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On the Cartesian Coordinates of Classes of
Tortuous Curves.

By JOHN MILLER, M.A.

The following notation is here used for the quantities occurring
in the discussion of tortuous curves.

Length = s ; curvature = — ; torsion = -;=-; direction cosines of
XV 1

tangent, principal normal and binomial:—a, fi, y ; I, m, n ; A., /M, V.

Frenet's formulae are therefore,

da I dl a A. d\ I

with two corresponding sets.

To find the cartesians of a tortuous curve from the values of R
and T as functions of s, Hoppe in Crelle's Journal (1862) reduced
these equations to the discussion of a differential equation of the
second order. Lie reduced them to a Riccati. The detailed process
is given in Scheffers' Einjiihruny in die Theorie der Curven, but only
two cases are worked out: (i) the helix, (ii) the general helix on

any cylinder that is the curves -~- = a constant. These examples

are trivial and need no elaborate theory. I shall return to the
Riccati equation at the end of this paper.

Integral forms have been given for the cartesians of several
classes of curves. Thus when R is a constant

X = R ado; y = R /3d(T, z = R ydo-

where do2 = do? + dp2 + dy", and a?

https://doi.org/10.1017/S0013091500033514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500033514


37

For T = a constant, Darboux gives the beautiful forms

_ Cidk-kdi rhdi-idh _ rkdh-Mk

where h, k, and I are arbitrary functions of a single variable.

For Bertrand's curves -=̂  + •=- = c we have
XV 1

x — — uda H (wo' - vw')dcr,
c J c J

y=— vd<r + — (uiv - wu')d<r,

z = — wdcr H («(' - uv')dcr,
c J e J

where u, v and w are functions of <r such that u2 + v- + w° = 1
and M'2 +

Finally Scheffers gives integral expressions of a very involved

form for the curves ^ + 7™ = constant.

It is seen that with the exception of the curves of constant
torsion none of these can claim to be very explicit, and I can find
no actual examples worked out except for T= constant. [See
Darboux Thiorie des Surfaces, Vol. IV., Appendix.] The first part
of the present paper gives integral expressions of an explicit nature
for these and other classes of curves by one uniform simple method
which shows the reason of the occurrence of such integrals.

Let x = cosdds, y = sin0cos<£<fe, z = sin0sinc/xfs.

Then -=r-= j \ 1 +Isin0-^j \-r, the positive sign of the root being

taken so that, as R is to be considered positive, 8 and s increase
together. If 0 is a constant we shall have from

1 .UddV ( . di>V\ 1 . d<}>
R v \\dsf \ dsr ) R ds

da I . ad6
—- - — = - sinfl-j- .
ds R dt
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sin<?
.*. I — — -

.-. A.=

dl _ a k

From this, -=- = — \ COSP-^J + jZ^an~1\s^n"'jfl) | J ~ •

When R is a constant and 0 is not a constant, the cartesians are

x = R cos0 ,

y = R sir

z = R sin(?sir

In these <f> is an arbitrary function of 0.

I give some examples integrable in terms of ordinary functions.

1st Case. 6 a constant. The spherical indicatrix is a circle
and the curve is a helix.

•R J

x = —r-sin20, y = Rsin20sin<£, z = - RsinJ0co8<£.

Let us transform the integrals by making tan— = v and tan-^- = u
2l it

where u and v are arbitrary functions of a variable t.
n R *n a r»£» ^

Then R - 2

R " J(l+M*)(l+^)2Vt
<«v2 ) 2 / 'R " J(l+M*)(l+^)2Vt (1+M2)

^ = 8r //̂ , w u
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2nd Case, v = 1 + w2 and v° — t. The spherical indicatrix is

6 </>
tan— = sec2-jj-.

5

R J (<2 + 2« + 2)8"

3rd Case, v = , that is tan— = 2cosec</>.

R

R~

Case, v = ;— , that is tan— = cosecs4r.
It.' V V

=
R
y_ _ r ( l - M > V ( l + ^ )
R " J (2M4 + 2MS+1)2 " '

R "

There is no need to give the results which involve logarithmic and
inverse circular functions.

The locus of the centre of curvature (£, TJ, f) of a curve of
constant curvature is a similar curve and, if T and T' be the radii
of torsion, TT' = R2.

As an example, take the 2nd case.

(4) 2 aa
<J + 2« + 2 ' °" +<2+2< + 2 ' rfs
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Q. ., t(t*-2t-l) 2-21-31?
Sumlarly ™= 2(f + 2t+ 2) Jt{1 + ty — ( < J + 2 , + 2 ) ^ ( 1

When T is a constant the cartesians are

a; = - T I cos20d<£ - T f cos0rftan-Msin0-^l,

y = - T sin0cos0cos<£rf<£ - T Isin^cos^xftan-'J s i n ^ - ^ 1 ,

z = - T Isin0cos0sin<£(24> - T fsin^si

One integrable class occurs evidently when <f> — n6 + c, n a positive
integer. We give the results for <j> = 6.

i 2 0 -

1 . J2 + cos0
^ 0 *

-—- = - ^sin30 - sin0 + tan-1sin0.

It may be easily proved that fi =

cos<p -
and that v = —

By making

> - cos0sin<i|sin0-r^

we get Darboux's formulae.
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For BertrancTs curves we have

ct . f / dd>\ \ b

c \ \ dOf ) c c

- • J Jcos,

y = - 1

For shortness let

P= 7{l + ( s i n ^ } and Q. - cos/J- ^ ( s i n ^

For the curves whose radius of screw (Frost) is constant, that is the
1 1 , . 1

curves — +=5 = constant = — ,

The curves whose principal normals are the binormals of a second
curve,

_1_ J_ l_
R2 + T2 ~ aR

give efo =

The curves -== + 7?E+H! + D̂" = ^ ' *^e AX^S °* wbose osculating

helix with the same torsion describes, with reference to the tangent,
principal normal and binormal as axes, a Pliicker's conoid [Demoulin,
Paris Soc. Math. Bull. 21 (1893)] give

The curves 75= + ™ + ^ 2 + ^5- + 7fr = 0 in which a straight line fixed
IxX. i. xv xv X

relatively to the tangent, principal normal and binormal generates
a developable surface [E. Cesaro, Naliirliche Geometrie] give

ds = - {oPQ + 6Q2 + cF}a!6>/(<£P + eQ).
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Hence expressions as integrals, although very cumbrous, can be given
for the cartesians.

Let us now consider the curves — =/(«) given by Enneper

(Afathemalische Annalen, 1882) and Pirondini (Crelle's Journal
1892) as geodetics on developable surfaces.

If -r-z. — du, that is tan— = e",
sin0 2

then

and
1 ( ^ , d<f> i Jd<j>- - = { - tanh«£ + ̂ t an- (^

R

du

di.

du

* - { - J-coshw.

d<f>d<f>
Hence if coshu be made an arbitrary function of «, -j- and therefore

</> are known in terms of s. The whole is now reduced to a question
of quadratures.

Let sin0-~ = tanf where £ is an arbitrary function of 0.

-E=aec€ and - T =

d6
coif'

The elimination of f or 0 gives an involved differential equation of
the second order for 0 or f. We may, however, get some solutions
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when R or T is given as a function of 8 by giving a value to £.

The corresponding value of T or R can then be got. Thus if f = d,

( ft \ C A a 1 fi V
— — I and Tg- = logctanl — — I. Hence, if R = s
* 1 j J i t W Z j

so that « = ctan(— —) and <t = log—, then T = ; — .
\ 4 2 / c 4c

/ /C2 — 8~\ 8
Again if </>=# and R = c./l-^—-^l we have sin^ = —

The coordinates are then

t c
y = c I sin Bco^ddd = - —cos*^,

f • c •
z — c I sin vcos udO = — s i n p.

We wish here to give a note on the Riccati equation given by
Lie, although the work is not directly connected with the preceding
method. Before giving his substitution we shall slightly change the

form of Frenet's formulae by writing R = -r^ or alternatively T = —

where dd and dot are the angles of contingence and torsion.

__ da dl R . dX R , .
Th™ dl=l' de=-a-TK de^T1'^-'

da T , dl . T rfX
or •=- = ^-f, - j - = - A - ^ - a , -=- = «, etc .

aw R aw R dot

Then, as pointed out by Hoppe, from any expressions involving

a, A, R, T and 6 we get corresponding ones with a> by interchanging

o and A, R and T, 6 and oi,
Since a* + P + V=l

a + ti
we may put •=—r- = §.

1 — A

https://doi.org/10.1017/S0013091500033514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500033514


44

If </> + ixj/ is a particular solution, <f> and if> being real functions of

and _ . ^ + _ ^

T
By elimination of —

K

.•. 1 + <£2 + ̂  = ce./ , c a positive constant.

If <j> or \j/ be taken arbitrarily, a particular solution is determined
and the general solution can be found corresponding to the value

— -;— <f> of -=r-. We refer to Scheffers' Einfiihrung in die Theorie
y/ dio R
efer Cwrven for the deduction of coordinates from the general
integral. To take a simple case, let <f> = cosh0, \j/ = - sinfl and c = 2.
By changing the variable from u to 8, the equation is

we have

From 1 + <p + ̂  = 2e->

cosh^

XV

The equation now takes the form

of which a particular solution is coshfl — isinh#.

The general solution is therefore

——^
d - et9{cosh6 + isinhd}

where a is a constant,
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The coordinates are

x= - \tanh6sinORd6,

-[
where R is an arbitrary function of 8.

When a case is worked out with a> as the variable, T will occur
in the final integrals. Hence if R or T can be expressed as a

T
function of •=-, as in the classes of curves given earlier, we shall

R
have from any given solution of the equation an example of each of
such classes.
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