
AN APPROXIMATE STOCHASTIC MODEL FOR PHAGE
REPRODUCTION IN A BACTERIUM

J. GANI

(received 27 July 1961, revised 18 October 1961)

1. Introduction

The stochastic birth-death process considered in this paper provides an
approximate model for phage reproduction in a bacterium. In a recent paper,
Hershey [1] has discussed reproduction and recombination in phage
crosses, and a deterministic model for the reproductive process has been the
subject of a previous note by the author [2]. A very readable account of the
process is given by Sanders [3] in his recent article, "The life of viruses".

Consider a medium initially containing N < oo bacteria, which we may
for simplicity assume to reproduce as a birth process with constant para-
meter. Into this medium is inserted one phage particle (or several), which
immediately penetrates (infects) a bacterium, and proceeds to reproduce
within it as a birth-death process with constant parameters X > JJ,. After a
phage has invaded a bacterium, changes occur on the surface of the bacterium
to prevent its penetration by further phages. Usually a single phage invades
a bacterium, but towards the end of the infective process when the number
of phages and bacteria are of the same order, there is a larger probability
that a bacterium is infected by two or more phages simultaneously; in our
model, this probability is taken to be negligible. The death of a phage corre-
sponds in fact to its reaching maturity, after which it no longer reproduces.
When a fixed number r (two to three hundred) of these mature phages have
been produced, the bacterium, which is itself incapable of fission after
infection by a phage, breaks open as it dies, releasing the phage offspring.
Immature phages cannot attack bacteria, but the r mature phages immedia-
tely penetrate a further r uninfected bacteria; the phages reproduce faster
than the bacteria, and this sequence of processes usually continues until the
bacteria ar.e all dead.

Let us now discuss the phage reproduction occurring in a single bacte-
rium. We should like to find the distribution of time TT up to the occurrence
of the r-th death in an ordinary birth-death process: this is not in fact known.
Assuming for the moment that the process continues indefinitely, without
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stopping when r mature phages are produced, it is possible to write the
differential equations for the probabilities.

Ptj{t) = Pr{i survivals and / deaths in time i)

in the form

(i.i) p'it(t) = (i - I);.P4_1;,(O - i(x + p)pu{t) + (i + i)fiPi+1,^(t)

for all values of i, j = 0, 1, 2, • • •, with P,,(^) identically zero for i = j = 0,
and t or / < 0.

If we further define the joint probability generating function (p.g.f.)
<f>(u, v , t ) a s

(1.2) <f>(u, v,t) = f P, , (*)«V (|«|, \v\ ^ 1),
»', i = 0

the equations (1.1) lead to the partial differential equation

(1.3) ^ = {Xu* - (A + y)u + ^}~>

which, when v = 1, reduces to the well-known equation for the generating
function of probabilities of survivals. The equation (1.3) can be solved:
solutions have in fact been obtained for somewhat different but equivalent
forms of it by Kendall [4] and Bartlett [5]. However, expansion of the
p.g.f. is unwieldy, and it seems difficult to obtain the Pit(t) explicitly from
it. A different approach using the Laplace transforms with respect to time

(1.4) qtt(s) = JJ 0 e- 'P^dt (R(s) > 0)

leads to the relations

(1.5) {(A + /*)+ s}qlo{s) = 1 for * = 1, / = 0,

{i{X + /*)+ s}qii(s) = (* - ljXq^jis) + (* + I J ^ + U - I W for all other *,/,

with q{j(s) identically zero for i = j = 0, and i or / < 0. These are again not
readily solved.

2. An approximation to the birth-death process

It is natural at this point to approximate to the standard birth-death
process by one for which it is possible to obtain the probabilities Pti{t)
explicitly. Such a process is that where births occur in a non-homogeneous
Poisson process, the probability of a birth in the interval (t, t -f- 8t) being

(2.1) Xs"*dt + o{8t)
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where a = X — ft > 0 and «•• is the mean number of survivals at time / in
the standard birth-death process. The death process remains unchanged.
We should now strictly refer to probabilities JPU(0, t) and the p.g.f.,
tj>(u, v; 0, t), since the process is no longer homogeneous in time; for simpli-
city, however, we retain the notations Pu{t), </>(u, v, t) which are quite clear
in this case.

The forward differential equations for these probabilities are now

(2.2) p'ti{t) = a*"P,_M(0 - (fc- + VI)P,,(<) + (* + i W W i W

for all values of *, / = 0, 1, 2, • • •, with Pit(t) identically zero for * = / = 0
and i or / < 0. The joint p.g.f., <f>(u, v, t), satisfies the equation

(2.3) dA + lM{u-v)^ = W(u - 1)4,

which we proceed to solve. If we perform the transformation T = (u — v)e~*t

leaving u, v unchanged, and write

F{u, v, T) = <f>{u, v, t)

we obtain from (2.3) that

(2.4) ^ - = - (« - 1) (« - v) <«/>"-1 T—l'Fiu, v, T).
OH fl

The solution to this equation is of the form

F(u, v, T) = (exp - T—i* f" {x - 1) (z - vY""^dx \ f{v, T)
(2.5) \ ft J*» )

- (r-l)(»-i;)a / ' l -^l)/(w) T)

where A is a function of v which later vanishes. Rewriting this as <f>(u, v, t),
we find that

(2.6) <f>(u,v,t) = {exp«-*[(« -v) + ^ (v-l)-A(«-«)-«/"]}/(*,(«-v)e~'a)

The initial condition Plo(0) = 1 results in

(2.7) <f>(u,»,O)=u

whence it follows that

(2.8) /(«, T) = (r + v) exp - ( r + ^ (v - 1) -

https://doi.org/10.1017/S1446788700027476 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027476


[4] An approximate stochastic model for phage reproduction in a bacterium 481

Thus <f>(u, v, t) can finally be written as

<f>(u, v, t) = {v + (u — v)e-'lt} expie"|(« — v) + - (v — 1) — A (u — v)-a/A

- Uu - v)e-*t + -(v-l) -A(u- »)—//•

—*"'")} e x P ( («"' —

(2.9) +«*(«* ' - erf*) + v \- («•* - 1) - («•' -

= {«*->" + v(l - erf*)} exp { - p{t) + uA[t) + v[p(t) -

( o° °° At (n — AV

2 2 «' * ;
)

*!

where for t > 0, P(t) = (A/a)(e«« — 1) > 0, A(t) = <?* — e~f* =
(1 + aLPIX)-fl* {(I + a/>/A)A/a — 1}> 0, and it is easily shown that

P(t)-A{t) > 0.

The p.g.f. for the probabilities of survivals, is given by

(2.10) ^(w, 1, t) = {we-"' + (1 - erf*)}e-**ni-"i,

while that for the probabilities of deaths is

(2.11) ^(1, v, t) = {»(1 - erf*) + e-/"}

3. Explicit probabilities of births, survivals and deaths

For the birth-death process continuing indefinitely, without stopping when
r mature phages have been produced, it follows from (2.9) directly that the
probabilities Ptl{t) are

(3.1) ?„(<) - «-«»-* ^ ^ If i 1)
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Clearly the probability Bk(t) of k births in time t is of the Poisson form

the mean number of births in time t being p(t). From (2.10), the probabilities
Sm(t) of m survivals after time t are

S0(t) = (1 -

(3.3)
5W ^ {m

It should be noted that the mean number of survivals after time t for this
process is

(3.4) !^(l,M)=«-f,
ou

exactly as for the standard birth-death process, while its variance
eat(l — e-(A+^') is less than the variance (A + ft) (A — n)-leat{eat — 1) of
the standard process. Similarly from (2.11) the probabilities Dr(t) of r
deaths in time t are

D0(t) = e-

and the mean number of deaths in time t is

1(3.6)
a

Suppose the process now stops at the r-th death, the probability distribution
of this death (or maturing of the r-th phage), which is improper since there
is a non-zero probability that the process ends before, is given by

g{t)dt =

Term in w'-i of —<f>(l,v,t)\/idt

(3.7) = {Term in w'"1 of [e->"(l + A) +Av(l — e~'lt)

We have thus constructed a birth-death process approximating to the
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original one, but for which each of the probabilities of births, deaths and
survivals is explicitly known.

If the number of bacteria N is taken to be infinite, an equation for the
distribution of the number infected up to time t (or the number of mature
phages released up to t) can be obtained from Bellman and Harris' [6]
theory of branching processes. If Qn(t) is the probability of n infected
bacteria, and ip(s, t) = 2^=i^n(0s" the p.g.f. of this distribution, this satis-
fies the integral equation

(3.8) V{s,t)=s{l l

where g(t)dt is the improper probability distribution (3.7) and G(t) the
function G{t) = Pog{r)dr. There seems to be no simple way of solving this
equation.
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