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Inverse subsemigroups of
Rees matrix semigroups

David E. Zitarelli

According to the Rees Theorem, every completely O-simple semi-
group can be represented by & Rees matrix semigroup over a group
with zero. A characterization of all subsemigroups of the
latter is given in terms of the structure group, structure sets,
and two mappings. Next all congruences on such subsemigroups

are described, along with conditions for comparasbility. Finally,
an algorithm for computing the number of nonisomorphic inverse

subsemigroups is constructed.

1. Introduction and summary

In [70] Tamura and Chrislock posed the problem of determining the
structure of all subsemigroups of a completely O-simple semigroup S .
They resolved it for O-simple subsemigroups of S when the structure
group of S 1is finite. The purpose of this paper is to describe the
structure of all inverse subsemigroups of S . This is achieved by means
of the Rees Theorem, which asserts that a semigroup is completely O-simple

if and only if it is isomorphic to a regular Rees matrix semigroup

MO(I, G, M; P) (see [9], or Theorem 3.5 of [1]). Note that we are
writing nonzero elements of S as triples (7, a, W) , with multiplication
defined by
(Z, ap,, . v) it Py * 0
(i, a, w)(g, b, v) =

0 otherwise.
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Our main results are contained in Theorems 3.2 and 3.9. The former
indicates that inverse subsemigroups without zero correspond to subgroups,
while the latter describes those with zero. To carry out this description
we introduce the concept of an inverse block subsemigroup and show that, in
a sense, these semigroups form a basis for the structure of an arbitrary
inverse subsemigroup. The term "block" has been adopted here because of
its similarity to the decomposition of & matrix into block submatrices. 1In
fact our decomposition is reminiscent of that described by Hall in Theorem

6 of [3].

Section 2 lays the groundwork for our main results. The structure of
H-classes of an inverse subsemigroup T of S 1is given in terms of
certain elements and subsets of G . Proposition 2.9 provides a useful
characterization for specific H-classes. Section 3 contains the basic
results of this paper. We give two structure theorems according to whether

T has a zero, and describe methods for constructing 7 in both cases.

The remaining two sections deal with some properties of the subsemi-
groups in the title. In Section 4, making use of results due to Ljepin [5]
and Preston [6], we characterize their congruences and give conditions for
comparability. The last section develops an algorithm for computing the
number of nonisomorphic inverse subsemigroups. It depends on the number-

theoretic concept of a partition, and we apply it to rectangular O-bands.

All undefined concepts and symbols can be found in [7, 2]. However,
for Rees matrix semigroups we will use the notation of Petrich (see §V.3 of

[71), which varies somewhat from that used in [, 2].

2. H-classes

Let S = MO(I, G, M; P) DYve an arbitrary Rees matrix semigroup. Since
§ is regular the set V(Z, a, W) of all inverses of (%, a, H) is
nonempty for each (Z, @, W) € S . The proofs of the next two results are

evident.

LEMMA 2.1.

Wi, a, u)={<j,x, N oes | der b to, Ak,

1-1

I I §
p)‘i;éo, x=p.a pM}.

https://doi.org/10.1017/5S0004972700043458 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043458

Inverse subsemigroups 447

COROLLARY 2.2. An element (i, a, W) € S has a unique inverse if
and only if Py; # 0 for exactly one A€M and Py; # 0 for exactly one

J €I . In such a case,
(¢, a, W™t = (j, Piia_lpiia A
Let T be an inverse subsemigroup of S . For %1 €I , yu €M,
define
Hiu = {({, a, u) €5 | a €G},
Tiu={(i,a,u)€T|a€G}.

Of course the H. are the H-classes of S and T. =TnH. . It is
Al (AT U

well known that the H-relation on a regular subsemigroup of any S is the
restriction of the H-relation on S (see, for example, Lemma L4.4.1 of

[&a). As a special case we have the following fundamental result.

LEMMA 2.3. The Tiu are the H-classes of an inverse subsemigroup
T of 5.

For T an inverse subsemigroup of S put

II

{2 er| T\ # $ for some A € M} ,

MI

{uEMITjuaf(b for some g € I}

For each % € I' there exist a € ¢ and M € M' such that
(£, a, ) € T . Since (£, a, ¥) has a unique inverse in T it follows

from Corollary 2.2 that P # 0 for precisely one A € M . This remark
engbles us to define the function below.
LEMMA 2.4. For each 1 € I' , define

(1) Vi = X if and only if p,; # 0 .

Then Y 1is a one-to-one function of I' onto M'
Proof. If % € I' and Y¥{ = A then py; # 0 . We will show that
X €M . Since (¢, a, u) €T for some a € G, u €M, Corollary 2.2

)—l

and the fact that p,. # 0 yield that (2, a, ¥ =(, ,A)eT . BY
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definition this means that A € M'
Next let k, I € I' with ¢k = ¢Z = y . Then puk#O and
Py # 0 . Further, p € M' implies that (Z, @, y) € T for some

7 €I', a€G . Since 7 €I and P is regular it follows that

Pyi # 0 for some A € M . According to Lemma 2.1 this means that both
[k, p;;(‘a-lp;%, A] and [Z, p;%a—lp;\%, A] are inverses of (%, a, u) in

L.

T , which of course implies that Kk

Finally, if u € M' then (Z, a, n) €T for some <2 €I , a €G .
It follows from Corollary 2.2 that (Z, a, u)—l = (j, b, X) vhere
P j*O0 . Py #0, ema b= p;}a_lp;% . But (4, b, \) €T , which
implies that § € I' . Since also Py #0 it follows that ¥j = u .
Thus Y 1is onto and consequently is a bijection of I' onto M' .

As a result of this lemma we can identify M' with I' . Thus we
will write pij for p(wi)j and Ti,j for T‘l:(lbj) - Set p; =P -
Then (1) implies that p; # 0 for all 7 €I' and Pij = 0 for
i #J €I' . Moreover Corollary 2.2 becomes
(2) O R e 7 BCAP R
Note that this element is the unique inverse of (%, a, J) in 7 ; of
course (%, a, J) may have other inverses in &S .

The next.. result is an analogue of Corollary 2.52 a) of [1].

PROPOSITION 2.5. Let T be an inverse subsemigroup of
W, 6, M; P) and i, g, k, 1L €I' . Then the following assertions hold:

(i) T, 18 a maximal subgroup of T ,

(i1) T122,7'=0 if 1#J
(i17) the product TikaZ is equal to Til if § =k and to
0 if j#k.

Proof. Since 7 € I' there exist j € I' and a € G such that
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(i, a, §) € T . Using (2) we obtain
. N . =1 . -1 .
(2, a, jiZ, a, §g) ~— = [1, p; s z] €T .
Thus Tii is an H-class containing an idempotent, so (Z) follows from

Exercise 1, 82.3, [1]. Both (ZZ) and (ZZZ) hold since the analogous

properties hold for the Hij .

By making use of Lemma 2.3, it can be seen that our next result is a

particular case of Green's Theorem. Its proof is straightforward.
PROPOSITION 2.6. Let T be an inverse'subsemigroup of
MO(I, G, My P) and (i, a, j)s (i, B, k), {1, e, k) € T . Then the
mapping
(1, @, §) > |2, 7'p;%, z](z z, j)[j, p;a b, k
i8 a bitjection of Tij onto TZk .
Define

C;j=lacc| (i, a, 4) €T} (4,7 €I')

We can then write

= (7" C‘[:J" J) s

T..
1J
where Cij is a subset of G which, in general, is not a subgroup.

However we can characterize the Cii in & useful way.

-1
LEMMA 2.7. If =z, y, 3 € Cii then xy z € Cii .

Proof. This follows from Proposition 2.5 and the fact that
(4, =, i3, y, ©)7HE, 2, 1) = (i, ™l 1) €T .
LEMMA 2.8. A nonempty subset C of a group G 1is a right coset of
G if and only if :cy_lz €C forall x,y, 2 €C .

This last result is a restatement of Exercises 4.1.22-23 of [4].

These two lemmas are fundamental in the next proof.
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PROPOSITION 2.9. For each i € I', C,; 8 a right coset of G and

C..p. 18 a subgroup of G .

1171
-1
P . =C,.p. . i . ...
roof. Let H Cnpz Then e € H since p; € Cu If
z=ap, s ¥y = bpi €H for a,b € C;; ‘then it follows from Lemma 2.7

that abp::l €c,. . Thus

-1 -1 -1

-1 _ .
xy ~ =ab —[ab pl]pieﬂ,

which implies that H 1is a subgroup of G .

PROPOSITION 2.10. For every pair of elements i, § € I' ,

~1 -1 . -1 . .
Proof. If a € Cij then a € Cij s SO (‘L, a -, ,_7] € Tij . Using

(2) and the fact that T is an inverse semigroup, we obtain

., =1 a-1 _ |, -1 -1 . . -1 -1
[1,, a -, .7) = [J, pj ap ;s ‘L} € Tji . This means that pJ. ap; € Cji

-1 . . .
so that a € pJCsz‘L Thus C_LJ —pacgtpt The opposite inclusion
follows by retracing the above steps, so the given equality holds.

3. Structure theorems

Recall that a primitive inverse semigroup is an inverse semigroup in
which every nonzero idempotent is primitive. Every Brandt semigroup is
obviously a primitive inverse semigroup. To express the converse relation-
ship we need the next definition. It was first introduced by Ljapin [5],
who used the term "mutually annihilating sum". Another term fregquently

used is "orthogonal sum" [4].

DEFINITION. A semigroup S with zero is a O0-direct wunion of

semigroups S(1 (o € 4) if :3‘:0‘[6.’1‘1 Sa’ SanSB=O and SaSB=O for

all o, B €A, a#B.

The next result is due to Venkatesan [11], ef. also Corollaire 5.17
of [4].
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LEMMA 3.1. 4 semigroup is a primitive inverse semigroup if and only

if it s a 0-direct union of Brandt semigroups.

For the remainder of this section let S = MO(I, G, My P) . Suppose

that T 1is an inverse subsemigroup of S without zero. If Tij' F 3]

then (fZ, a, j) € T for some a € G . But (i,a,j)2=0 if 1 ¢4 , so
that 2 = j . Now if Tii # @ and ij # § then Proposition 2.5 implies

that TiiTjj =0 if 1 # j , whence we conclude again that % = J . Thus
T = Tii for some < € I , which according to Proposition 2.5 means that T
is a subgroup of S . We have proved

THEOREM 3.2. A swbsemigroup T of a completely O-simple semigroup
S is an tnverse semigroup without zero if and only if T 1is a nonazero

subgroup.

COROLLARY 3.3. A subsemigrowp of a completely simple semigrowp is an
inverse subsemigroup if and only if it is a subgroup.

We can now construct all inverse subsemigroups T of S without zero
by combining Proposition 2.9 and Theorem 3.2. One merely tekes a subgroup
H of G and elements 7 €I , U € M wvhere pui # 0 , then forms

T={[i, hp;‘i‘:‘, u] eslheH}.

For the remsainder of this section we will let T be an inverse
subsemigroup of S which contains O but is not a subgroup of S . We
shall call such a subsemigroup nontrivial. Since all of the idempotents of
S are primitive, naturally those of T are also, so T is a primitive
inverse semigroup. With Lemma 3.1 in mind, we introduce the next basic

concept.

DEFINITION. Let J and L be nonempty subsets of I and M ,
respectively, with |J| = |L] . We say that T is an inverse block
subsemigroup of S corresponding to J and L if

TJ.Z#{D for all JeJdJ, L €L,

TJ.Z='¢ if either j tJ or L §L .
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To ensure that the function Y defined below exists, we will assume
that |I| = |M| . Similar arguments will apply in the case |M| < |I|
Let J ©be a nonempty subset of I , H a subgroup of G ,

u:J +G any function, u:gjg-ru

Y :J > M a one-to-one function, UYj = j
satisfying

p,; #0 if end only if u= 7.

Take . = pa. and defi
pt7 pJ:7 n efine

[J,H,u,w]={(1,,a,,7)€S|1 jed, aep u Hu}u{O}

PROPOSITION 3.4. [J, H, u, ¥] <is a nontrivial inverse block
subsemigroup of S8 corresponding to J and J .

Proof. Let T = [J, H, u, ¥] . For each J € J , (ja P;l, 3] €r
since e € H , so that T is nonzero. If (7, x, 3), (7, y» k) € T +then

-1 - -1 -1
(3) z = piluilauj > Y =pus by

for some a, b € H . Thus (i,x,g)(j,y,2)=( p u abuk,lzJéT.

of course (%, z, 3)(Z, y, ) =0 if j # 1 , so that T is & subsemi-
group of S .

For (7, =z, 3) €T with x as in (3), direct computation yields that

s leuala lui, 2| is an inverse of (%, x, 7) . However, if

(i = Dk, y, D, 2, 3) = (4,2, F) then j=k, 1=1%,and
= p_.lx-lp;l p lqua lul . 'Thus each element of T has a unique

inverse.

If # @ for k€I, 1€M then (k, x, 1) € T for some

kZ

2 € G . Thus by definition k €J and 1 =J for some j €J . On the
3 % -1 -1 P

other hand, if k € J and [ €J, 1l =g , then k,pklukuj,g €T .

All the parts have now been put together, so the proposition holds.

https://doi.org/10.1017/5S0004972700043458 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043458

Inverse subsemigroups 453

THEOREM 3.5. A subset T of S = MO(I, G, M; P) 1is a nontrivial
inverse block subsemigroup if and only if it is of the form
T=1(J, H, u, ] .

Proof. 1In view of the proposition above, it suffices to show that a
nontrivial inverse block subsemigroup T corresponding to J < I and
L €M is of the desired form. First, the function Y defined in Lemma
2.4 supplies us with a bijection of I' onto M' satisfying the necessary
condition. Since T corresponds to J and L we obtain immediately that
J=I' and L=M =7 .

Fix an element I € J . By setting C = Cli and P = Ppg; we can

conclude from Proposition 2.9 that Tzz = (L, C, 1) , where

(k) H=C(Cp
is a subgroup of G . For each % € J , TZ% # @ since T corresponds to
J and J . Let (Z, ui, 2) be an arbitrary but fixed element of TZ% .

Then define u : J +G by u: % >u, for 2 #1 and u(l) =e , the

identity of G . Take p. = P>, . Since u, € Cli it follows from

Proposition 2.10 that pu.p, € C;% , which implies that

[i, p;luzlp_l, ’i] €T.9CT . Hence for any J €7,

.o-1-1-1 SORUIER (UGS R TN
[1,, puP 'Z][Z, U, J) = [1,, Py U Ui J} €T,

luflu., 3] . Thus

Clearly, (Z, p L, Dr(z, u., ) ana (2, u., 3)L{i, p; U ;

J J
we conclude from Lemma 2.6 that the mapping

(5) (1, 2, 1) » [z prlhilpl i](z, 2 D, u., §)
i 1 i
is a bijection of T,5 onto Ti3 . Expanding the right-hand side of (5)
yields
o fc1-1
(6) C_L.j—{piuizpujéGIxGC}.

Now (&) and (6) imply that
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. 2 -1 -1, "
Ti3={(1,, a, j) €5 | aépi u_z'Huj} .

However, Lemma 2.3 indicates that the TiA. are the H-classes of T , and

every semigroup is the union of its H-classes. 'Since the % and J were

chosen arbitrarily in J it follows that

T

{(i, a, j) €8 | 2, 4 €J, a ¢ p;}u;lHuj} .

1}

Consequently T = [J, H, u, ¥]. which cbmp_letes the proof of the theorem.

Let B(I, G) denote the Brandt se;nigfoup' MO,'(I,‘ G‘, I; A) . Recall
that with our notation multiplication in. B(I,.G) ‘is ‘defined by

(i, ab, 1) if j =k,
(i, a, §)(k, b, 1) = 4 4
o o if Gtk

PROPOSITION 3.6. - [J, H, u, $] = B(J, H) .

Proof. Let T'= [J, H, u, y] and B = B(J;, H) . Define . X : T > B
vy (i, a, J) + [i, uipiqu;-l, j] and 0-+0 . If (2, a, §) € T +then
"
maps T into B . The remaining details showing that 'y is an

i, €J and a € p;lu;:lliu_j , vhich implies thet wp aw;® € H . Thus X

isomorphism of T onto B are straightforward.

COROLLARY 3.7. A subsemigrowp of a completely O0-simple semigroup is
a nontrivial inverse block subsemigrowp if and only if it is a Brandt
subsemigroup.

COROLLARY 3.8. [J, H, u, ¥} = [L, K, v, n] "if and only if
|7} = |2] and B =k .

THEOREM 3.9. ‘zet 5= M(z, ¢, ¥, P) , let {J form a

a}ae;cl_
partition of eome J € I , and let H, be a subgroup of G for each
a €4 . Take

u:d>G ay function,

Y J + M a one-to-ome funection satjzlsfying pm. #0

if and only if w= Vi ,
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and form
B, = [y Hys uys ¥,)
where Uy and wa are the restrictions of w and Y , respectively, to

J . Then

is a nontrivial inverse subsemigroup of S .

Conversely every nontrivial inverse subsemigroup of S 1is of this
form.

Proof. Let T = U Ba be defined as in the statement of the first
o€l

part of the theorem. It follows from Proposition 3.4 that all of the Ba

are subsemigroups of S , so that the product of elements in the same Ba
again falls into Ba . Since the Ja are mutually disjoint the product of
elements in different Ba is zero. Thus T is a subsemigroup of S .

But the Ba , being Brandt semigroups, are inverse semigroups, and hence T

is an inverse subsemigroup of S which is obviously nontrivial.

Conversely, if T is a nontrivial inverse subsemigroup of S then T

is a O-direct union of Brandt subsemigroups Ba of S . According to
Corollary 3.7 each Ba is an inverse block subsemigroup, so by Theorem 3.5
each Ba is of the desired form. Since I 1is a O-direct union of the
Ba it follows immediately that the Ja are mutually disjoint, which
completes the proof of the theorem.

Theorem 3.9 yields the complete structure of inverse subsemigroups T

of a Rees matrix semigroup MO(I, G, M; P) , vhere [I| = |M| . The

structure of T 1is determined by five independent parameters:
(1) & subset J of I ;

(2) a partition of J into subsets {Ja}QEA 3

(3) a function of J into G ;
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(4) a one-to-one function of ¢J into M , and

(5) subgroups H, of G for each set J .

The problem of characterizing inverse subsemigroups of a Rees matrix
semigroup is thus completely solved as far as the theory of semigroups is

concerned.

4. Congruences

In view of Theorem 3.9, to describe congruences on inverse subsemi-
groups of a Rees matrix semigroup it suffices to consider congruences on a
O-direct union of Brandt semigroups. We rely heavily on the notions and

results due to Ljapin [5].

DEFINITION. A nonempty subset 4 of a semigroup S 1is called a
normal complex of § if xzdy nA # ¢ implies xdy € A for all

x, Y €Sl; A is an anti-ideal of S if
AS NA =84AnA=SA5nA=¢.

For any semigroup S let wS denote the universal congruence on S ,

C(S) the set of all congruences on S , and C'(S) those different from

(.US.

PROPOSITION 4.1. A nonempty subset A of a semigroup 5§ 1is a
normal complex of S 1if and only if A is a o-class for some o € C(S)

PROPOSITION 4.2. Let S be a O-direct wion of semigroups Sy s

o €Y. Asubset A of S 1is anormal complex if and only if A is
either an ideal of S , an anti-ideal of S , or a normal complex of some

S .
o}

Let T be a O-direct union of O-simple semigroups S a €Y ,

o *
and for each X< Y 1let J(X) denote the O-direct union of Sa for

o0 € X . Clearly J(X) is an ideal of T . We will prove the converse of

this statement.

LEMMA 4.3. J is an ideal of T if and only if J = J{(X) for some
nonempty subset X of Y .

https://doi.org/10.1017/5S0004972700043458 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043458

Inverse subsemigroups 457

Proof. It is easy to see that, in general, ideals of a O-direct

union of Sa are themselves O-direct unions of ideals of the Soc (ef.

[5]1). Thus if J 1is an ideal of T , the O-simplicity of the Sa

implies that J = J(X) , where X consists of all a for which
J n Soc £ 0.

DEFINITION. A semigroup is called antisimple if it has no proper

anti-ideals.

LEMMA 4.4, If a semigrowp S has the property that each element has
a left or right identity, then S <s antisimple.

Proof. If AcS, a€A, and ax=a , then axr € AS n 4 .

COROLLARY 4.5. Every O-direct wnion whose compoments are either

completely O-simple or inverse semigroups is antisimple.

PROPOSITION 4.6 (Preston [§]). Let B = B(I, G) . For each normal

subgroup N of G define o by

(i, a, J')UN(k, b, 1) ifard only if i =%k, 3 =1, a=bh (mod N) .
Then o € C'(B) <if and only if O = oy for some normal subgrowp N of

G . Moreover, 0, C O, if and only if K< N .

In what follows let T be a O-direct union of Brandt semigroups

B =B(I

o . Go:.) , & €Y , some indexing set. Let X C Y and for each

o

a € Y\X 1let IVa be a normal subgroup of Goc and Oa represent the

congruence ON defined as above.
a

Define on T +the binary relation

z, y € J(X) , or
zpy >

20, y for some @ € Y\Xx .
a

LEMMA 4.7. p € C(T)

Proof. It is obvious that o is an equivalence relation on T . Let

xpy,xéBa, and z €T . If o € X then BaEJ(X) and hence by
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definition x, y € J(X) . Thus 2, yz € J(X) since J(X) is an ideal of

T , and so (x2z)p(yz) . If @ § X then it follows that &, y € B, eand

20,y . If z £ B then xz =0=ya while if z ¢ B, then (xz)0, (yz)
a a

since 0 ¢ C[Ba) . Thus in all cases (x2)p(yz) which implies that p
a

is right compatible. Similarly p 1is left compatible, and hence
p € C(T) .

For brevity we will write p.= [X, Na] . Our aim is to show that
every congruence on T is of this form.

LEMMA 4.8. If o € C(T) then each o-class is either a normal

complex of some B, or equals J(X) for some XC 7Y .

LEMMA 4.9. For S any semigrow and o € C(S) there is at most one

o-class which is an ideal of S .

THEOREM 4.10. If T 4s a O-direct wnion of Brandt semigroups

B, = B(Ia’ GotJ » o €Y, then a relation 0 on T <is a congruence if and

only 1f o = [X, Na] for some X< Y and some family {Na | o € v\x} of
normal subgroups of G .

Proof. In view of Lemma 4.7 it suffices to show that every o € C(T)
is of the desired form. It follows from Lemma 4.8 that each O-class is

either a normal complex of some Bor. or an ideal of T , while Lemma 4.9

indicates that there can be at most one such ideal. If no ideal O-class

exists, set X =@ . On the other hand, if J(X) is an ideal 0O-class

then -0 = OIB € C(Ba] for all a €Y . For a € Y\X , no element of B,
o

is o-related to any element of J(X) and if a # 0 € Ba , b € BB ,
a#B then a ¥ b(o) . , Furthermore, 9 # wg since 0 forms a
‘ o

Oa—class. Thus from Proposition 4.6, Oa = 0y for some normal subgroup
a

Na of Ga . It is now easy to verify that 0 = [X, IVQ] .

i
Next we will prove a result on the ordering of congruences described

by the above theorem. Note first that if U, VE Y then clearly
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J(U) € J(V) if and only if UCS V . For each p € C(T) write
r.')(x = p|B . It is immediate from our proof of Theorem k.10 that if
a

p=[X,1Va] then X={cx€Y|pa=wa}. ,

THEOREM 4.11. [u, k] < [x, W] if and only if Uc X and K, SN,
for all o € Y\X .

Proof. Let p = [U, Ka] s, P = [X, Na] and assume that p < p . If
a €U thenm u = u)a s Which implies that poz = wa . But then a € X , so

USX. If afX then p =0y and M =

c
N That Ka —Na follows

[o
o Kd.

. e
directly from Proposition L4.6.

Conversely, if apb then either a, b € J(U) or ad, b for some
o

o € Y\U . 1In the first case a3 b € J(X) , while in the second either
au)ab or aON b . But all three situations yield apb , whence HCS p .

o
5. Number
Throughout this section S will denote the Rees matrix semigroup

MO(I, G, M; P) where I, G and M are finite, and unless otherwise

stated, |I| = IMI . The next result is basic to our consideration.

LEMMA 5.1. Let. T and T' be inverse subsemigroups of S ,

3

"
ncws
nco

[7;5 #ys us W], 7' =

[J‘IE’ H_;:: u'a w'] 3
1 1=1

for some nonempty subsets Ji» Jé of I , subgroups Hi’ H7': of G,

r 8
mappings u : U J. >G, u' U Jé + G , and one-to-one mappings
=1 =1
r s
v: U J.>M, ' UJ%-»M. Then T =7 if and only if r =5,
i=1"* i=1
IJ‘L' = |7:| 5 and H,%H! for i=1,2, ..., r (after a suitable

rearrangement of indices).

We will show that the number of nonisomorphic subsemigroups of S is
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intimately connected to the basic number-theoretic notion of a partition.
Recall that a partition of a natural number »n is a decomposition of n
into the sum of any number of positive integral parts. We will denote the
number of partitions of n by p(n)

Let there be given a partition of a number #n into » parts
* = + + +
(*) nEagtn, v

DEFINITION 3.18. We will say that an inverse subsemigroup T of S

r
is induced by (*) if T= U [7., B, u, U] where |7, =7,

]
i=1 * s
2=1,2, ..., » . The subgroup Hi is said to correspond to. the part
n., .
2
Clearly every inverse subsemigroup of S 1is induced by a partition of
n for some n = III . It can be seen immediately from Lemma 5.1 that

distinct partitions induce nonisomorphic inverse subsemigroups. We will
first determine the number of nonisomorphic inverse subsemigroups of S
which are induced by a given partition. The total number of such
subsemigroups of S is then obtained by summing the obtained numbers over
all partitions of all numbers n, 1 =n = |I, . We will state next the
main result of this section, the proof of which will be supplied by the two

lemmas following it.

THEOREM 5.2. Let s = M(Z, ¢, M; P) , m= min{|Z|, M|}, and let
1 be the number of nontsomorphic subgroups of G . For each nwmber n ,

1 =n=m, consider a partition of n into parts ny; Nps .- ng
= + +o .
n=rn *rm, rn

The number of nonisomorphic inverse subsemigroups of S 1is given by

|
P k=1 rp
where P runs over all partitions of n for n =1, 2, ..., m.

We will first consider partitions of 7n into r equal parts, say
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(#w) n=k+k+ ... +k.

r

It follows from Lemma 5.1 that two inverse subsemigroups T and T' of S
induced by the partition (**) are isomorphic if and only if the »r
structure groups composing T are isomorphic in pairs to the r structure
groups of T' . Thus the number of nonisomorphic inverse subsemigroups of
S induced by (**) is equal to the number of sets consisting of »r
subgroups of G without regard to order, where the subgroups are chosen
from the set of I nonisomorphic subgroups of (¢ with repetition allowed.
But the number of such sets can be obtained from the classical occupancy

problem, and we state this as our next lemma.
LEMMA 5.3. The number of nonisomorphic inverse subsemigroups of S
. . + 7=
induced by (**) is equal to [Z ; l]
This result tells us the number of nonisomorphic inverse subsemigroups

of S having r blocks whose structure sets all have the same

cardinality. We next consider such subsemigroups of S having ri blocks

with structure sets of cardinality ni , for 1 =1,2, ..., 8 . To this
end, let

Y = + + ...+ > > ... 0>

(Hnn) n=rin +orn, RN R ng

LEMMA 5.4. The number of nonisomorphic inverse subsemigroups of S
induced by (¥%*) ig equal to

Z+rk-l

Proof. Two inverse subsemigroups T and T' of S induced by (*#¥*)

are isomorphic if and only if the ri groups in T corresponding to ni

are isomorphic in pairs to the ri groups in T' corresponding to ni

l-r.-1
for each 7 =1, 2, ..., 8 . By Lemma 5.3 there are rt
7
nonisomorphic inverse subsemigroups induced by the part n, - Clearly

every arrangement of subgroups of G corresponding to n, is independent
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of every arrangement of subgroups corresponding to nj , T #J . Thus the

total number of such subsemigroups is the product of each of these

expressions. This completes the proof of the lemma.
EXAMPLE. By a rectangular O0-band we mean a Rees matrix semigroup

over the trivial group. Let R = MO(I, e, M; P) and q = min{|I|, |M|} .
‘For each n = q any two inverse subsemigroups of R induced by the same
partition of »n are isomorphic, while distinct partitions induce
nonisomorphic inverse subsemigroups. Thus there is a one-to-one
correspondence between such subsemigroups and partitions of numbers

n = q . Consequently the number of nonisomorphic inverse subsemigroups of

R is equal to

g pn) .
n=1
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