Can. J. Math., Vol. XXXVI, No. 2, 1984, pp. 361-373

A CANONICAL DECOMPOSITION IN MIXED EXTERIOR ALGEBRA

J. R. VANSTONE

1. Introduction. Let *E* be a vector space of dimension $n \in \mathbb{N}$ over a field Γ , of characteristic 0. Choose E^* , dual to *E*, and form

$$\Lambda E = \bigoplus_{p=0}^{n} \Lambda^{p} E,$$

the space of exterior powers of E, as well as ΛE^* . Finally, let

 $\Lambda(E^*, E) = \Lambda E^* \otimes \Lambda E.$

Although $\Lambda(E^*, E)$ is constructed by the most basic vector space operations, it is rich in algebraic structure:

(i) as a vector space over Γ it is bigraded,

$$\Lambda(E^*, E) = \bigoplus_{p,q=0}^n (\Lambda^p E^* \otimes \Lambda^q E),$$

and has dimension 2^{2n} ;

(ii) it has a canonical inner product, \langle, \rangle , induced from the duality of E^* and E, with respect to which,

$$\langle \Lambda^p E^* \otimes \Lambda^q E, \Lambda^r E^* \otimes \Lambda^s E \rangle = 0,$$

unless p = s.

(iii) since both ΛE^* and ΛE are (exterior) algebras, their tensor product is an algebra; we denote its product by a dot and call $\Lambda(E^*, E)$, with this product, the *mixed exterior algebra* over E;

(iv) since $\Lambda^{p}E^{*} \otimes \Lambda^{q}E$ is isomorphic to the space of linear maps from $\Lambda^{p}E$ to $\Lambda^{q}E$ and the latter may be "composed", $\Lambda(E^{*}, E)$ also has a composition product, which we denote by "o".

The inner product and both algebra structures restrict to the diagonal space

$$\Delta(E) = \bigoplus_{p=0}^{n} \Delta_{p}(E), \quad \Delta_{p}(E) = \Lambda^{p} E^{*} \otimes \Lambda^{p} E,$$

and the resulting "dot" algebra is commutative. We call it the diagonal subalgebra. Henceforth, we shall only be concerned with $\Delta(E)$.

Many results about the structure of $\Delta(E)$ and its applications to classical linear algebra are to be found in [1]. Others have been announced

Received January 3, 1983.

in [4]. One of these has been fully proved in [5]. The purpose of this paper is to treat the other main result of [4].

2. Preliminaries. In this section we gather together the results of [5] and [1] which will be needed in the sequel.

For any $z \in \Delta_1(E)$, we adopt the convention:

(1)
$$z^0 = 1, z^p = \frac{1}{p!} (z \dots z), p = 1, 2, \dots, n, \text{ and } z^p = 0,$$

(*p* factors) otherwise.

The unit tensor $t \in \Delta_1(E)$ corresponds to the identity map of E under the isomorphism of $\Delta_1(E)$ with the space of linear transformations of Eand hence satisfies

(2)
$$t \circ z = z \circ t = z, z \in \Delta_1(E).$$

For each $u \in \Delta(E)$, we obtain a linear transformation of $\Delta(E)$, given by $v \mapsto u \cdot v = v \cdot u$; it will be denoted by $\mu(u)$. Its dual, $\mu(u)^*$, is written i(u); i.e.,

$$\langle \mu(u)v, w \rangle = \langle v, i(u)w \rangle, \quad u, v, w \in \Delta(E).$$

The Poincaré map, $D: \Delta(E) \rightarrow \Delta(E)$, is defined by

(3) $Du = i(u)t^n, u \in \Delta(E).$

It is an involutory isometry

(4)
$$D^2 = \iota, \langle Du, Dv \rangle = \langle u, v \rangle, u, v \in \Delta(E),$$

and it satisfies

(5)
$$i(u) \circ D = D \circ \mu(u), \quad u \in \Delta(E).$$

One of the key identities of the subject, proved in [1], is

(6)
$$i(z)(z_1 \dots z_p)$$

$$= \sum_{q=1}^p z_1 \dots \langle z, z_q \rangle \dots z_p$$

$$- \sum_{1 \le q < r \le p} (z_q \circ z \circ z_r + z_r \circ z \circ z_q) \cdot z_1 \dots \hat{z}_q \dots \hat{z}_r \dots z_p,$$

where $z, z_1, \ldots, z_p \in \Delta_1(E)$. The reason that this plays a basic rôle is that it relates the two algebraic structures on $\Delta(E)$. For example, one may deduce from (6), by induction on q, that

(7)
$$i(t^q)t^p = {\binom{n-p+q}{q}}t^{p-q}, \quad 0 \leq q \leq p \leq n.$$

362

Since the dot algebra $\Delta(E)$ is generated by $\Delta_0(E) = \Gamma$ and $\Delta_1(E)$, there are unique derivations λ_z , ρ_z , $z \in \Delta_1(E)$, of $\Delta(E)$ such that $\lambda_z(z_1) = z \circ z_1$, $\rho_z(z_1) = z_1 \circ z$, $z_1 \in \Delta_1(E)$. In particular,

(8)
$$\lambda_z(z_1\ldots z_p) = \sum_{q=1}^p z_1\ldots(z\circ z_q)\ldots z_p$$

$$\rho_z(z_1\ldots z_p) = \sum_{q=1}^p z_1\ldots (z_q \circ z)\ldots z_p,$$

where $z, z_1, \ldots, z_p \in \Delta_1(E)$. Thus, it follows from (2) that

(9)
$$\lambda_t(u) = \rho_t(u) = pu, \quad u \in \Delta_p(E).$$

Furthermore, the identity (6) may be written as

$$[i(z) \circ \mu(z_1) - \mu(z_1) \circ i(z)](z_2 \dots z_p) = [\langle z, z_1 \rangle \iota - \lambda_{z_1 \circ z} - \rho_{z \circ z_1}](z_2 \dots z_p)$$

We conclude that

(10)
$$[i(z), \mu(z_1)] = \Gamma(z, z_1), z, z_1 \in \Delta_1(E),$$

where

(11)
$$\Gamma(z, z_1) = \langle z, z_1 \rangle \iota - \lambda_{z_1 O z} - \rho_{z O z_1}$$

and [,] denotes the commutator of linear transformations of $\Delta(E)$.

The formula (10) was the main ingredient in the proof of the principal result of [5]; namely,

(12)
$$i(u)t^{2p+q} = (-1)^p \sum_{r \in \mathbb{Z}} (-1)^r \mu(t^{q+r}) i(t^r) u,$$

 $p, q \in \mathbb{Z}, u \in \Delta_p(E).$

3. A basic identity. The purpose of this section is to prove another consequence of the formula (6).

LEMMA. For any $z_1, z \in \Delta(E)$ and $p \in \mathbb{Z}$,

$$[i(z_1), \mu(z^{p+1})] = \mu(z^p) \circ \Gamma(z_1, z) - \mu(z^{p-1}) \circ \mu(z \circ z_1 \circ z).$$

Proof. For p = 0, the formula is equivalent to (10). Because λ_z and ρ_z are derivations of $\Delta(E)$, we have

$$[\lambda_{z_1}, \mu(z)] = \mu(z_1 \circ z)$$
 and $[\rho_{z_1}, \mu(z)] = \mu(z \circ z_1).$

It follows from (11) that

(13)
$$[\Gamma(z_1, z), \mu(z)] = -2\mu(z \circ z_1 \circ z) \quad z, z_1 \in \Delta_1(E).$$

Now assume that the lemma holds for p; i.e., by (1),

$$[i(z_1), \mu(z)^{p+1}] = (p + 1)\mu(z)^p \circ \Gamma(z_1, z) - p(p + 1)\mu(z)^{p-1} \circ \mu(z \circ z_1 \circ z)$$

Then, by (13),

$$\begin{split} [i(z_1), \mu(z)^{p+2}] &= [i(z_1), \mu(z)^{p+1}] \circ \mu(z) + \mu(z)^{p+1} \circ [i(z_1), \mu(z)] \\ &= [(p+1)\mu(z)^p \circ \Gamma(z_1, z) - p(p+1)\mu(z)^{p-1} \\ &\circ \mu(z \circ z_1 \circ z) \circ \mu(z) + \mu(z)^{p+1} \circ \Gamma(z_1, z) \\ &= (p+1)\mu(z)^p \circ [\mu(z) \circ \Gamma(z_1, z) \\ &- 2\mu(z \circ z_1 \circ z)] \\ &- p(p+1)\mu(z)^{p-1} \circ \mu(z) \circ \mu(z \circ z_1 \circ z) \\ &+ \mu(z)^{p+1} \circ \Gamma(z_1, z) \\ &= (p+2)\mu(z)^{p+1} \circ \Gamma(z_1, z) \\ &- (p+1)(p+2)\mu(z)^p \circ \mu(z \circ z_1 \circ z); \end{split}$$

i.e.,

$$[i(z_1), \mu(z^{p+2})] = \mu(z^{p+1}) \circ \Gamma(z_1, z) - \mu(z^p) \circ \mu(z \circ z_1 \circ z).$$

This closes the induction and hence proves the lemma for $p \in \mathbf{N}$. It is clearly true for p < 0 (both sizes are zero) and hence for $p \in \mathbf{Z}$.

Corollary 1.

$$i(z_1)z^{p+1} = \langle z_1, z \rangle z^p - (z \circ z_1 \circ z) \cdot z^{p-1}, \quad z_1, z \in \Delta_1(E),$$
$$p \in \mathbb{Z}.$$

Proof. Let both sides of the lemma act on $1 \in \Delta_0(E)$ and note that derivations of $\Delta(E)$ map $\Delta_0(E)$ to 0.

Corollary 2.

$$[i(t), \mu(t^{p+1})] = \mu(t^p) \circ [(n-p)\iota - \lambda_t - \rho_t], \quad p \in \mathbb{Z}.$$

Proof. When $z_1 = z = t$, the right hand side of the lemma is

$$\mu(t^p) \circ \Gamma(t, t) - \mu(t^{p-1}) \circ \mu(t),$$

by (2). Since $\langle t, t \rangle = i(t)t = n$, by (7), formula (11) yields

$$\Gamma(t, t) = n\iota - \lambda_t - \rho_t.$$

Finally,

$$\mu(t^{p-1}) \circ \mu(t) = \mu(t \cdot t^{p-1}) = p\mu(t^p),$$

by (1).

Remarks. (i) In view of (9), Corollary 2 implies that

(14)
$$[i(t), \mu(t^{p+1})]v = (n - p - 2q)\mu(t^p)v, v \in \Delta_q(E), p, q \in \mathbb{Z}.$$

(ii) Suppose $v \in \text{ker}i(t) \cap \Delta_q(E)$. Then (14) reads

 $i(t)\mu(t^{p+1})v = (n - p - 2q)\mu(t^{p})v$

and hence, by induction, we obtain

(15)
$$i(t^r)\mu(t^p)v = \frac{(m+1)(m+2)\dots(m+r)}{r!}\mu(t^{p-r})v,$$

where $v \in \operatorname{ker} i(t) \cap \Delta_q(E)$, $p, q \in \mathbb{Z}$, $r \in \mathbb{N}$ and m = n - p - 2q.

4. The subspaces F_p , G_p of $\Delta_p(E)$. We define subspaces of $\Delta_p(E)$ by $F_p = \ker i(t) \cap \Delta_p(E)$, $G_p = \ker \mu(t) \cap \Delta_p(E)$, $p \in \mathbb{Z}$.

If p < 0 or p > n both F_p and G_p are zero. Also it is clear that $F_0 = \Delta_0(E)$ = Γ and $G_n = \Delta_n(E)$, which is isomorphic to Γ , since t^n is a basis. From (5), we see that D maps F_p isomorphically onto G_{n-p} . A more precise version of this result follows from the

Lemma.

$$i(t^q)Du = D\mu(t^q)u = (-1)^p\mu(t^{n-2p-q})u, \quad u \in F_p, p, q \in \mathbb{Z}.$$

Proof. We have

$$i(t^q)Du = D(t^q \cdot u) = i(u)Dt^q = i(u)t^{n-q},$$

by (5), (3) and (7). The lemma then follows from (12), since $u \in F_p$.

COROLLARY 1.

$$D\mu(t^{q})F_{p} = \mu(t^{n-2p-q})F_{p} = i(t^{q})G_{n-p}, \quad p, q \in \mathbb{Z}$$

Proof. The first equality follows from the lemma which also shows that

$$D\mu(t^q)F_p = i(t^q)DF_p.$$

Since $DF_p = G_{n-p}$, as we have remarked above, the second equality holds as well.

COROLLARY 2. $\mu(t^q)F_p \neq 0$ if and only if p, q satisfy $0 \leq q \leq n - 2p$.

Proof. The left hand side of the formula in the lemma vanishes unless $q \ge 0$, while the right hand side vanishes unless $n - 2p - q \ge 0$. Since D is an isomorphism, we conclude that $\mu(t^q)F_p = 0$ unless $0 \le q \le n - 2p$.

We now prove that, if $0 \le q \le n - 2p$, then $\mu(t^q)F_p \ne 0$. First, note that it is sufficient to prove that $\mu(t^{n-2p})F_p \ne 0$, since $\mu(t^q)F_p = 0$ implies that $\mu(t^r)F_p = 0$ for $r \ge q$.

Let e_1, \ldots, e_n be a basis for E and let e^{*1}, \ldots, e^{*n} be its dual. Define z $\in \Delta_1(E)$ by

$$z = \sum_{i=1}^{p} e^{*i} \otimes e_{p+i}.$$

It is easily seen that

$$z^p = e^{*1}\Lambda \dots \Lambda e^{*p} \otimes e_{p+1}\Lambda \dots \Lambda e_{2p}$$

and hence $z^p \neq 0$, since $2p \leq n$.

On the other hand, Corollary 1 of Section 3 shows that

$$i(t)z^{p} = \langle t, z \rangle z^{p-1} - (z \circ z) \cdot z^{p-2}.$$

But

$$\langle t, z \rangle = \sum_{i=i}^{p} \langle e^{*i}, e_{p+i} \rangle = 0$$

and

$$z \circ z = \sum_{i,j=1}^{p} \langle e^{*i}, e_{p+j} \rangle e^{*j} \otimes e_{p+i} = 0.$$

Hence $z^p \in F_p$.

Next, note that, since $t = \sum_{i=1}^{n} e^{*i} \otimes e_i$, we have

$$t^q = \frac{1}{q!} \sum e^{*i_1} \Lambda \dots \Lambda e^{*i_q} \otimes e_{i_1} \Lambda \dots \Lambda e_{i_q}$$

where $1 \leq i_1, \ldots, i_q \leq n$. It follows that

$$t^{n-2p} \cdot z^p = e^{*2p+1}\Lambda \dots \Lambda e^{*n}\Lambda e^{*1}\Lambda \dots \Lambda e^{*p} \otimes$$

$$e_{2p+1}\Lambda\ldots\Lambda e_n\Lambda e_{p+1}\Lambda\ldots\Lambda e_{2p},$$

since the only non-zero terms in the product are those for which (i_1, \ldots, i_{n-2p}) is a permutation of $(2p + 1, \ldots, n)$. Finally, then, $t^{n-2p} \cdot z^p \neq 0$ since $2p \leq n$.

5. The orthogonal projections π_p . In this section we will construct orthogonal projections

$$\pi_p:\Delta_p(E)\to \Delta_p(E)$$

whose image is F_p .

LEMMA. Let m = n - 2p + 1, where $2p \leq n$. Let $i(t)_p$ denote the restriction of i(t) to $\Delta_p(E)$. Put

$$\pi_p = \sum_{r=0}^p \frac{(-1)^r}{\binom{m+r}{m}} \mu(t^r) \circ i(t^r)_p.$$

Then π_p is the orthogonal projection of $\Delta_p(E)$ onto F_p .

Proof. Suppose that $u \in \Delta_p(E)$. By (14) we have

$$[i(t), \mu(t^{r})](i(t^{r})u) = [n - 2(p - r) - (r - 1)]\mu(t^{r-1})i(t^{r})u,$$

which may be written as

$$i(t)\mu(t^{r})i(t^{r})u = \mu(t^{r})i(t)i(t^{r})u + (n-2p+1+r)\mu(t^{r-1})i(t^{r})u$$

= $(r+1)\mu(t^{r})i(t^{r+1})u + (m+r)\mu(t^{r-1})i(t^{r})u$,

or

$$\frac{r!}{(m+r)!} i(t)\mu(t^{r})i(t^{r})u = \frac{(r+1)!}{(m+r)!} \mu(t^{r})i(t^{r+1})u + \frac{r!}{(m+r-1)!} \mu(t^{r-1})i(t^{r})u = v_{r+1} + v_{r},$$

where

$$v_r = \frac{r!}{(m+r-1)!} \mu(t^{r-1})i(t^r)u.$$

It follows from the definition that $v_0 = 0$, $v_{p+1} = 0$ and hence that

$$i(t)\pi_p(u) = m! \sum_{r=0}^p (-1)^r (v_{r+1} + v_r)$$
$$= m! [v_0 + (-1)^p v_{p+1}] = 0.$$

Since $u \in \Delta_p(E)$ is arbitrary, we conclude that

(16) $i(t) \circ \pi_p = 0.$

Therefore

$$\pi_p^2 = \sum_{r=0}^p \frac{(-1)^r}{\binom{m+r}{m}} \mu(t^r) \circ i(t^r) \circ \pi_p$$

= $\frac{(-1)^0}{\binom{m+0}{m}} \mu(t^0) \circ i(t^0) \circ \pi_p = \pi_p.$

This proves that π_p is a projection and, since $\mu(t)^* = i(t)$, it follows that $\pi_p^* = \pi_p$ and hence that π_p is orthogonal.

Finally, if $u \in F_p$, then $\pi_p u = u$, from the definition of π_p and, conversely, if $\pi_p u = u$, then

 $i(t)u = i(t)\pi_p u = 0,$

from (16). Thus the image of π_p is F_p .

COROLLARY 1.

 $\ker \pi_p = \operatorname{Im} \mu(t)_{p-1}.$

Proof. Since

$$\pi_p = \iota_p + \sum_{r=1}^p \frac{(-1)^r}{\binom{m+r}{r}} \mu(t^r) \circ i(t^r)_p,$$

it follows that $\pi_p u = 0$ if and only if $u \in \text{Im}\mu(t)_{p-1}$.

COROLLARY 2.

$$\widetilde{\pi}_{n-p} = \sum_{r=0}^{p} \frac{(-1)^{r}}{\binom{n-2p+1+r}{r}} i(t^{r}) \circ \mu(t^{r})_{n-p}$$

is the orthogonal projection of $\Delta_{n-p}(E)$ whose image is G_{n-p} and whose kernel is $\operatorname{Imi}(t)_{n-p+1}$.

Proof. From (5) it is easy to check that

 $D \circ \pi_p = \widetilde{\pi}_{n-p} \circ D_p.$

The fact that π_{n-p} is an orthogonal projection then follows from (4). The rest of the corollary follows from the fact that D maps F_p isomorphically (in fact, isometrically) onto G_{n-p} (cf. Corollary 1, Section 4).

6. The direct sum decomposition of $\Delta(E)$. In this section we will show that $\Delta(E)$ is the direct sum of spaces of the form $\mu(t^q)F_p$, $p, q \in \mathbb{Z}$. Note that by Corollary 2 of Section 4, the only such spaces which are different from 0 are those for which $0 \leq q \leq n - 2p$.

LEMMA. If

$$u = \sum_{r=0}^{p} \mu(t^{p-r})u_r,$$

where $u_r \in F_r$, r = 0, 1, ..., p and $2p \leq n$, then the u_r are uniquely determined by $i(t^q)u$, q = 0, 1, ..., p.

Proof. By (15), we have

$$i(t^q)u = \sum_{r=0}^p \left(\begin{pmatrix} n - p - r + q \\ q \end{pmatrix} \mu(t^{p-q-r})u_r, \quad q = 0, \dots, p.$$

The coefficient of u_{p-q} in this equation is $\binom{n-2p+2q}{q}$ and hence the determinant of the system is

$$\prod_{q=0}^{p} \left(n - \frac{2p}{q} + \frac{2q}{q} \right) > 0,$$

since $2p \leq n$.

COROLLARY. If

$$\sum_{r=0}^{p} \mu(t^{p-r})u_r = 0, \text{ for } u_r \in F_r, r = 0, \ldots, p, 2p \leq n,$$

then $u_r = 0$, for r = 0, ..., p.

We are now in a position to prove the

THEOREM.

$$\Delta(E) = \bigoplus_{p=0}^{n} \Delta_{p}(E),$$

where

$$\Delta_{0}(E) = F_{0}$$

$$\Delta_{1}(E) = \mu(t)F_{0} \oplus F_{1}$$

$$\dots$$

$$\Delta_{p}(E) = \mu(t^{p})F_{0} \oplus \mu(t^{p-1})F_{1} \oplus \dots \oplus F_{p}$$

$$\dots$$

$$\Delta_{n-p}(E) = \mu(t^{n-p})F_{0} \oplus \mu(t^{n-p-1})F_{1} \oplus \dots \oplus \mu(t^{n-2p})F_{p}$$

$$\dots$$

$$\Delta_{n-1}(E) = \mu(t^{n-1})F_{0} \oplus \mu(t^{n-2})F_{1}$$

$$\Delta_{n}(E) = \mu(t^{n})F_{0}.$$
Proof. The results of Section 5 show that for $2p \leq n$,

$$\Delta_{p}(E) = \operatorname{Im}\pi_{p} \oplus \ker\pi_{p} = F_{p} \oplus \operatorname{Im}\mu(t)_{p-1}.$$

The corollary of the above lemma, together with an induction on p show that

$$\operatorname{Im}\mu(t)_{p-1} = \mu(t)F_{p-1} \oplus \mu(t^2)F_{p-2} \oplus \ldots \oplus \mu(t^p)F_0.$$

This proves the formulae when $2p \leq n$. The remaining formulae follow from these by virtue of Corollary 1 of the lemma in Section 4.

COROLLARY 1. For $2p \leq n$, we have $\dim F_p = \dim G_{n-p} = {\binom{n}{p}}^2 - {\binom{n}{p-1}}^2.$ Proof. $\dim \Delta_p(E) = {\binom{n}{p}}^2.$ COROLLARY 2. $\Delta_0(E) = i(t^n)G_n$ $\Delta_1(E) = i(t^{n-1})G_n \oplus i(t^{n-2})G_{n-1}$ \dots $\Delta_p(E) = i(t^{n-p})G_n \oplus i(t^{n-p-1})G_{n-1} \oplus \dots \oplus i(t^{n-2p})G_{n-p}$ \dots $\Delta_{n-p}(E) = i(t^p)G_n \oplus i(t^{p-1})G_{n-1} \oplus \dots \oplus G_{n-p}$ \dots $\Delta_{n-1}(E) = i(t)G_n \oplus G_{n-1}$ $\Delta_n(E) = G_n.$

Proof. Apply D to the decomposition in the theorem and use Corollary 1 of the lemma of Section 4.

7. Concluding remarks.

1. The decomposition of Section 6 is, in fact, orthogonal. To see this, assume that $2p \leq n$ and consider

$$\langle \mu(t^{q})u_{p-q}, \mu(t^{r})u_{p-r} \rangle = \langle i(t^{r})\mu(t^{q})u_{p-q}, u_{p-r} \rangle$$

$$= \binom{n-2p+q+r}{r} \langle \mu(t^{q-r})u_{p-q}, u_{p-r} \rangle$$

$$= \binom{n-2p+q+r}{r} \langle u_{p-q}, i(t^{q-r})u_{p-r} \rangle$$

$$= 0,$$

if
$$0 \le r < q \le p$$
 (cf. (15)).

370

The other orthogonalities follow from that of $\Delta_p(E)$, $\Delta_q(E)$, $p \neq q$, and the fact that D is an isometry.

2. Now that we know that $u \in \Delta_p(E)$ $(2p \le n)$ can be uniquely written in terms of $u_q \in F_q$ $(0 \le q \le p)$ the lemma of Section 6 provides an algorithm for computing these u_q in terms of u; in fact, the system

$$i(t^{p})u = {n \choose p}u_{0}$$

$$i(t^{p-1})u = {n-1 \choose p-1}\mu(t)u_{0} + {n-2 \choose p-1}u_{1}$$
...
$$i(t^{q})u = {n-p+q \choose q}\mu(t^{p-q})u_{0} + \dots$$

$$+ {n-p+q-r \choose q}\mu(t^{p-q-r})u_{r} + \dots$$

$$+ {n-2p+2q \choose q}u_{p-q}$$
....

$$i(t^{0})u = {\binom{n-p}{0}}\mu(t^{p})u_{0} + \dots + {\binom{n-p}{0}}r \mu(t^{p-r})u_{r} + \dots + {\binom{n-2p}{0}}u_{p},$$

may be solved, successively, for u_0, u_1, \ldots, u_p .

For example, if $n \ge 4$ and p = 2, we find

$$u_0 = \frac{2}{n(n-1)} \langle t^2, u \rangle, u_1 = \frac{1}{n-2} \left[i(t)u - \frac{2}{n} \langle t^2, u \rangle t \right]$$

and

$$u_2 = u - \frac{1}{n-2} \left[i(t)u - \frac{2}{n} \langle t^2, u \rangle t \right] \cdot t - \frac{2}{n(n-1)} \langle t^2, u \rangle t^2.$$

3. The eigenvectors of D and inner products of elements of $\Delta(E)$ can be computed in terms of the decomposition of Section 6.

For example, if $2p \leq n$, and we write

$$u = \sum_{q=0}^{p} \mu(t^{p-q})u_q,$$

where $u_q \in F_q(q = 0, \ldots, p)$, then

$$Du = \sum_{q=0}^{p} (-1)^{q} \mu(t^{n-p-q}) u_{q},$$

by the lemma of Section 4.

Thus $u \in \Delta_p(E)$ is an eigenvector of D only if 2p = n. In this case, the eigenspace of D corresponding to the eigenvalue +1 is

$$\mu(t^p)F_0 \oplus \mu(t^{p-2})F_2 \oplus \ldots,$$

while that corresponding to -1 is

$$\mu(t^{p-1})F_1 \oplus \mu(t^{p-3})F_3 \oplus \ldots$$

If we write

$$v = \sum_{q=0}^{p} \mu(t^{p-q})v_q \in \Delta_p(E),$$

where $v_q \in F_q(q = 0, \ldots, p)$, then

$$\langle u, v \rangle = \sum_{q=0}^{p} {\binom{n-2q}{p-q}} \langle u_q, v_q \rangle,$$

since

$$i(t^{q})\mu(t^{q})u = \binom{n-2q}{q}u, u \in F_{p}, 0 \leq 2p \leq n,$$

$$0 \leq q \leq n-2p,$$

by (15).

Similarly, we conclude that, if n = 2p, then

$$\langle u, Dv \rangle = \sum_{q=0}^{p} (-1)^q {\binom{2p-2q}{p-q}} \langle u_q, v_q \rangle.$$

4. The case $u \in \Delta_2(E)$ is of special interest because the curvature tensor of a pseudo-Riemannian manifold, when regarded as a tensor of type (2, 2), has the symmetries of $\Delta_2(E)$. In this case i(t)u corresponds to the Ricci tensor, while $\langle t^2, u \rangle$ corresponds to the scalar of curvature.

The terms in the decomposition of Section 6 also have geometric significance. According to the example of Remark 2, above, u_0 corresponds to the scalar of curvature, u_1 corresponds to the trace-free Ricci tensor and u_2 corresponds to the Weyl conformal curvature tensor. In particular, if $u_2 = 0$, the manifold is conformally flat (if $n \ge 4$) and if $u_1 = 0$, then we have an Einstein manifold.

Decompositions of the above type (using the Bianchi symmetries as well as those of $\Delta_2(E)$) have been employed in [3] to obtain inequalities

between the signature of a four-dimensional Einstein manifold and its Euler Characteristic.

The specific decomposition of Remark 2 was used in [2] to show that Pontrjagin classes of a manifold depend only on the Weyl tensor and hence are conformal invariants.

It is hoped that the generality of the above results, with respect to both the field Γ and the inner product \langle , \rangle , will lead to further applications.

REFERENCES

- 1. W. H. Greub, *Multilinear algebra* (2nd Ed.) (Springer-Verlag, New York, 1978), Chapters 6 and 7.
- 2. —— Pontrjagin classes and the Weyl tensor, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 177-182.
- 3. A. Palombo, Nombres caracteristiques d'une variété riemannienne de dimension 4, J. Differential Geometry 13 (1978), 145-162.
- J. R. Vanstone, Some new identities in mixed exterior algebra, C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 269-271.
- 5. The Poincaré map in mixed exterior algebra, Bull. Can. Math. Soc., to appear.

University of Toronto, Toronto, Ontario