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CENTRALISER NEAR-RING REPRESENTATIONS
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1. Introduction

Let V be a group, written additively but not necessarily abelian, and let S be a
semigroup of endomorphisms of V. The set C(S; V)={f :V—»VI fo=offor all €S and
f(0)=0} forms a zero-symmetric near-ring with identity under the operations of
function addition and composition, called the centraliser near-ring determined by S and
V. Centraliser near-rings are very general, for if N is any zero-symmetric near-ring with
1 then there exists a group V and a semigroup S of endomorphisms of ¥V such that
N=~C(S; V). :

In this paper all near-rings will be finite, zero-symmetric and have an identity
element. For definitions and results concerning near-rings see Pilz [11].

The first centraliser near-ring representation result was given by Wielandt [13]. Here
he announced the characterisation of finite simple near-rings as centraliser near-rings
C(#; V) where o is a group of fixed point free automorphisms of the group V. In 1973,
Betsch [2] extended Wielandt’s work to a class of infinite near-rings. Recently, there
have been several investigations into the structure of centraliser near-rings. (See [6], [71,
[8] and [9].) In [7] we established the following result.

Theorem 1.1. Let V be a finite group and s/ a group of automorphisms of V. Then
C(;V) is simple if and only if the stabiliser subgroups, stab,(v)={aes/ |au=v}, are
conjugate for allve V*=V—{0}.

Our investigations in this paper are concerned with the following representation
question. If N is a simple subnear-ring of C({1}); V), when is N=C(«; V) for some
&/ = Aut V? Equivalently, let V be a near-ring module over the simple near-ring N and
for aeN define A, V-V by Aov=av, veV. Then N is isomorphic to
N={l,|aeN}<=C({1}; V), and we interpret a representation of N as a C(</; V) to mean
a representation of N.

This centraliser representation problem is the non-linear analogue of the following
ring theory problem. Let V be an abelian group and let S be a simple subring of End V.
When does there exist a ring R such that S=End, V? A partial solution to this problem
is a consequence of the Noether-Skolem Theorem [4], page 104, in the setting where
End V is simple.

We now give a short summary of our results. In the next section we consider the
general representation problem giving necessary and sufficient conditions for a
centraliser near-ring representation of a simple near-ring N. In Section 3 we apply these
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results to near-fields and fields where the representation problem is discussed under
various situations.

2. Characterisation Theorems

In this section we give necessary and sufficient conditions on a simple near-ring N,
N <= C({1}; V), in order that N =C(«; V) for some & < Aut V.

Lemma 2.1. Let N be a simple subnear-ring of C({1}; V) and let B=Auty V. If there
exists vy,...,v,€V such that {v,,...,v,} S0g(v,) where 0g(v,) is the orbit of V containing v,
determined by the action of B on V, and V=Nv, U... U Ny, (disjoint union) where each
Nv, is a faithful N-simple, N-subgroup of V, then C(B; V) is simple.

Proof. We show first that elements of Nv;, have the same B-stabiliser. Let v be a
nonzero element in Nv;. Since Ny, is N-simple, Nv= Nv,. If aestabg(v) then a(v)=v and
a(Nv;)=Nv,. Thus « restricted to Nv; is an N-automorphism of Nv; fixing v. Since Nv; is
N-simple o« must be the identity map on Nv, From this, we conclude that stabgv
=stabgu; for all ve Nv,.

Let 6g(w) be any B-orbit. Since we Nv; for some j, then w=nv; for some neN. But
each v; belongs to the same B-orbit so av;=v; for some aeB. Hence aw=anv;=now;
=nv;. This means 0z(w) N Nv;#0 for each i. Since all B-stabilisers of elements in G4(w)
are conjugate and since @yz(w) intersects every Nu; then any two B-stabilisers are
conjugate which implies that C(B; V) is simple.

This leads to the main characterisation result.

Theorem 2.1. Let N be a simple subnear-ring of C({1}; V), and let B=Auty V. Then
the following are equivalent.

(1) N=C(«; V) for some o/ < AutV.
(2) N=C(B;V).

(3) i. V=Nv;U...0U Nv, where each Nv; is a faithful N-simple N-subgroup of V and
each v;e G4(v,).
ii. Let S,=staby(v,), then FixS,={veV|av=v for all x€S,} is a subset of Nv,.

Part 3ii may be replaced by 3ii": Fix S, is N-simple.

Proof. If part (1) is true then & =B and so C(B; V)< C(«; V). But by definition of B,
N < C(B; V) and hence (1) implies (2).

If (2) is true then N=C(B; V) and N is simple. Select a nonzero veV then Nv
={we V|stabgw=stabgv} U {0}. Because N=C(B;V) then N acts transitively on the
nonzero elements of Nv (see [7]). Hence Nv is N-simple. Moreover there exist elements
Uy,..- U, all in Og(v,) such that V=Nv, U...U Ny, and Nv,=Fix §; (see [7]).

Assume (3) is true. Then Lemma 2.1 implies C(B;V) is simple. Hence FixS§,
=C(B; V)v,. We have Nv, =C(B; V)v, =Fix §,, and by (3)ii (or (3)ii"), Nv, =C(B; V)v,.
But C(B; V)v, is the set of all possible images of v, under functions in C(B; V) and Nuv,
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is the set of all possible images of v; under functions from N, and by assumption
Uy,..., U, belong to the same B-orbit. So N=C(B;V) as desired. Since (2) implies (1) is
obvious, the proof is complete.

In the following theorem we establish the existence of near-rings C({1};V) which
contain simple subnear-rings that are not centraliser representable on V.

Theorem 22. Let N be a simple near-ring. Then there exists an N-module V such that
N has no representation as a centraliser near-ring on V.

Proof. It is shown in [S] that if V is a group and &/ a group of automorphisms of V
then C(«/; V) is a simple ring if and only if C(«/; V) is a field. Hence a simple ring which
is not a field has no centraliser representation. If N is a field then Theorem 3.2 at the
end of this paper applies. So we may assume N is a simple nonring.

From [2] we have the representation N=C(o/; W) where &/ is a group of
automorphisms acting fixed point free on W. Let V=W + W, and for each feN extend
f to all of V by defining f()=(}§)). In this way V is an N-module and we may regard
N as a subnear-ring of C({1}; V). We will show that N has no centraliser representation
on V.

Assume first that N is not a near-field. Then under the action of &/, W has at least
two nonzero orbits. Let w,,w,€ W be nonzero elements belonging to different orbits.
We have, as sets, N(g)=("¢") and N(C)=N(e)+N(9)=")+GS,)=Grl). The
cardinality |(§w!)] of N(!) is greater than the cardinality |("s")| of N('), so N cannot be
centraliser representable on V since part (3)i of Theorem 2.1 implies that |[Nv|=|Nw| for
nonzero v, we V.

Now assume N is a near-field. Then W=(N, +) and & consists of the right
multiplication maps by elements of N on W, The linear maps in N actingon V=W + W
are N,={({9|feN is linear on W}. A calculation shows that Endy V
={®%)|o;e o U |0}}. We show now that Auty V={(¢9) |, Be s} {(s)|a Be o/} For

3%4

suppose B=(!:2)e Auty V with say a, #0, a, #0. Then for every feN, (§)eV,

a3 ay

SBR)=BS();

or
fex+ay)=a, f(X)+ o, f(y)

=f(ayx+ayy)

for every x, ye W. But since a,,a, are invertible this implies f acts linearly on W and
C(«/; W) is a field. Hence one of «,,a, must be 0. Similarly for a;,o, and B has the
desired form.

It remains to show that N+ C(Auty V; V). This is done by showing the latter is not
simple. Let &/=AutyV and let w be a nonzero element of W. Then stabg(})
={(6|fe o} and stab;(2)={( 1), (1 0)}- Since these two stabiliser subgroups are not
conjugates in &/, C(<; V) is not simple.

Turning now to near-fields N in C({1}; V), the characterisations as to when N is a
centraliser near-ring on V appear tighter. We again fix some notation. As above let B
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=Auty V and let S,=staby(vo) for fixed nonzero v, in V. Also let Fix So={ve V|av=0
for each a€S,} and A"y =normaliser of S, in B.

_ Corollary 2.1. Let N be a near-field in C({1}, V). The following are equivalent.
(1) N=C(;V) for some o/ = AutV.
(2) N=C(B V).
(3) B is transitive on V and Fix Sy = Nv,.
(4) B is transitive on V and Fix S, is N-simple.

(5) B is transitive on V and AN /S, is isomorphic to N*.

Proof. That (1) is equivalent to (2) is clear. Assume N =C(B; V). Since N is a near-
field, B is transitive on V (see [7]), and Fix Sy < Ny, from Theorem 2.1. So (2) implies

3)

To show (3) implies (4), we note that the transitivity of B implies that C(B; V) is a
near-field and so FixS,=C(B;V)v,. But then FixS;=Nv,. If H is a nonzero N-
subgroup of Fix $, then for some ne N, nv,=he H. But then vo=n"'his in H and so H
= Nvy=Fix §,. Hence Fix S, is N-simple.

Assume (4) is true. Then by Theorem 2.1 N=C(B;V), and from [7] Theorem 3,
N=C(A/Sy; FixS,) where A47,/S, acts fixed point free on FixS, But also
N=C(N*;N) and by the isomorphism result of Ramakotaiah [12], #",/So=N*. So (4)
implies (5).

If (5) holds then N < C(B; V) with C(B; V) a near-field. If K=C(B; V) then K*=~.4"¢/S,
and thus |N*|<|K*|<| A o/So|=|N*|- So N=K as desired.

If NcC({1}; V) is a near-field and if Auty V is transitive on V then C(Auty V;V) is a
near-field containing N. The following example shows that N need not equal
C(Auty V; V).

Example 2.2. Let N=D(5,2,3) be a Dickson near-field of order 5¢ with centre of
order 52. Then the field N,=D(5,3,1) is a subnear-field of N of order 5* (see Dancs-
Grove [3]). Let V={N, +), the additive group of N (or of the Galois field GF(5%)). The
field N, acts on V by left multiplication so we may regard N, (and N) as subnear-rings
of C({1},¥). Since Auty V contains {p,:V—-V|p,(v)=vn, neN, veV}, Auty V is
transitive on V. We have N,cC(Auty V;V)cC(AutyV;V)=N and since N, is a
maximal subnear-field of N (Dancs-Grove [3]) then either N, =C(Auty V;V) or N
=C(Auty, V; V). We will show that the latter is true.

If N,=C(Auty V;V) then Auty V is not fixed point freec on V since [Auty V|>|N,]|.
Thus there exists a ® € Auty, V such that @+ 1 and ®(1)= 1. We will show this is impossible.

Using the notation of Pilz [11], page 244, let g be a generator of the multiplicative
cyclic group GF(5%)* used in the construction of N. Let H be the subgroup of GF(5%)*
of index 3 generated by g* and let o be the Galois automorphism of GF(5°) defined by
x—x3’. The cosets of H in GF(5%)* are H, Hg, Hg’ and the multiplication in N is
defined in terms of the multiplication in GF(5°) by aocb=a®b if be Hg' and ao0=0.
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If ®cAuty V is as described above we will show that @ is GF(5%)-linear on V as a
vector space over GF(5%) and that ®(Hg')=Hg', i=0,1,2.

Since V has dimension 2 over GF(5%) and since g ¢ GF(5*) then {1,g°} forms a basis
for V. So every element in V has the form al+fg>, o feGF(5%). But al+Bg3=aol
+Bog? a,BeN, since {1,g’}<H. If 5e N, then

So®(xol+Bog®)=b0(a+Bod(g)=5"(a+fo®(g?)=5"x+5"(foDg?)
where a+ B0 ®(g*) e Hg'. On the other hand
So®(@ol+Bog’)=D(do(aol+Pog®) =P (ao1+fog%)
=06 al +6”(Bog?)) ="+ B(5” Bg?)
=50+ ®((6” ) og®)=5"a+ 67 B o D(g?)

where aol+fog3e Hg'. Compar_ing the two results and using the fact that ®(g*)¢ N,
we conclude that if «#0 then 6 =4, and so ¢'=0’. This means @ preserves Hg, Hg?
and thus H. If aeN,, ve V then since ® preserves cosets ®(aov)==0(a”v) while ao<D(v)
=a"®(v). So a” ®(v)=P(a”v) for all ae GF(5%). Hence ® is GF(5%)-linear on V.

To finish the example it suffices to show that the two dimensional vector space V (the
additive group of GF(F®)) over GF(5%) has no nontrivial one-to-one GF(5%)-linear maps
® which preserve the cosets of H in GF(5%* and fix 1. This is done in the following
lemma due to Martin R. Pettet.

Lemma 22. (M. R. Pettet) Let H be the subgroup of GF(5%)* of index 3. If
®:GF(5%)—>GF(5%) is a GF(5%)-linear group automorphism which preserves the cosets of H
in GF(5%)* and such that ®(1)=1, then ®=1.

Proof. Assume such a ® exists with ®5£¢1. Then there exists such a ® whose order is
a prime p, ie. ®=1. Since GF(5*)*<H, Hu {0} is the union of 42 one dimensional
GF(5%)-subspaces, one of which is GF(5%). Since ® leaves GF(5%) fixed it permutes the
other 41 subspaces in H. If ® does not leave another subspace fixed then, since 41 is a
prime, ® permutes the 41 subspaces cyclically which means that p=41. But p=41 is
impossible since 41 does not divide the order of GL(V/GF(5%), i.e. there is no GF(5%)-
automorphism of V of order 41. So ® leaves GF(5%) and at least one other subspace in
H U {0} invariant. Hence @ has two linearly independent eigenvectors, say {1,a} and the
matrix of ® with respect to this basis for V is (}9), ce GF(5%)*. Since ®” =1 then c’=1
and so p divides |GF(5%)*|=2231, hence p=2 or p=31. If p=31 then there would be 42
—31=11 fixed subspaces in H U {0} resulting in too many distinct eigenvectors. Thus
p=2 and the matrix of @ is (} %)).

Since @ preserves the cosets of H this means that a+ba=a—bamod H for every
a,be GF(53), not both zero. The above is clearly true if b=0 so if b#0 we have (a+a)(a
—a)~'eH for every ae GF(5%). The map a—(a+a)(a—a)~ " from GF(53) into H is one-
to-one. Since there are 125 such elements (a+a)(a—a)~ ' in H and 42 GF(5%)-subspaces
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in H U {0} there is at least one subspace containing three elements of the form (a+ a)(a
—a)” !, say (a+a)a—a) Y, (b+a)b—a)"!, (c+a)c—a)~ ' where

(@+a)a—a) ' =fi(b+a)b—0) ' = fr{c+a)c—a) !,
a, b, ¢, f;, f,€ GF(53), all distinct and f; #1+ f,. From the above we have

(i — Do =(fy +1)(@a—b)a+(f, —1)ab
and

(f2— Do =(fo + D(a—cJa+(f, ~ Nac.

This gives two quadratic polynomials over GF(5%) having « as a root. Since a¢ GF(5%)
these two polynomials give rise to the same minimal polynomial. From this we have ab
=ac, so b=c or a=0. The latter is impossible since the polynomials are irreducible. But
b=c is also impossible since (b+a)(b—a) ' #(c+a)c—a)”'. This contradiction shows
®=1 as desired.

3. Specialised actions and further examples

We. now apply the characterisation theorem of the previous section to obtain results
on specified actions of a near-ring N on an N-module V. Recall that when N is a near-
field, V is a near-vector space over N if V=V, @ ---@®V, where each V, is an N-
submodule of V and V;= N (see [1]).

Theorem 3.1. Let N be a near-ﬁeld and V a near-vector space over N. Then N
=C(; V) for some of = Aut V.

Proof. From the results of Beidleman [1] it is easy to see that Auty V is transitive
on V. Also if v, € V], then for §, =stab(v,) we have Fix §, = V; =Nv,. Thus by Theorem
2.1, N=C(«; V) as desired.

Corollary 3.1. Let F be a ﬁeld, FcC({1}, V). If F acts linearly on V then F=C(s;V)
for some o/ = Aut V.

Proof. If F acts linearly on V then V is a vector space over F and the theorem
applies.

Corollary 3.2. Let F be a field and let V be a monogenic near-ring module over F.
Then F=C(of; V) for some of S AutV.

Proof. Let V=Fuy,. Then for he F,w,ucV we have w= fu,, u=gv, for some f,geF
and h(w+ u)=h(fve+gve)=h(f+gvy=(hf +hg)vy=hw+hu. Thus F acts linearly on V
and Corollary 3.1 applies.

Corollary 3.3. Let F be a field acting on V. Then F<C(B; V) where B=Aut. V. If B
is a p-group acting transitively on V then F=C(B; V).
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Proof. From Passman [10], page 34, either B is a cyclic group or else |V|=32. If B
is cyclic, then from Maxson and Smith [6], B acts fixed point free on V and C(B; V) is a
field. Since V is C(B; V)-monogenic, C(B; V) acts linearly on V and thus so does F.
Hence F=C(B; V).

Suppose |V|=32, and let voe V*. If S=stabyv,, we have FixS=C(B;V)v, and since
|Fix S| divides |V*|=32—1 then |Fix §|=3'—1 where I=1 or 2. If =1 then |C(B; V)|=3
and C(B; V)=GF(3) acts linearly on V. If =2, V is C(B; V)}-monogenic and again F acts
linearly on V so F=C(B;V) as desired.

From the above corollaries it is natural to conjecture that for a field F acting on V, F
=C(«; V) implies V is a vector space over F. This is false, however, as the next
example, due to S. Gagola, provides a field acting non-linearly on V but F=C(«; V).

Example 3.1. Let V=GF(p*), where p is a prime different from 3 and let ¢ be the
Galois automorphism x—x? of GF(p*). For ae GF(p*)* and i=0,1,2,3 define the maps
T,.:V-V by T, so=av". It is easy to verify that # ={T, ,.|ae GF(p*)*, i=0,1,2,3} is
a group of automorphisms of V. Let

o ={T, ,|if a is a square in GF(p*)*
then i=0,2 while if a is not a square then i=1,3},

a subgroup of &. Since & is a transitive automorphism group then C(«; V) is a near-
field. Also S=stab(1)={T, ,|i=0,2} and FixS=GF(p*)<V=GF(p*). If N(S) is the
normaliser of § in & then it is easy to verify that N(S)/S=GF(p?* Thus
C(s#; V)= GF(p?).

We now show that the field C(s/; V) does not act linearly on V. Suppose feC(«; V).
Then fT, =T,/ implies f(a)=af(1)". If a is a square then f(a)=af(1), while if a is
not a square then f(a)=af(1)°. Thus f is completely determined by its action on 1.
Since 1eFixS we have f(1)eFixS. Now suppose feC(«f;V) acts linearly on V.
Suppose beV is not a square. Consider 1+b. If 14+b is a square then f(1+b)=(1
+b)f(1)=f(1)+bf (1), while f(1)+ f(b)=f(1)+bf(1)°. Comparing the two results gives
S)y=f(Q1), or f(1)eGF(p). If 1+b is not a square then f(1+b)=(1+b)f(1)’=f(1)°
+bf(1)°, while f(1)+ f(b)=f(1)+bf(1). Again f(1)e GF(p). Hence fe C(«;V) is linear
on V if and only if f(1)e GF(p). Therefore the field C(/; V) does not act linearly on V.

We conclude by defining a class of actions of a field F on a vector space V that
cannot give rise to centraliser near-rings. But first a lemma from linear algebra.

Lemma 3.1. (S. Gagola) Let V be a finite dimensional vector space over a finite field
F, and let W, Y be proper subspaces of V. If F=GF(2), assume one of W and Y is not a
maximal subspace. Then there is a basis B of V such that B€V —(Wu Y).

Proof. If F=GF(2) we may assume one of W and Y is maximal, while if F+£GF(2)
we may assume that W and Y are both maximal. If W=Y (or if Yc W in the case F
=GF(2)) let veV~(WuUY) and let w,,..,w,_, be a basis for W. Then B={v,v
+wy,..,0+w,_,} is a basis for V contained in V—(W U Y) as desired.
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If WY, then dim V+dim (W n Y)=dim W+dim Y. If F#GF(2) then n+dim(W n Y)
=2(n—1) or dim(Wn Y)=n—2. Let wy,...,w,_, be a basis for Wn Y. Select w,_, e W,
yeY such that {w,,...,w,_,,w,_,} is a basis for W and {w,,...,w,_,, y} is a basis for Y.
Let v=w,_,+y, an element of V—(WnY). Let acF* a#1, then B={v+w,,...,v
+W,_2, W, +¥, aw,_, +y} is a basis for V of the desired type.

If F=GF(2) then we may assume dimW=n—1, dimY=n—2 and Y¢&W. Let
{wi,...w,—,} be a basis for WnY, {w,..,w,_,,w,_;} be a basis for W, and
{wy,...,w,_3, ¥} be a basis for Y. If v=w,_, +y, then B={v+w,,...,0+w,_3, v+W,_,,
W,_,+y, w, ,+y} is a basis of the desired type.

As an application of this lemma, let V be a vector space over the field F and suppose
the function f:V—V is linear off a proper subspace W of V, ie. f(v,+v,)=f(v,)+ f(vy)
whenever v,, v,eV—W. If fa=af for some acAutV let Y=a'W. From the above
lemma there is a basis B for V outside of Wu Y, say B={v,,...,v,}. Let feAutV be
such that f(x)=f(x) for each xe V—W. For i=1,2,...,n we have

af(v))=af (v) = fa(v) = o(vy)

since a(v;)¢ W u Y. This means aff = fa.

To fix the setting for the next theorem let V be a vector space over a nonprime ficld
F with scalar multiplication given by (a,v)=av, ae F, ve V. Let W be a nonzero proper
subspace of V and let ¢ be an automorphism of F, o+ 1. We define another action
. FxV->V by

av, ve W
axv=

This gives rise to a subfield F of C({1}; V) where F={f,:V—>V| f,y=a«v}. Each f,eF is
linear off W and by the above remarks each a€ Autp ¥V commutes with the linear maps
{Aa: V—»Vl A;v=av, aeF, veV}. So each acAutyV is F-linear, meaning C(Auty V;V)
contains {4,|a€F}. This establishes the following theorem.

Theorem 3.2. Let F, F, and V be as in the above discussion. Then F+C(s/; V) for any

S <AutV.
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