-*V is linear off a proper subspace W of V, i.e. f(vi+v2)=f(vl)+f(v2)
whenever vu v2eV—W. If fa. = a / for some aeAutF let y=a 1 W From the above
lemma there is a basis B for K outside of Wu Y, say B={vu...,vn}. Let )?eAutF be
such that fi{x)=f(x) for each xeV—W. For i = 1,2,..., n we have

since <x(i>,) ̂ f u K This means a/? = /fa.
To fix the setting for the next theorem let V be a vector space over a nonprime field

F with scalar multiplication given by (a,v) = av, aeF, veV. Let W be a nonzero proper
subspace of F and let CT be an automorphism of F, <T=£1. We define another action
*:FxV->V by

u, ue W
a''v,veW.

This gives rise to a subfield F of C({1}; V) where F = {/a:F->F|/flt> = a*i/}. Each faeF is
linear off W and by the above remarks each a e AutF V commutes with the linear maps
{Aa:V-*V\Aav = av, aeF, veV}. So each aeAutpF is F-linear, meaning C(Autf V;V)
contains {ka\aeF}. This establishes the following theorem.

Theorem 3.2. Let F, F, and V be as in the above discussion. Then Fj=C(s/; V) for any
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