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Inverse subsemigroups of

Rees matrix semigroups

David E. Zitarelli

According to the Bees Theorem, every completely O-simple semi-

group can be represented by a Rees matrix semigroup over a group

with zero. A characterization of a l l subsemigroups of the

l a t t e r i s given in terms of the structure group, structure s e t s ,

and two mappings. Next a l l congruences on such subsemigroups

are described, along with conditions for comparability. Finally,

an algorithm for computing the number of nonisomorphic inverse

subsemigroups is constructed.

1. Introduction and summary

In [JO] Tamura and Chrlslock posed the problem of determining the

structure of a l l subsemigroups of a completely O-simple semigroup S .

They resolved i t for O-simple subsemigroups of S when the structure

group of S i s f i n i t e . The purpose of th is paper i s to describe the

structure of a l l inverse subsemigroups of S . This i s achieved by means

of the Rees Theorem, which asserts that a semigroup is completely O-simple

if and only i f i t i s isomorphic to a regular Rees matrix semigroup

M°(J, G, M; P) (see [9 ] , or Theorem 3.5 of [ I ] ) . Note that we are

writing nonzero elements of S as t r ip l e s (£, a, u) , with multiplication

defined by

l[i, ap^jb, v ) i f P]ld*0 ,

( i , a, p)(«7, b, v) = \

\o otherwise.
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446 David E. Z i t a r e l I i

Our main resul ts are contained in Theorems 3.2 and 3-9. The former

indicates that inverse subsemigroups without zero correspond to subgroups,

while the l a t t e r describes those with zero. To carry out th is description

we introduce the concept of an inverse block subsemigroup and show tha t , in

a sense, these semigroups form a basis for the structure of an arbi trary

inverse subsemigroup. The term "block" has been adopted here because of

i t s s imilar i ty to the decomposition of a matrix into block submatrices. In

fact our decomposition is reminiscent of that described by Hall in Theorem

6 of [3J.

Section 2 lays the groundwork for our main resu l t s . The structure of

H-classes of an inverse subsemigroup T of S i s given in terms of

cer ta in elements and subsets of G . Proposition 2.9 provides a useful

characterization for specific H-classes. Section 3 contains the basic

resu l t s of th i s paper. We give two structure theorems according to whether

T has a zero, and describe methods for constructing T in both cases.

The remaining two sections deal with some properties of the subsemi-

groups in the t i t l e . In Section 4, making use of resul ts due to Ljapin [5!

and Preston L&l, we characterize their congruences and give conditions for

comparability. The l a s t section develops an algorithm for computing the

number of nonisomorphic inverse subsemigroups. I t depends on the number-

theore t ic concept of a pa r t i t i on , and we apply i t to rectangular O-bands.

All undefined concepts and symbols can be found in [/, 2] . However,

for Rees matrix semigroups we will use the notation of Petrich (see §V.3 of

[ 7 ] ) , which varies somewhat from that used in [/, 2] .

2. H-classes

Let S = Ar(J, G, M; P) be an arbitrary Rees matrix semigroup. Since

5 is regular the set V(i, a, v) of all inve-rses of (i, a, y) is

nonempty for each (i, a, \i) € S . The proofs of the next two results are

evident.

LEMMA 2.1.

V(i, a, u) = | ( j , x, A) € S I j € I , P i y . * 0, X € M,
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COROLLARY 2.2. An element (i, a, y) 6 5 has a unique inverse if

and only if p, . ± 0 for exactly one X € M and p • t 0 for exactly one
M, yj

j € I . In such a case,

(i, a, y)"1

Let T be an inverse sub semi group of S . For i € J , \i £ M ,

define

tf. = {(i, a , p) ( S | a f Cl ,

T. = {{i, a, p) € T | a € G} .

Of course the ff. are the H-classes of S and T. = T n H. . I t is
^y ly ^y

well known that the H-relation on a regular subsemigroup of any S i s the

re s t r i c t i on of the H-relation on S (see, for example, Lemma U.U.I of

[$] ) . As a special case we have the following fundamental r e s u l t .

LEMMA 2 .3 . The T. are the H-classes of an inverse subsemigroup

T of S .

For T an inverse subsemigroup of S put

I' = {i i I | T.^ * 0 f o r some X € M) ,

M' = {y € M | T. # 0 for some J € i) .

For each i € J ' there exis t a £ G and y € W' such tha t

(•£, a, y) € T . Since ( i , a, y) has a unique inverse in T i t follows

from Corollary 2.2 tha t p , . ^ 0 for precisely one X £ M . This remark
AT,

enables us to define the function below.

LEMMA 2 .4 . For each i d I' , define

(1) \ld = X if and only if pxi t 0 .

Then ty is a one-to-one function of I' onto M' .

P r o o f . I f i E l ' and ipi = X t h e n p , . t 0 . We w i l l show t h a t

X € Af' . S i n c e ( i , a , y) € T f o r some a € G , p S » , C o r o l l a r y 2 . 2

and t h e f a c t t h a t p , . t 0 y i e l d t h a t ( i , a , y )~ = ( , , X) € T . Ejy
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definition this means that A € M' .

Next l e t k, I E l 1 with i()fe = i|)Z = u . Then p , # 0 and

p , # 0 . Further, p E « ' implies that (i , a, \i) € T for some

i € I' , a € G . Since i ( I and P is regular i t follows that

p . . # 0 for some \ Z M . According to Lemma 2.1 this means that both

k, p~^a~ p~£, Aj and \l, p^a~1p^}, Al are inverses of (i, a, p) in

T , which of course implies that k = I .

Finally, i f \i € M' then (i, a, p) € 21 for some i (. I , a i G .

I t follows from Corollary 2.2 that (£, a, y)~ = ( j , fc, A) where

Pw- # 0 , p x i ?t o , and b = p~^a~lp~xl . But U, b, \) Z T , which

implies that j € J ' . Since also p . # 0 i t follows that ljy = y .

Thus i|* is onto and consequently i s a tiijection of I onto Af

As a resul t of th is lemma we can identify M' with J ' . Thus we

wi l l write pig. for p ( i | r f ) j . and T^. for r i ( w ) . Set p. = p ^ .

Then ( l ) implies that p . # 0 for a l l i € J ' and p . . = 0 for

i ± j d I' . Moreover Corollary 2.2 becomes

(2 ) ( t , a , jf1 = ( j , p - . V 1 ? " 1 , i ] ( i , i € J ' ) .

Note that this element i s the unique inverse of (i, a, j) in T ; of

course (£, a, j ) may have other inverses in S .

The next resul t is an analogue of Corollary 2.52 a) of [7] .

PROPOSITION 2.5. Let T be an inverse subsemigroiep of

tf(I, G, M; P) and i , j , k, I i l ' . Then the following assertions hold:

(i) T.. is a maximal subgroup of T ,

(ii) T2. . = 0 if i * o ;

(Hi) the product T. JT^ is equal to I \ j if j = k and to

0 if j t k .

Proof. Since i € I' there exis t j d I' and a Z G such that
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( i , a, 3) £ T . Using (2) we obtain

(i, a, j)(i, a, j)~ = \i, p. , i \ £ T .

Thus T. . i s an H-class containing an idempotent, so (i) follows from

1/1*

Exercise 1, §2.3, [/]. Both (ii) and (Hi) hold since the analogous

properties hold for the H. . .
1-3

By making use of Lemma 2 .3 , i t can be seen that our next resul t i s a

part icular case of Green's Theorem. I t s proof i s straightforward.
PROPOSITION 2 . 6 . Let T be an inverse subsemigroup of

M ° ( J , G, M; P) and (i, a, j), (i, b, k), (I, o, k) £ T . Then the

mapping

(i, x, j) •*• \l, ob p. , i \ ( i , x, 3)13, p~. a b, k
I 1 - 1 \ 3

is a bisection of T. • onto T~, .

Define

C ^ = { a £ G I ( i , a , 3 ) £ T] ( i , 3 £ I ' ) .

We can then write

where C. . is a subset of G which, in general, is not a subgroup.
I'd

However we can characterize the C.. in a useful way.

Iftr

LEMMA 2 . 7 . If x, y, z € C. then xf^z € C . .

Proof. This follows from Proposition 2.5 and the fact that

( i , x, i){i, y, i ) ~ 1 ( i , s, i) = [i, xy~ z, i) € T .

LEMMA 2.8. A nonempty subset C of a group G is a right aoset of

G if and only if xy~ z (. C for all x, y, z £ C .

This las t resul t i s a restatement of Exercises h.1.22-23 of [6 ] .

These two lemmas are fundamental in the next proof.
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PROPOSITION 2.9. For each i € I' , C. is a right coset of G and

C.p. is a subgroup of G .

Proof. Let H = C. .p. . Then e € H s ince p " 1 € C . . I f

x = ap. , y = bp. $ H f o r a , £> € C . then i t follows from Lemma 2 .7

t h a t abp~. (. C.. . Thus

I -, -.I

' i € H '

which implies that H is a subgroup of G .

PROPOSITION 2.10. For every pair of elements i, j € I' ,

c'}-. = p .c .ipi .

Proof. If a € C".1. then a"1 € C. . , so (i, a"1, «/) € T. . . Using
t'j 'I'J 1^3

(2) and the fact that T is an inverse semigroup, we obtain

[i, a~ , j)~ = \o, p'-^ap'. , i\ d T.. . This means that p~. ap~. € C..
\ 3 ^ J J^ *7 ^ d**

so that a i p-C. .p . . Thus C~. . c p .C . .p . . The opposite inclusion
j Jt i 2-j — 3 3^^

follows by retracing the above steps, so the given equality holds.

3. Structure theorems

Recall that a primitive inverse semigroup is an inverse semigroup in

which every nonzero idempotent is primitive. Every Brandt semigroup is

obviously a primitive inverse semigroup. To express the converse relation-

ship we need the next definition. I t was first introduced by Ljapin [5],

who used the term "mutually annihilating sum". Another term frequently

used is "orthogonal sum" [4T.

DEFINITION. A semigroup S with zero is a 0-direot union of

semigroups S (a € A) if S = U S^ , S^ n £„ = o and ^a
5g = 0 for

a l l a, B € A , a t 6 .

The next result is due to Venkatesan [ML of. also Corollaire 5-17

of 141.
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LEMMA 3.1 . A semigroup is a primitive inverse semigroup if and only

if it is a O-direat union of Brandt semigroups.

For the remainder of this section l e t 5 = W(I, G, M; P) . Suppose

that I1 i s an inverse subsemigroup of S without zero. If T. . t 0
1*3

o
then (i, a, j) (. T for some a € G . But (i, a, j) = ° i f * * 3 > s °
that i = j . Now if T. . t 0 and T. . t 0 then Proposition 2.5 implies

w 33
that T. .2". . = 0 i f i t 3 , whence we conclude again that i = j . Thus

w 33
T = T.• for some i t I , which according to Proposition 2.5 means that T

2-'t-

is a subgroup of S . We have proved

THEOREM 3.2. X subsemigroup T of a completely O-simple semigroup

S is an inverse semigroup without zero if and only if T is a nonzero

subgroup.

COROLLARY 3.3. A subsemigroup of a completely simple semigroup is an

inverse subsemigroup if and only if it is a subgroup.

We can now construct a l l inverse subsemigroups T of S without zero

by combining Proposition 2.9 and Theorem 3-2. One merely takes a subgroup

H of G and elements i i I , |i EM where p . ? 0 , then forms

[[i, &£, p] €S | fc €*} .T-{[i,

For the remainder of th is section we wil l l e t T be an inverse

subsemigroup of S which contains 0 but i s not a subgroup of S . We

shal l ca l l such a subsemigroup nontrivial. Since a l l of the idempotents of

S are primit ive, naturally those of T are a l so , so T i s a primitive

inverse semigroup. With Lemma 3-1 in mind, we introduce the next basic

concept.

DEFINITION. Let J and L be nonempty subsets of I and M ,

respectively, with \j\ = \L\ . We say that T i s an inverse block

subsemigroup of 5 corresponding to J and L i f

T.- t 0 for a l l j i J, I € L ,
3 <•

T., = '0 if either j £ J or I \ L .
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To ensure that the function ty defined below exists, we will assume

that | j | £ \M\ . Similar arguments will apply in the case \M\ 5 \l\ .

Let J be a nonempty subset of I , H a subgroup of G ,

u : J -*• G any function, u : j •* u • ,

3

\j> : J •*• M a one-to-one function, iju = j

satisfying
p . f 0 i f and only i f u = j .

Take p . = p~. . and define
3 33

( 1 -1 1
[J, H, u, \\>] = Ui, a, j) I S I i , j £ J, a £ p . u. Hu.) u

{0} .

PROPOSITION 3.4. [J, H, u, <p] is a nontrivial inverse block

subsemigroup of S corresponding to J and J .

Proof. Let T = [J, H, u, if] . For each j £ J , U, p'-1, 3\ * T
\ 3 )

s i n c e e £ H , s o t h a t T i s n o n z e r o . I f ( i , x , g ) , (J, y , £ ) £ T t h e n

fo r some a, b £ H . Thus (£ , x, 3)U, y, £) = U , p~1u".1abu., k\ £ T .
\ % 1- K 1

Of course (i, x, j)(l, y, H) = 0 i f j t- I , so t h a t T i s a subsemi-

group of 5 .

For (i, x, 3) Z T wi th x as i n ( 3 ) , d i r e c t computation y i e l d s t h a t

j , p. u. a u., i\ i s an inverse of (i, x, j) . However, i f
( 3 3 i )

( i , x, j ) ( fe , y, l){i, x, 3) = (i> ^> 3) then j = k , I = i , and

y = p . x p. = p . u . a u. . Thus each element of T has a unique
3 t- 3 3 1-

inverse.

If T, + $ for k £ I , I £ M then (k, x, I) £ T for some

x £ G . Thus by definition k £ J and I = j for some j £ J . On the

" ~ f - 1 - 1 "}
o t h e r h a n d , i f k £ J a n d I £ J , 1 = 3 , t h e n Me, p , u, u., j \ £ T .

\ K
 K 3 )

All the parts have now been put together, so the proposition holds.
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THEOREM 3.5. A subset T of S = M°(J, G, M; P) is a nontrivial

inverse block sub semi group if and only if it is of the form

T = [J, B, u, 4>] .

Proof. In view of the proposition above, i t suffices to show that a

nontrivial inverse block subsemigroup T corresponding to J ^ I and

L c M is of the desired form. First, the function 41 defined in Lemma

2.1+ supplies us with a bijection of I' onto M' satisfying the necessary-

condition. Since T corresponds to J and L we obtain immediately that

J = I' and L = M' = J .

F i x an e l e m e n t I £ J . By s e t t i n g C = Cy-> and p = p^y we can

c o n c l u d e from P r o p o s i t i o n 2 . 9 t h a t T^s = {I, C, 2) , where

(It) H = Cp

is a subgroup of G . For each i ? J , T.n # 0 since T corresponds to

J and J . Let [l, u^, ̂ J be an arbitrary but fixed element of T^ .

Then define u : J •+ G by u : i •* u. for i t I and u(l) = e , the
Is

i d e n t i t y of G . Take p. = p * . . Since u. i Cn . i t follows from

Propos i t ion 2.10 t h a t pu-p. € C.* , which impl ies t h a t

1 - 1 - 1 - 1 ~]
i , p . M. p , I € I7.a c T . Hence for any J ( J ,

is % J 'Z- t-

Clearly., (Z, p"1, 2)R(J, .̂, 3) and [I, u^, o)l\i, p'^uZ1^, jj . Thus

we conclude from Lemma 2.6 that the mapping

(5) U, x, 2) - \i, p T ^ V 1 , ?j(Z, a:, l)[l, u., j)

i s a b i j e c t i o n of T7o on to J1.". . Expanding t h e r i g h t - h a n d s i d e of (5)

y i e l d s

(6) C^=

Now (U) and ( 6 ) imp ly t h a t
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{(«, a, j) Z 5 | a Z p^w^W.

However, Lemma 2.3 indicates that the T.*. are the H-classes of T , and

every semigroup is the union of its H-classes. Since the i and J were

chosen arbitrarily in J i t follows that

T = | ( i , a , j ' ) € S | i , j ZJ, a Z P~}U~}H

Consequently T = [J, H, u, ty] which completes t h e proof of the theorem.

Let B(I, G) denote t h e Brandt semigroup ' Ar(J , G, I ; . A ) . Reca l l

t h a t wi th our n o t a t i o n m u l t i p l i c a t i o n in. B{I.,.G)' i s defined by

. ( i , ab, 1) i f j = k ,

(i, a, 3){k, b, I)

• 0 if o * & •

PROPOSITION 3.6. U , H, u, if] = B(«7, ff) .

Proof. Let T = [J, H, u, *] and B = B(<7, ff) . Define x : T - B

by U> a. j) * K> u.p.aiT- , j\ and 0 -»• 0 . If (i, a, j) (. T then
\ V 1," U j • .

i , j iJ and a (.p. u. Hu • , which implies that u.p.au. € H . Thus x

maps T into B . The remaining detai ls showing that x i s an

isomorphism of T onto B are straightforward.

COROLLARY 3.7. A suhsemigroup of a completely O-eimple semigroup -is

a nontrivial inverse block subsemigroup if and only if it is a Brandt

subsemigroup.

COROLLARY 3.8. [ j , H, u, ty\<Zr [L, K, V, T\] 'if and only if

\J\ = | i | and H S K .

THEOREM 3.9. Let S = M°(J, G, M; P) , let {Ja}aeA form a

partition of some J c I , and let Ha be a subgroup of G for each

a Z A . Take

u : J •* G any function,

: J •*• M a one-to-one function satisfying p- . ^ 0

if and only if y =
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and form

Bct = K' V V ""J '
where u and ty are the restrictions of u and ty , respectively, to

J . Then

1 = U B

is a nontrivial inverse subsemigroicp of S .

Conversely every nontrivial inverse subsemigroicp of S is of this
form.

Proof. Let T = V B be defined as in the statement of the first

part of the theorem. It follows from Proposition 3.1* that all of the B

are subsemigroups of S , so that the product of elements in the same Ba

again falls into B . Since the J& are mutually disjoint the product of

elements in different B is zero. Thus T is a subsemigroup of £ .

But the 5 , being Brandt semigroups, are inverse semigroups, and hence T

is an inverse subsemigroup of S which is obviously nontrivial.

Conversely, if T is a nontrivial inverse subsemigroup of S then T
is a O-direct union of Brandt subsemigroups B^ of S . According to

Corollary 3.7 each B is an inverse block subsemigroup, so by Theorem 3-5

each B is of the desired form. Since T is a O-direct union of the

B i t follows immediately that the Ja are mutually disjoint, which

completes the proof of the theorem.

Theorem 3-9 yields the complete structure of inverse subsemigroups T

of a Rees matrix semigroup ff(I, G, M; P) , where | j | 5 \M\ . The
structure of T is determined by five independent parameters:

(1) a subset J of I ;

(2) a partition of J into subsets { â}aej4 >

(3) a function of J into G ;
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(k) a one-to-one function of J into M , and

(5) subgroups H of G for each set J

The problem of characterizing inverse subsemigroups of a Rees matrix

semigroup is thus completely solved as far as the theory of semigroups is

concerned.

4. Congruences

In view of Theorem 3-9» to describe congruences on inverse subsemi-

groups of a Rees matrix semigroup i t suffices to consider congruences on a

O-direct union of Brandt semigroups. We rely heavily on the notions and

resu l t s due to Ljap in [5 ] .

DEFINITION. A nonempty subset A of a semigroup S is called a

normal complex of S i f xAy n A t 0 implies xAy c A for a l l

x, y € S ; A i s an anti-ideal of S i f

AS n A = SA n A = SAS n A = 0 .

For any semigroup S l e t U)o denote the universal congruence on 5 ,
o

C(S) the set of all congruences on 5 , and C'(5) those different from

PROPOSITION 4.1. A nonempty subset A of a semigroup S is a

normal complex of S if and only if A is a a-class for some a € C{S) .

PROPOSITION 4.2. Let S be a O-direct union of semigroups 5Q ,

a •€ Y . A subset A of S is a normal complex if and only if A is

either an ideal of S , an anti-ideal of S , or a normal complex of some

S .a

Let T be a O-direct union of O-simple semigroups S^ , a Z Y ,

and for each X c Y l e t J(X) denote the O-direct union of S^ for

a 6 X . Clearly J{X) i s an ideal of T . We wi l l prove the converse of

th i s statement.

LEMMA 4.3. J is an ideal of T if and only if J = J(X) for some

nonempty subset X of Y .
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Proof. I t is easy to see that , in general, ideals of a O-direct

union of S are themselves O-direct unions of ideals of the S (of.

[5])- Thus i f J is an ideal of T , the O-simplicity of the 5

implies that J = J(X) , where X consists of a l l a for which

J n S t 0 •

DEFINITION. A semigroup is called antisimple i f i t has no proper

anti-ideals.

LEMMA 4.4. If a semigroup S has the property that each element has

a left or right identity, then S is antisimple.

Proof. If A c S , a € A , and ax = a , then ax 6 AS n A .

COROLLARY 4.5. Every Q-diveat union whose components are either

completely O-simple or inverse semigroups is antisimple.

P R O P O S I T I O N 4 . 6 ( P r e s t o n [ S ] ) . L e t B = B ( l , G ) . F o r e a c h n o r m a l

subgroup N of G define a by

{i, a, j)o {k, b, I) if and only if i = k, j = I, a = b (mod N) .

Then a € C {B) if and only if o = a for some normal subgroup N of

G . Moreover, a c o if and only if K c N .

In what follows let T be a O-direct union of Brandt semigroups

B = B[l , G ) , a € Y , some indexing se t . Let X <=_ Y and for each

a i Y\X le t N be a normal subgroup of G and 0 represent the

congruence o\. defined as above,
a

Define on T the binary relation

x, y Z J(X) , or

xpy
xo y for some a € Y\X .

a

LEMMA 4 . 7 . p € C ( T ) .

Proof. I t is obvious that p is an equivalence relation on T . Let

xpy, x € B , and z £ T . If a € X then B c J{x) and hence by
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definition x, y (. J(X) . Thus xz, yz Z J(X) since J(X) is an ideal of

T , and so (xz)p[yz) . If a $ X then i t follows that x, y € B and

xa^ y . If z \ B then xz = 0 = yz while if z € Ba then (xs)a {yz)

since a^ € C(fia) . Thus in all cases {xz)p{yz) which implies that p

is right compatible. Similarly p is left compatible, and hence

P € C(T) .

For brevity we will write p .= [x, fl ] . Our aim is to show that

every congruence on T is of this form.

LEMMA 4.8. If o t C(T) then each a-class is either a normal

complex of some B or equals J(x) for some J ^ c y .

LEMMA 4.9. For S any semigroup and a € C(s) there is at most one

a-class which is an ideal of S .

THEOREM 4.10. If T is a 0-direct union of Brandt semigroups

B = s ( l a , Ga) j a € y j then a relation a on T is a congruence if and

only if o = [x, ff ] for some X<=_Y and some family {tla \ a € Y\x\ of

normal subgroups of G .

Proof. In view of Lemma It.7 i t suffices to show that every a € C(T)

i s of the desired form. I t follows from Lemma 1*.8 that each a-class i s

e i the r a normal complex of some B or an ideal of T , while Lemma U.9

indicates that there can be at most one such ideal . If no ideal a-class

e x i s t s , set X = 9 . On the other hand, i f J(X) is an ideal a-class

then -a = a\B € C(B ) for a l l a € Y . For a € Y\X , no element of B

i s a - re la ted to any element of J(X) and i f a ? 0 € B , fc€S.,

a + g then a ^ fc(a) . Furthermore, a # aig since 0 forms a
a

a - c l a s s . Thus from Proposition *t.6, a = a^ for some normal subgroup

N of Ga . I t i s now easy to verify that a = [x, tfj .
i

Next we will prove a result on the ordering of congruences described

by the above theorem. Note first that if U, V c y then clearly
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J(U) c J(V) i f and only i f U cV . For each p € C(T) write

p = p| f l . I t i s immediate from our proof of Theorem U.10 that i f
a

P = [*> ff
a]

 t h e n x = {« * y I Pa = u
a l • /

THEOREM 4 . 1 1 . [ i / , K ] c [*, tf ] if and only if U <£ X and K cN

for all a (. Y\X .

Proof. Let y = [l/, K ] , p = [x, N 1 and assume t h a t y e p . I f

a £ £/ then y = to , which impl ies t h a t p = w . But then a € X , so

U c X . I f a t * then p = O and y = 0v . That K c N follows
- a "a a a a - a

d i r e c t l y from Propos i t ion k.6.

Conversely, i f a\ib then e i t h e r a , b € </(#) or aa b for some

a € J \ i / . In the f i r s t case a-, b € J{X) , whi le in the second e i t h e r

out b or aff^ b . But a l l t h r ee s i t u a t i o n s y i e l d apb , whence y e p .
a

5. Number

Throughout this section 5 wil l denote the Rees matrix semigroup

Ar(I, G, M; P) where J , G and M are f i n i t e , and unless otherwise

stated, | j | - \M\ . The next resul t i s basic to our consideration.

LEMMA 5 . 1 . Let T and T' be inverse subsemigroups of S ,

r s
T = U [j^ Hi, u, i|>] , T' = U \j\, H\, U' , \p'] j

for some nonempty subsets J., J'. of I 3 subgroups H., H\ of G ,

r s
mappings u • U J• •*• G , u' • U J'. -*• G , and one-to-one mappings

i=l % i=l V

r s
<Ji : U J . + K , \p' : U J'. •* M . Then T S 21' if and only if r = s ,

\j.\ = \J'.\ , and ti. 9* ti\ for i = 1, 2, . . . , r (after a suitable

rearrangement of indices).

We wil l show that the number of nonisoaorphic subsemigroups of S i s
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intimately connected to the basic number-theoretic notion of a partition.

Recall that a partition of a natural number n is a decomposition of n

into the sum of any number of positive integral parts. We will denote the

number of partitions of n by p{n) .

Let there be given a partition of a number n into v parts

DEFINITION 3.18. We. will say that an inverse subsemigroup T of S

r
i s i n d u c e d b y ( * ) i f T = U [ j . , H . , u , i|)] w h e r e \ j . \ = n . ,

^ = l

i = 1, 2, ..., v . The subgroup H. i s said to correspond to, the part

n . •
i.

Clearly every inverse subsemigroup of S is induced by a partition of

n for some n £ \l\ . It can be seen immediately from Lemma 5-1 that

distinct partitions induce nonisomorphic inverse subsemigroups. We will

first determine the number of nonisomorphic inverse subsemigroups of S

which are induced by a given partition. The total number of such

subsemigroups of 5 is then obtained by summing the obtained numbers over

all partitions of all numbers n , 1 S n S \l\ . We will state next the

main result of this section, the proof of which will be supplied by the two

lemmas following it.

THEOREM 5.2. Let S = M°(l, G, M; P) , m = min{|l|, \M\) , and let

I be the number of nonisomorphic subgroups of G . For each number n ,

1 £ n £ m , consider a partition of n into parts n^, n2, . • • , n :

TJie number of nonisomorphic inverse subsemigroups of S is given by

s

ITT
rk

where P runs over all partitions of n for » = 1 , 2 , . . . , m .

We will first consider partitions of n into r equal parts, say
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(*•) n = k + k + ... + k .

r

It follows from Lemma 5.1 that two inverse subsemigroups T and T' of S

induced by the partition (•*) are isomorphic if and only if the r

structure groups composing T are isomorphic in pairs to the r structure

groups of T' . Thus the number of nonisomorphic inverse subsemigroups of

5 induced by (••) is equal to the number of sets consisting of r

subgroups of G without regard to order, where the subgroups are chosen

from the set of I nonisomorphic subgroups of G with repetition allowed.

But the number of such sets can be obtained from the classical occupancy

problem, and we state this as our next lemma.

LEMMA 5.3. The number of nonisomorphic inverse subsemigroups of S

fl+r-l)induced by (•*) is equal to
I J

This result tells us the number of nonisomorphic inverse subsemigroups

of S having r blocks whose structure sets all have the same

cardinality. We next consider such subsemigroups of S having r. blocks
I

with structure sets of cardinality n. , for i = 1, 2,

end, let

+ r n
s s

To this

> n

LEMMA 5.4. The number of nonisomorphic inverse subsemigroups of S

induced by (•**) is equal to

s

TT
Proof. Two inverse subsemigroups T and 2" of 5 induced by (***)

are isomorphic if and only if the r. groups in T corresponding to n.
If tr

are isomorphic in pairs to the r. groups in T' corresponding to n.

for each £ = 1, 2, ..., s . By Lemma 5-3 there are
l-r.-l

x.
r.

•t.

nonisomorphic inverse subsemigroups induced by the part n. . Clearly
Li

every arrangement of subgroups of G corresponding to n. is independent
t
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of every arrangement of subgroups corresponding to n . , i / j . Thus the
J

t o t a l number of such sub semi groups is the product of each of these

expressions. This completes the proof of the lemma.
EXAMPLE. By a rectangular O-band we mean a Rees matrix semigroup

over the t r i v i a l group. Let R = m (I, e, M; P) and q = m i n { | j | , \M\ } .

For each n 5 q any two inverse subsemigroups of R induced by the same

par t i t i on of n are isomorphic, while d is t inc t par t i t ions induce

nonisomorphic inverse subsemigroups. Thus there is a one-to-one

correspondence between such subsemigroups and par t i t ions of numbers

n 2 q . Consequently the number of nonisomorphic inverse subsemigroups of

R i s equal to

\ PM .
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