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CONGRUENCE-PRESERVING ISOMORPHISMS OF THE
TRANSLATION GROUP ASSOCIATED WITH A
TRANSLATION PLANE

F. RADO

Let II, I be projective translation planes, &, 2’ their sets of points, [, [,/
the improper lines, and T, T’ the corresponding translation groups. T is an
Abelian group, simply transitive on Z\l,. The set of the subgroups
Ts={r|7 €T, cen =5} for all S€ [, is called the congruence of T
(cen 7 = centre of 7). An injective map ¢: & — P, where &/ C &, is said
to be a collineation of &/ when o(l, N &) C 1./ and three points in .2/ are
collinear if and only if their images are collinear; the set of these ¢ is denoted
by ®(/, &') and for O € o/, 0" € P’ we write

CI)O,O’(My @/) = {901 ¢ G Cb(‘%y ‘@I)y @(O) = 0,}
An injective map w: To—T'(To CT) is called a congruence-preserving iso-
morphism of To if 71, 70, 771 € Tog=> w(ra71) = w(r2)w(r1) and cen 7; = cen 7y &
cen w(r;) = cen w(rs); we denote the set of all these w by Q(T,, T').

For & = & it is known [4; 7] that: (1) If ¢ € ®(£, &), then the map
#: T — T defined by &(r) = ¢r¢~!is a congruence-preserving isomorphism of
T. (2) o & defines a bijection of &4 o (P, &’) onto (T, T’). These results
may be thought of as the core of the theorem on the representation of collinea-
tions of Desarguesian planes by semilinear maps.

It was realized that collineations of certain subsets ./ of a Desarguesian
projective plane also induced semilinear maps and could be embedded in
collineations of the entire plane. This was proved in case .2/ consists of four
non-concurrent lines [1; 2; 3], in case &/ consists of three non-concurrent lines
and at least one more point [8], and for a more general case (requiring only two
full lines to be in .27 and certain additional conditions) [6]. When %7 contained
four non-concurrent lines, any collineation of & could be embedded into a
collineation of the whole plane under much more general assumptions as to the
projective plane [5;9].

Our aim in the present paper is to investigate what connections exist between
the collineations of certain subsets in a translation plane II and the congruence-
preserving isomorphisms of corresponding complexes of the translation group T.
We will also note subsets .2/ such that any collineation of & is embeddable in a
collineation of II.

Definition 1. We call a set &/ C & containing at least two proper points a
semi-anchor if for any translation plane II', and ¢ € &(, &'), and
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€T, N7 I, implies that there exists ' € T' such that for any
M e/ N7 we have 'o(M) = o(rM). In other words, we require a
translation 7’ € T’ such that the diagram

Mﬂr_wg.@'
R
< NI -ﬂc@'

commutes.

Note that the condition & N 71/ ( I, ensures the existence of a proper
point M such that both M and rM belong to ..
For a given semi-anchor .27 we denote the uniquely determined ' € T’ by

(7). We write T(&/) = {r|]7 € T, & N &/ ¢ I} and have
(1) ot M) = o()e(M) forany r € T(¥) and M € &/ N 1.

Since we shall be discussing only one collineation ¢ at any given time, we shall
generally write ¢(M) = M’, (r) = 7’. We then see that for all 7 € T(%/)
there exists ' € T’ such that for any M € &/ N i,

) (M) =M.

Definition 2. If & is a semi-anchor and &: T(&/) — T’ defined by (1) is a
congruence-preserving isomorphism for every ¢ € &, &’), then the set .o/
is called a near-anchor.

Definition 3. A near-anchor %7 is said to be an anchor if T(&/) = T.

THrEOREM 1. A semi-anchor containing the distinct lines | and I, is a near-
anchor.

The main part of the proof of this theorem consists in showing that
(rom1)’ = 7o/m)’ whenever 71, 79, 72r1 € T(&Z). If there exists a proper point M
such that M € &, 1M € &/, and 7.7, M € &7, then using (1’) we have

(ror1)' M' = (reriM) = 7/ (1iM)" = 71/’ M,
so that
(T21'1)' = 711,

However, it is not difficult to construct an %/, even in the real projective plane,
satisfying the conditions of the theorem, for which such a choice of M is not
always possible (see for instance example (2) below). We therefore introduce
the notion of projections.

Let 4 = 1M, and let .S be any point of /, distinct from 4. The map from
P\{S} onto I defined by P+—>SP N1 (P € P\{S}) is called the projection
onto l from S. We shall denote SP M ] by P*, and shall call P* the projection of P
onto I from S.
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Given any 7 € T, there exists 7* € T, such that

(2) ™*P* = (rP)* for all P € P\{S}.
Indeed, let B be a fixed point in 22\, and determine * € T, by
™*B* = (+B)*.

Denoting the line SB by b, we have 70 = 7*b, hence 7~17*b = b. Therefore the
centre of the translation 7~!7* is S. Then, for every point P different from
S, 7~ 17*(SP) = SP,i.e. 7*(SP) = 7(SP). It follows that 7*P*, rP, and S are on
a line, hence 7*P* = (rP)*. The map 7 +— 7* is also called a projection and 7* is
the projection of T onto I from S. This map 7 — 7* is a homomorphism of T onto
T,, for, using (2) we have

(Tle)*P* = (Tlep)* = 7* (TIP)* = T2*T1*P*,

and hence
(3) (7'27'1)* = Tz*Tl*-

We introduce the symbol [Py, Q1; Ps, Q2] to show that the points Py, Q1, Ps, Q;
are on a line and that there exists a translation 7 such that Q; = 7Py, Q; = 7P,.
Assuming [Pi, Q1; P2, Q2] we have by (2) Q* = (#P)* = 7*P* (1 = 1, 2),

hence
4) [P1, Q15 Py, Qo] = [P1*, Q1F; Po*, Qx*].

Proof of Theorem 1. Let & be a semi-anchor containing the lines / and /.
Let ¢ be an arbitrary collineation of .27 into any translation plane £’ and let ¢
be the map induced by (1).

Since ¢ sends collinear points onto collinear points, and since I, C .27, we
may conclude that

5) cen (r) = ¢(cens) or cen7 = (cenr) forall r ¢ T().

Using (5) and the injectivity of ¢ we can easily deduce that the map
¢: T(Z) — T is congruence-preserving.

Let S denote any point of /,\{4} (where 4 = I M [ as before) and let
r € T(), P € \|S}. Denote the projections of P, r onto / from S by P*, +*
and denote the projections of P’, 7/ onto I’ from S’ by P’*, 7/*. Since ¢ is a
collineation,

(6) P*¥ = P'* forall P € &/\{S}.

Hence, using (2) (applied in "), (1’), (6), (2), (1), (6) in this order, we
deduce that for any proper point M € &/ N 7~

M) = (M)* = (eM)* = (M) = (PFM*) = M = ¥ (M),
Since T is simply transitive, we deduce that

@) % = forall r € T(/).
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Next we show that
(8) (T2T1), = T2,T1’ provided T1, T2, T2T1 6 T(M)

If M is any proper point of [/, then M, r*M, *r,*M all belong to I, and
therefore to.%/. Hence from (1’) we have

(7'2*7'1*),M, = (7'2*71*JW)' = % (TI*A[)’ = Tz*'Tl*'JW',
hence

(1'2*7'1*), B 72*,1'1*’.

Using (3) and (7) we have

(727'1),* = (7'27'1)*, = (7'2*7'1*), =M™ = n*n* = (72/T1')*-
The translations (re71)’” and 72’71’ have the same projection onto /' and this is
true regardless of the position of S on /.. Considering two positions of S we
conclude that (o)’ = 74'7/'.

All that remains is to see whether the map : T(&/) — T is injective. This is
clear for the restriction @|T . Suppose now that r,’ = 7,/ for some 7,7, € T(%/).
This and (7) imply that 7,* = r,*'; since 7,*, 7o* belong to T, we obtain
m* = r*. Two different projections yield, as above, 71 = 7.

THEOREM 2. If &7 s a semi-anchor containing the proper line l, then every
point-set B containing L \J 1, is also a semi-anchor.

Proof. Consider ¢ € ®(Z, #'), write again ¢(P) = P', select r € T(Z),
Mec ZN1% (M¢l1L,),and determine 7 € T' such that 7'M’ = (+M)’.
We have to show that

P = (vP)’ forallP € ZN+'Z.

We may admit that 7 # 1. Let N = v M, Q = 7P. If P is not on the line MN,
we can construct the point Q by intersecting /, with MN, MP in U, V,
respectively, and then intersecting UP with VN in Q. The points M, N, P, Q,
U, V belong to & and their images under ¢ share just the same collinearity
properties. Hence N’ = 7'M’ yield Q' = 7'P’, i.e. 7P’ = (7P)’. We call this
argument the ‘‘quadrilateral argument’’.

If P is on the line M N, we have [M, N; P, Q]. Choose S € [,,S ¢ I, MN, and
intersect / with SM, SN, SP, SQ in M*, N*, P*, Q*, respectively. Because of (4)
we also have [M*, N*; P* (Q*]. Since !/ belongs to the semi-anchor %7, it is
easily seen from (1’) that [M*, N*; P*' | Q*] is also valid. Using projection
onto M'N’ from S’ we deduce [M’, N’; P’,Q']. Hence N’ = 7'M’ vyields
Q' = 7'P’; that is, 7P’ = (+P)’. This completes the proof of Theorem 2.

COROLLARY. Consider I,1, C & C X C P (L is a proper line). If & is a
near-anchor, then & is also a near-anchor. If & is an anchor, then & is also an
anchor.
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Indeed, in both cases & is a semi-anchor by Theorem 2, but then it is a
near-anchor by Theorem 1. If &/ is an anchor, then obviously T(#) = T.

Examples. (1) If the characteristic of the translation plane 11 is different from 2
and if the point-set & contains l,, and no more than two proper points on any
proper line, then &/ is a semi-anchor. Since two pairs of proper points corre-
sponding in a translation will never occur on the same line, it is sufficient to
apply the quadrilateral argument.

(2) If 7 contains the concurrent distinct lines 1, 1y, ls, it 1s a near-anchor. Be-
cause of the corollary we have to consider only the case. %/ = I, \U I, U [, and
apply the quadrilateral argument.

A similar reasoning leads to the following generalization.

(3) Let& contain the distinct lines I, [ and suppose that 4, B, C, D € land
[4, B; C, D] imply the existence of proper points E, F not on [ such that
EF, 1,1, are concurrent and AE, BF, I, are concurrent. Then & is a near-
anchor.

(4) A point-set consisting of the non-concurrent lines 1., 11, I, and at least one
point more is an anchor. Pick out a point E of the given set .2/ which does not
belong to any of the lines /,, I, l». Denote Iy N\l = O, I, NIl = Oy,
lao f\ lz eSS 02, OgE ﬂ ll = El, OlEf\ 12 = E2, and To E T, TO(EQ) = E Rela-
tion (1’) holds for 7 = 74 by the quadrilateral argument. Next we see that (1’)
holds for any r € Ty, because one can project 7, on l, from every point of /.
Using the projections of the translations belonging to T, one concludes that
relation (1’) is valid for any r € T(%/), that is & is a semi-anchor. By
Theorem 1 it is also a near-anchor. What we still have to do is to show that
r€T=7€ T). Forr € Ty, this is evident; thus suppose that

S = cent # 0.

We intersect /, with the image of /; under 7, join this point M, with .S, and cut
SM, with I in Mi. Then (M) = M, implies r € T(&).

THEOREM 3. Let PP, P’ be the point-sets of two translation planes, S/ a near
anchor in P, such that for every S € &/ M\ 1, there are two proper points of
collinear with S and let O be a proper point of A and O' ¢ P’. The map : ¢+ &
determined by relation (1) is a bijection of ®¢,0 (', P’) onto QT (), T).

Proof. Let ¢ be an element of &4, o (&, &’). Using the notation 74z for
r € T,7(4) = B, we have, by (1),

¢(rou0) = ¢(rom)e(0) forany M € «,,
where .27 is the set of the proper points in %7, hence
9) e(M) = ¢(ro4)(0") for any M € .
If M € & N 1, consider distinct points 4, B € .97, collinear with M. Since
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M = cen 7,45 and since M, A, B are mapped in collinear points M’, A’, B’,
respectively, we have M’ = cen 745 = cen @(r,5) or

(10) (M) = cen ¢(r4p) forany M € o/ NI ,A, B¢ Ly A # B,
M, A, B collinear.

Formulae (9) and (10) show that ¢ is injective, for
o1 = o2 ¢1, 02 € Po,0 (S, P")

implies that ¢, (M) = ¢o(M) for any M € .

We take now an element w of Q(T(%/), T’) and look for an element ¢ of
o o (F, P") which is sent into w by ¢. Formulae (9) and (10) show that if
such a ¢ does exist, it must be given by

2y Jo@Cay)(0) for any M € Z,,
a1 Q1) = {cenw(rAB) forany M € .7 M1, A, B€.o A > B,

M, A, B collinear.

Consequently, we consider the map ¢: .2/ — £’ defined by (11) and will prove
that it is a collineation sending O into O’ and that ¢ = w. But first we have to
see that in the case of the second line of (11), ¢ (M) does not depend on
the choice of 4, B; indeed, if C, D € &/, are also collinear with M, then
cen 7,45 = cen r¢p and since w is congruence-preserving, cen w(r45) = cen w(7¢p).
Suppose now that ¢ (M) = (M) for M, M; € 27. Then either both M and
M, belong to .2, or both belong to %/ M I. In the first case, writing the first
row of (11) for M and M,, we see that the translations w (7o) and (70 ,)
have the same effect on O’, hence they are equal; w being injective, 7o = To a1,
therefore M = M;. In the second case, we have cen w(r45) = cen w(r¢p) With
A, B, C, Decly, M, A, B and M,, C, D collinear, which implies that
cen t g = Cen 7ep, that is M = M. Thus ¢: & — P’ is an injective map.
Now, take any points P, Q, R in .2/, and write

Q¢ = 0(Q) = w(100)(0") = w(rperor)(0);
since w is an isomorphism and since 7op, Tpg, Tog € T(2/), we have

Q’p = w(TPQ)w(TOP) (Ol)v

or, by (11),

(12) Q¢ = w(rpe) (P?),
and similarly

(12') Re = w(rpr) (P?).

If P, Q, R are collinear, then cen 759 = cen 7pg and since w is congruence-
preserving, cen w(rpq) = cen w(rpg). It follows from (12) and (12') that
Pe¢, Q¢, Re are on a line. If P, Q, R are not on a line, then cen 754 % cen 7pg,
hence cen w(rpq)  cen w(rpg) and P¢, Q¢, R¢ are not collinear. Consider now
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PeAd NI, Q, R ¢ .,and denote the images of these points, as before, by
Pe, Q¢, Re. If P, Q, R are collinear, then P = cen 7¢g; using (11) we have
Pe = cen w(rgr) = cen 7oz, thus P¢, Q¢, R¢ are collinear. If P, Q, R are not
collinear, then P # cen 74z Choosing S, 7" € &/, such that P = cen rgr we
conclude that cen w(rgr) # cen w(rgy) Or cen 7y¢g? 5% cen 7g#7¢ = P¢; hence
Pe, Q¢, Re are not on a line. Thus ¢ is a collineation.

0(0) = O’ is a consequence of (11) and of the fact that the unit element 7,
of T is sent by the isomorphism w into the unit element of T'.

The comparison of (9) and (11) shows that the translations @(7¢,) and
w(70) have the same effect on O’, hence they are equal:

(13) 2(rox) = w(roy) forany M € .
An arbitrary r € T(%Z) may be written as 754 with P, Q € &7, and we have

2(1p0)?(ror) = &(rperop) since @ is an isomorphism (&7 being a near-anchor)
= ¢(r00) = w(r0g) by (13)

= w(rpeTor) = w(Tpg)w(rop) since w is an isomorphism
= w(rpo)@(r0op) by (13),
therefore @(rpq) = w(rpg), i.6. » = w and the proof of Theorem 3 is complete.

THEOREM 4. Every collineation defined on an anchor of a translation plane can
be embedded into a collineation of the whole plane.

Proof. Let & C £ beagiven anchorandlet o € ®(27, ). Since T(&) =T,
we have ¢ € Q(T, T’). Consider the map

} . )/{o(rm,)(O') for any M € P\L,,
M= (M) = \cen ¢(r45) forany M €1, 4,B € .o/, A # B,
M, A, B collinear,

where O is a fixed point in &, and O’ is its image under ¢. If M € &7, then
o(M) = ¢(M) by (9) and (10). On the other hand, ¢: & — £’ is a collineation
of & by a proof similar to that used to show that formula (11) defines a
collineation.
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