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A CANONICAL DECOMPOSITION IN MIXED 
EXTERIOR ALGEBRA 

J. R. VANSTONE 

1. Introduction. Let E be a vector space of dimension n e N over a field 
T, of characteristic 0. Choose E*, dual to E, and form 

A£ = e;=0A'£, 
the space of exterior powers of E, as well as AE*. Finally, let 

A(£*, E) = AE* 0 AE. 

Although A(E*9 E) is constructed by the most basic vector space 
operations, it is rich in algebraic structure: 

(i) as a vector space over T it is bigraded, 

A(E*9 E) = © (APE* 0 A«E\ 
p,q = 0 

and has dimension 22n; 
(ii) it has a canonical inner product, (, >, induced from the duality of E* 

and E9 with respect to which, 

(APE* 0 A^E, ArE* 0 ASE) = 0, 

unless/? = s. 
(iii) since both AE* and AE are (exterior) algebras, their tensor product 

is an algebra; we denote its product by a dot and call A(£*, £"), with this 
product, the mixed exterior algebra over E\ 

(iv) since APE* 0 AqE is isomorphic to the space of linear maps from 
APE to AqE and the latter may be "composed", A(E*, E) also has a 
composition product, which we denote by "o". 

The inner product and both algebra structures restrict to the diagonal 
space 

A{E) = © A-(E), AJE) = ApE* 0 APE, 
p=0 y F 

and the resulting "dot" algebra is commutative. We call it the diagonal 
subalgebra. Henceforth, we shall only be concerned with A(£'). 

Many results about the structure of A(E) and its applications to 
classical linear algebra are to be found in [1]. Others have been announced 
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362 J. R. VANSTONE 

in [4], One of these has been fully proved in [5]. The purpose of this paper 
is to treat the other main result of [4]. 

2. Preliminaries. In this section we gather together the results of [5] and 
[1] which will be needed in the sequel. 

For any z G à\(E), we adopt the convention: 

(1) z° = 1, ZP = — (z . . . . z), p = 1, 2, . . . , w, and ZP = 0, 

(p factors) otherwise. 

The unit tensor / G h\(E) corresponds to the identity map of E under 
the isomorphism of Aj(£) with the space of linear transformations of E 
and hence satisfies 

(2) t o z = z o t = z, z G kx(E). 

For each u G A(£), we obtain a linear transformation of A(£), given by 
v i—» u • v = v • u\ it will be denoted by /x(w). Its dual, /x(w)*, is written /'(t/); 
i.e., 

(/i(w)v, w) = (v, i(u)w), u, v, w G A(£). 

The Poincaré map, D:h(E) —» A(£), is defined by 

(3) Dw = /(w)r^, w G A(£). 

It is an involutory isometry 

(4) D2 = i, (Du, Dv) = (u, v >, u, v G A(£), 

and it satisfies 

(5) i(u) o D = D o /x(M), w G A(£). 

One of the key identities of the subject, proved in [1], is 

(6) / (z)(z1 . . .z / ?) 

p 

= 2 zx . . . (z, ẑ > . . .zp 

~ 2a (zq O Z O Zr + Zr O Z O Zq) ' Zj . . . Z^ . . . Zr . . . Z«, 

where z, zl5 . . . , ẑ  G Ai(2s). The reason that this plays a basic rôle is that 
it relates the two algebraic structures on A(E). For example, one may 
deduce from (6), by induction on q, that 

(7) nfy = y1 " P + «J^-«, 0 g <? ^ /? ^ H. 
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Since the dot algebra J\(E) is generated by A0(^) = T and à\(E), there 
are unique derivations Xz, pz, z G h\(E), of k(E) such that Xz(z\) = z o zh 

pz(z\) = z\ o z, z\ G h\(E). In particular, 

p 

(8) X^zj.-.z,) = 2 z, 

p 

Pz(Z\ • • -zp) = 2 *1 
< 7 = 1 

where z, z1? . . . , zp G Aj(£). Thus, it follows from (2) that 

(9) Xt(u) = pt(u) = pu, u G A^OE). 

Furthermore, the identity (6) may be written as 

[i(z) o /x(zO - /x(zi) o /(z) ](z2 ...zp) 

= I (Z, Z\)l - XZ]0z ~ pzOZ]](
z2 • • -Zp). 

We conclude that 

(10) [/(z),Kz,)] = r ( z , z0 , z ^ G A,(£), 

where 

(11) T(Z, ZX) = (Z, Z ^ l - XZ]0z - pzOZ] 

and [,] denotes the commutator of linear transformations of à(E). 
The formula (10) was the main ingredient in the proof of the principal 

result of [5]; namely, 

(12) i(u)t2P+q = (~lf 2 (-\)rii{tq+r)i(f)u, 

p, q G Z, u G kp(E). 

3. A basic identity. The purpose of this section is to prove another 
consequence of the formula (6). 

LEMMA. For any z\, z G A(£) and p G Z, 

[i(zx), /4>p+1) ] = M(^) ° r(zi> z) - ix(zp'v) o ii(z o z , o z). 

Proof. For JP = 0, the formula is equivalent to (10). 
Because Az and pz are derivations of A(£), we have 

[Kv K*) ] = Kz\ o z) and [pZ], /<z) ] = /x(z o z^. 

It follows from (11) that 

(13) [T(zh z), /x(z) ] - -2jii(z o z i o z ) z, zj G A ^ ) . 

(z o z ^ ) . . . zp, 

(zqo z ) . . .Zp, 
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Now assume that the lemma holds for/?; i.e., by (1), 

[i(zl)^(z)P + {] = (p+ \)ix(zf o T(zh z) 

— p(p + l)jU,(zy O ju(z 0 Z | O Z). 

Then, by (13), 

[/(z,), li(zY + 2] = [i(z,), lx(z)P+l] o ii(z) + n(z)P+l o [/(z,), ix(z) 1 

= [(/> + l ) j ^ y o I\z, , z) - p{p+\)ii(z)P-x 

O JU(Z O Z] O Z) O JLl(z) + \i(z)P+ O T(Z\, Z) 

= (P + iMzf o [Kz) o r(z,, z) 

— 2/x(z o z i o z ) ] 

— /?(/? + l ^ z ) ^ o ju(z) o /x(z o Z\ o z) 

+ K^)/7+1 o r(z,, z) 

= (p + 2)Kz/ + 1 o r ( z b z ) 

— (/> + 1)(/? + 2)\i{zf o fi(z o z\ o z); 

i.e., 

[/(zO, ix(zP + 2 ) ] = / x ( ^ + 1) o T(zu z) - K ^ ) o li(z o zx o z). 

This closes the induction and hence proves the lemma for p <= N. It is 
clearly true for p < 0 (both sizes are zero) and hence for p <E Z. 

COROLLARY 1. 

z-(Zl)z/>
 + 1 = (Zh Z)ZP - (z o zx o z) • z^_1 , z1? z G Ai(£), 

/? e Z. 

Proof. Let both sides of the lemma act on 1 G A0(£) and note that 
derivations of A(£) map A0(2s) to 0. 

COROLLARY 2. 

[i(0, Ktp + l) ] = K*p) o[(n-p)i-Xt- p,], p e Z. 

Proof. When zi = z = f, the right hand side of the lemma is 

Kt")oT(t, t) - M r ' j o K O , 

by (2). Since (t, t) = i(t)t = n, by (7), formula (11) yields 

T(/, t) = m — \ t — pt. 

Finally, 

K/"-')oK0 = K/•/"-') =/>/#'), 
by (1). 
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Remarks, (i) In view of (9), Corollary 2 implies that 

(14) [/(0, M(/' + 1)]v = (n- p - 2q)Mp)v, v G A,(£), /,, ? G Z 

(ii) Suppose v G ker/(/) n A^(£). Then (14) reads 

/ ( 0 K ^ + 1)v - ( « - / > - 2 ^ K ^ > 

and hence, by induction, we obtain 

(15) i(f)ix(tp)v = /x(^ > , 
r! 

where v G keri(f ) n &q{E\ /?, g G Z, r G N and m = n — p — 2q. 

4. The subspaces i y Ĝ  of A^i?). We define subspaces of Ap(E) by 

i7^ = ken(0 n A^CE), Ĝ  = ker/x(0 n A^CE), ^ G Z. 

If /? < 0 or/? > n both i^ and Gp are zero. Also it is clear that FQ = A0(£) 
= T and G„ = A„(£), which is isomorphic to T, since /" is a basis. From 
(5), we see that D maps i^ isomorphically onto Gn-p. A more precise 
version of this result follows from the 

LEMMA. 

i(tq)Du = D\i{tq)u = (-\ffi(tn~2P~q)u, u G Fp,p,q G Z. 

Proof. We have 

/(/*)Z)w = /)(** • u) = i(u)Dtq = i(u)tn~q, 

by (5), (3) and (7). The lemma then follows from (12), since u G Fp. 

COROLLARY 1. 

D^)Fp = tif-^-VFp = Ktq)G„-p, />, <? G Z. 

Proof. The first equality follows from the lemma which also shows 
that 

Dix{f)Fp = i(tq)DFp. 

Since DFp = Gn-p, as we have remarked above, the second equality holds 
as well. 

COROLLARY 2. ix(tq)Fp ¥* 0 if and only if p, q satisfy 0 ^ q ^ n — 2p. 

Proof. The left hand side of the formula in the lemma vanishes unless q 
^ 0, while the right hand side vanishes unless n — 2p — q = 0. Since D is 
an isomorphism, we conclude that p{tq)Fp = 0 unless 0 ^ q ^ n — 2p. 

We now prove that, if 0 ^ q ^ n — 2/7, then ii(tq)Fp ¥= 0. First, note 
that it is sufficient to prove that \i(f~lp)Fp =̂  0, since \i(tq)Fp = 0 implies 
that ii(tr)Fp = 0 for r ^ q. 
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Let <?], . . . , en be a basis for E and let e*\ . . ., e*" be its dual. Define z 
G AK£) by 

z = 2 e*l®ep + l. 
i = \ 

It is easily seen that 

zP = e*lA . . . Ae*P ®ep + xA... Ae2p 

and hence ẑ  ^ 0, since 2p ^ n. 
On the other hand, Corollary 1 of Section 3 shows that 

i(t)zP = (t,z)zP~x - ( z o z ) • zP'1. 

But 

<t, z) = 2 <e*<, ep + I-> = 0 

and 

p 

zoz = 2 < ^ ' , ^ + 7 . > ^ ' ® ^ + l- = 0. 
'7=1 

Hence ẑ  G i y 

Next, note that, since t = 2 e*1 ® £/, we have 
z = l 

^ - — 2 e*"A • . . Ae*z« ® ^ A . . . A e v 

where \ ^ i\, . . . , iq ^ n. It follows that 

tn-2P . zp = e*2/7 + i A _ _ _ Ae*"Ae*]A . . . Ae*p ® 

e2p + \A . . . A ^ A ^ + i A . . . Ae2p, 

since the only non-zero terms in the product are those for which 
(z'l, . . . , in-2p) is a permutation of (2/? + 1, . . . , n). 

Finally, then, tn~lp • zP # 0 since 2p ^ n. 

5. The orthogonal projections 77̂ . In this section we will construct 
orthogonal projections 

vM£) -" V£) 
whose image is Fp. 

LEMMA. Let m = n — 2p 4- 1, where 2p ^ «. Le/ i(t)p denote the 
restriction of i(t) to Ap(E). Put 
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\ m ) 

Then irp is the orthogonal projection of kp(E) onto Fp. 

Proof. Suppose that u e hp(E). By (14) we have 

[i(0, KOMOu) = [n - 2(p - r)- (r- \)Uf~])i(f)u^ 

which may be written as 

i(t)ii(f)i(f)u = ix(f)i(t)i(f)u + (n ~ 2p + 1 + r)ii{f~x)i{f)u 

= (r + l)/i(0/(*r+1)w + (m + r J K r ' K O w , 

or 

r! (r + 1 ) ! . i 
i{t)\i(f)i{f)u = 7 ^- /A(0'*( ' V (m + r)! (m + r)! 

+ — — -ix(tr-")i(f)u 
(m + r — 1)! 

= v r + 1 + vr, 

where 

r! -lx(f~xW)u. 
(m + r - 1)1 

It follows from the definition that v0 = 0, vp + \ = 0 and hence that 

i(t)7Tp(u) = m\ 2 ( - l ) r ( v r + 1 + vr) 
r = 0 

= m![v0 + ( - 1 ^ + ,] = 0. 

Since u e A/?(£) is arbitrary, we conclude that 

(16) i(t) o <np = 0. 

Therefore 

p (—\y 
Vp = 2 7 r / * ( 0 o i(f) o 77̂  

r=o I ra + r J 
V m / 

( _ 1 )
 M (/°) o i(/°) o ^ = V 

(m:°) 
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This proves that irp is a projection and, since \i(t)* = i(t), it follows that 
77* = 7Tp and hence that mp is orthogonal. 

Finally, if u e Fp, then irpu = u, from the definition of mp and, 
conversely, if irpu = u, then 

i(t)u = i{t)irpu = 0, 

from (16). Thus the image of irp is Fp. 

COROLLARY 1. 

k e r ^ = ImKO/7-i-

Proof. Since 

£ ( -1/ 
•ïïp = v KO o / ( /% 

it follows that mpu = 0 if and only if w e I m / x ^ - i -

COROLLARY 2. 

*•«-/, = 2 7 ri(?) o ii(tr)n-P 

r=o In - 2p + 1 + r\ 

is the orthogonal projection of kn-p(E) whose image is Gn-p and whose 
kernel is lmz(0/i-p+i-

Proof. From (5) it is easy to check that 

D O 7Tp = 7Tn-p O Dp. 

The fact that iTn-p is an orthogonal projection then follows from (4). The 
rest of the corollary follows from the fact that D maps Fp isomorphically 
(in fact, isometrically) onto Gn-p (cf. Corollary 1, Section 4). 

6. The direct sum decomposition of A(£). In this section we will show 
that A(£") is the direct sum of spaces of the form fi(tq)Fp, p, q e Z. Note 
that by Corollary 2 of Section 4, the only such spaces which are different 
from 0 are those for which 0 ^ q ^ n — 2p. 

LEMMA. If 

p 

U = 2 KtP~r)un 
r = 0 

where ur e Fr9 r = 0, 1, . . . ,/? and 2p ^ n, then the ur are uniquely 
determined by i(tq)u, q = 0, 1, . . . ,p. 
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Proof. By (15), we have 

u= £ (" ~ ' 7 ' + *W-«->n q = 0,...,p. 

The coefficient of Wp-,7 in this equation is ( w ^ ^ ) and hence 

the determinant of the system is 

n (" " %+ 2") > ». 
P 

r 
since 2p ^ n. 

COROLLARY. If 

p 

2 li(tp~r)ur = 0, /or wr G Fn r = 0, . . . ,/?, 2/? ^ w, 
r = 0 

//?e« wr = 0, /or r = 0, . . . ,p. 

We are now in a position to prove the 

THEOREM. 

A(£) = © A,(£), 
p = 0 ^ 

A0(£) = F0 

A,(£) = M(0^O © f i 

A,(£) = ittP)F0 © M'"~ V i © • • • © FP 

A„_.(£) = M(^"P)F0 © Ktn'p~])F\ © . . . © M?"~2Oiv 

A„_,(£) = ^ " " 1 ) ^ 0 © K ^ " V i 

A„(£) = M(/")F0 . 

Proof. The results of Section 5 show that for 2p ^ n, 

Lp{E) = \mmp ® keiirp = Fp ® Imj^Op-i. 
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The corollary of the above lemma, together with an induction on p show 
that 

ImrtO,-! = M O V i © tiàFp-2 © • • • © ti*p)Fo. 

This proves the formulae when 2p ^ n. The remaining formulae follow 
from these by virtue of Corollary 1 of the lemma in Section 4. 

COROLLARY 1. For 2p ^ n, we have 

dimFp = dimG„_, = \^J - [p
 n_ {) . 

Proof. dimA,(£) = {^j\ 

COROLLARY 2. 

A0(£) = i(t")G„ 

A](E) = i(t"-])Gn®i(t"-2)Gn-, 

AP(E) = i(f-p)Gn © i(tn-p-\)Gn-x e . . . e i(f-2P)Gn-p 

(2p^n) 

A„-p(E) = i{tP)Gn © i(tP~x)Gn-X © . . . 0 G„-p 

A„_,(£) = i ( O G „ © G „ - , 

A„(£) = G„. 

Proof. Apply D to the decomposition in the theorem and use Corollary 1 
of the lemma of Section 4. 

7. Concluding remarks. 

1. The decomposition of Section 6 is, in fact, orthogonal. To see this, 
assume that 2p ^ n and consider 

(li(tq)up-q, ii{f)up-r) = (i(f)ii{tq)up-q, up~r) 

= {n-2p + q + r)(^->P-q,up-r) 

= o, 

ifO ^ r < q ^ p (cf. (15)). 
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The other orthogonalities follow from that of A/?(£), A^(£), p i*= q, and 
the fact that D is an isometry. 

2. Now that we know that u e \p(E) (2p â n) can be uniquely written 
in terms of uq e Fq (0 ^ q = p) the lemma of Section 6 provides an 
algorithm for computing these uq in terms of u\ in fact, the system 

i(tP) 
« = ( ; ) u0 

i(tp~])u= [n
p _ \)tit)uo+ (p _ ])u} 

i(tq)u = 

+ 

i(t°)u 

+ 

+ 
n - 2p + 2q\ 

q )UP-<I 

n
 0

P)titp)uo + ••-

may be solved, successively, for UQ, u\, . . . , up. 

For example, if n ^ 4 and /? = 2, we find 

w0 

and 
«(« — 1) 

1 

o 1 2 i 
(t2, u), ux = [ i(0" - - < r , u) t] 

n — l n 

2 2 
u2 = u - [i(t)u - -(t2, u)t] • t - — -<<2 *A '2 

n — 2 n n(n — \) 

~(t\ u)t2. 

3. The eigenvectors of D and inner products of elements of A(£) can be 
computed in terms of the decomposition of Section 6. 

For example, if 2p ^ n, and we write 

u = 2 Ktp~>q, 
4=0 

where uq e Fq(q — 0 , . . . ,/?), then 
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P 
Du = 2 (-\fii(f-P-«)uqy 

by the lemma of Section 4. 
Thus u e àp(E) is an eigenvector of D only if 2p = n. In this case, the 

eigenspace of D corresponding to the eigenvalue + 1 is 

ii(tP)F0eii(tp~2)F2®..., 

while that corresponding to — 1 is 

ti(tp~x)Fx eix(tp~3)F3 e . . . . 

If we write 

v = 2 tit"'"»,, e AP(E), 
q=o 

where vq e Fq(q = 0 , . . . ,p), then 

since 

i(f)^f)u = ( " ~ 2q)u, u G F,, 0 fk 2p ^ », 

0 l ? l / i - 2 / ) , 

by (15). 

Similarly, we conclude that, if n = 2p, then 

(u,Dv)= Èo(-\)"(2p
pZ

2
q

q)(uq,vq). 

4. The case u e A2(£) is of special interest because the curvature tensor 
of a pseudo-Riemannian manifold, when regarded as a tensor of type (2, 
2), has the symmetries of A2(£). In this case /(/)« corresponds to the Ricci 
tensor, while (/2, u) corresponds to the scalar of curvature. 

The terms in the decomposition of Section 6 also have geometric 
significance. According to the example of Remark 2, above, u0 

corresponds to the scalar of curvature, ux corresponds to the trace-free 
Ricci tensor and u2 corresponds to the Weyl conformai curvature tensor. 
In particular, if u2 = 0, the manifold is conformally flat (if n i? 4) and if 
u\ = 0, then we have an Einstein manifold. 

Decompositions of the above type (using the Bianchi symmetries as well 
as those of k2(E) ) have been employed in [3] to obtain inequalities 
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between the signature of a four-dimensional Einstein manifold and its 
Euler Characteristic. 

The specific decomposition of Remark 2 was used in [2] to show that 
Pontrjagin classes of a manifold depend only on the Weyl tensor and 
hence are conformai invariants. 

It is hoped that the generality of the above results, with respect to both 
the field T and the inner product (,), will lead to further applications. 

REFERENCES 

1. W. H. Greub, Multilinear algebra (2nd Ed.) (Springer-Verlag, New York, 1978), Chapters 
6 and 7. 

2. Pontrjagin classes and the Weyl tensor, C. R. Math. Rep. Acad. Sci. Canada 3 
(1981), 177-182. 

3. A. Palombo, Nombres caractéristiques d'une variété riemannienne de dimension 4, J. 
Differential Geometry 13 (1978), 145-162. 

4. J. R. Vanstone, Some new identities in mixed exterior algebra, C. R. Math. Rep. Acad. Sci. 
Canada 2 (1980), 269-271. 

5. The Poincaré map in mixed exterior algebra, Bull. Can. Math. Soc, to appear. 

University of Toronto, 
Toronto, Ontario 

https://doi.org/10.4153/CJM-1984-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-022-3

