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1. Introduction

The stochastic birth-death process considered in this paper provides an
approximate model for phage reproduction in a bacterium. In a recent paper,
Hershey [1] has discussed reproduction and recombination in phage
crosses, and a deterministic model for the reproductive process has been the
subject of a previous note by the author [2]. A very readable account of the
process is given by Sanders [3] in his recent article, “The life of viruses”.

Consider a medium initially containing N <C oo bacteria, which we may
for simplicity assume to reproduce as a birth process with constant para-
meter. Into this medium is inserted one phage particle (or several), which
immediately penetrates (infects) a bacterium, and proceeds to reproduce
within it as a birth-death process with constant parameters 2> u. After a
phagehasinvaded a bacterium, changes occur on the surface of the bacterium
to prevent its penetration by further phages. Usually a single phage invades
a bacterium, but towards the end of the infective process when the number
of phages and bacteria are of the same order, there is a larger probability
that a bacterium is infected by two or more phages simultaneously; in our
model, this probability is taken to be negligible. The death of a phage corre-
sponds in fact to its reaching maturity, after which it no longer reproduces.
When a fixed number 7 (two to three hundred) of these mature phages have
been produced, the bacterium, which is itself incapable of fission after
infection by a phage, breaks open as it dies, releasing the phage offspring.
Immature phages cannot attack bacteria, but the » mature phages immedia-
tely penetrate a further » uninfected bacteria; the phages reproduce faster
than the bacteria, and this sequence of processes usually continues until the
bacteria are all dead.

Let us now discuss the phage reproduction occurring in a single bacte-
rium. We should like to find the distribution of time T, up to the occurrence
of the r-th death in an ordinary birth-death process: thisis not in fact known.
Assuming for the moment that the process continues indefinitely, without
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stopping when » mature phages are produced, it is possible to write the
differential equations for the probabilities.

P,,(t) = Pr{i survivals and j deaths in time ¢}
in the form
(L) P:-,.(t) = (0 — AP ;{t) = 1A + w)Py(t) + (¢ + VpPiy, a(t)

for all valuesofz,§ =0, 1, 2, - - -, with P,,(¢) identically zero for i = § = 0,
and ¢ or 7 < 0.

If we further define the joint probability generating function (p.g.f.)
é(un,v,t) as

(L.2) S, v, t) = 3 Py(wv (ul, o] < 1),
$,i=0

the equations (1.1) lead to the partial differential equation
o¢ 9
(1.3) i {A® — (A + p)u + pv} o

which, when v = 1, reduces to the well-known equation for the generating
function of probabilities of survivals. The equation (1.3) can be solved:
solutions have in fact been obtained for somewhat different but equivalent
forms of it by Kendall [4] and Bartlett [5]. However, expansion of the
p.g.f. is unwieldy, and it seems difficult to obtain the P (¢) explicitly from
it. A different approach using the Laplace transforms with respect to time
(14) guls) = [ e P, (t)ét (R(s) > 0)

leads to the relations
(1.5) {(A+ u) + slguels) =1 for ¢=1,7=0,
GO+ 1) + 34() = 6 — DAy, 4(5) + (G + 1itss, s s) for all other i j,

with ¢,;(s) identically zero for 7 = § = 0, and ¢ or § < 0. These are again not
readily solved.

2. An approximation to the birth-death process

It is natural at this point to approximate to the standard birth-death
process by one for which it is possible to obtain the probabilities P,,(f)
explicitly. Such a process is that where births occur in a non-homogeneous
Poisson process, the probability of a birth in the interval (¢, ¢ + 6¢) being

(2.1) 2248t + o(0t)
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where « = 4 — u > 0 and ¢** is the mean number of survivals at time ¢ in
the standard birth-death process. The death process remains unchanged.
We should now strictly refer to probabilities P,(0,¢) and the p.g.f.,
$(u, v; 0, ), since the process is no longer homogeneous in time; for simpli-
city, however, we retain the notations P,,(¢), ¢(«, v, t) which are quite clear
in this case.

The forward differential equations for these probabilities are now

(2.2) P:;(t) = ;"”Ps—l.i(t) — (Ae** + iu)Py(t) + (6 + I)I‘P¢+1.1—1(t)

for all values of 4,7 = 0, 1, 2, - - -, with P(¢) identically zero fori =7 =0
and ¢ or § < 0. The joint p.g.f., $(», v, £), satisfies the equation

% % — 2ot — 1)
which we proceed to solve. If we perform the transformation T = (¥ — v)e~#*
leaving #, v unchanged, and write
F(u,v,T) = ¢(u, v,¢)
we obtain from (2.3) that

F
(2.4) %; =:-‘ (4 — 1) (4 — v)@/PAT—a/rF (4, v, T).

The solution to this equation is of the form

(2.3) + plu — )

(25) F(u,v, T) = {exp ;; T-o/s f:. (z — 1)(z — v)@/m-1dy } fv,T)

_ {exp T—a/p[(u_v)w + 2 (w—1) (u-_v)m—A] }f(v, T)

where A is a function of v which later vanishes. Rewriting this as ¢(«, v, t),
we find that

(2.6) $(w,v,6) = {exp e“‘[(u o)+ ; (v—1)—4 (u——v)—"/l'] } Ho, (4 — v)e ™)
The initial condition Py(0) = 1 results in

@7) $(%,v,0)=u ={exp|:(u —v) 4 2- (0—1) —A(u— v)—“//']}f(v, “—1)

whence it follows that

28)  f0.T) = (T + v) exp ——{T +£ w—1)— AT—“/F} :
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Thus $(s, v, ¢) can finally be written as
$(,0,0) = v + (4 — v)ert) exp{e“‘l:(u —v) + 2 w—1) — A — v)—a/»]
~ [ o + 20— 1) — 4 —o)eren]
= {uert 01— emenp [~ = o= — 1)

(29) + u(e“‘ —_ e—.“t) + v [&. (eat_ 1) - (eat___ e—pt)]}
— {uwert + o(L — M)} exp {— p(1) + ud(t) -+ olp) — ()]}

—3 g—P(‘){z 2 ul'vf"'l(l —ﬁt) A‘ (P - A)
i=0 j=0 ] T
i
-+ Z E witlydg—nt ___ Ap—a) }
=0 j=0 7! 7'

where for ¢ > 0, p(¢) = (Aa)(e* — 1) > 0, A(t) = e** — e ¥t =
(1 4+ ap/A)—#* {(1 + ap/A)}* — 1} > 0, and it is easily shown that
plt) = A(t) > 0.

The p.g.f. for the probabilities of survivals, is given by
(2.10) d(w, 1,8) = {ue~t + (1 — e~#t)Je-dra—w),
while that for the probabilities of deaths is

(2.11) $(1,v,8) = {v(1 — e ) + 6—pt}e—{P(t)—A(t)}(1—0).

3. Explicit probabilities of births, survivals and deaths

For the birth-death process continuing indefinitely, without stopping when
r mature phages have been produced, it follows from (2.9) directly that the
probabilities P, (¢) are

Py,(t) = e?(1 — e=#) {o(t) —A@) Y

oy 0=
(3.1) Pyft) = emotr=# —{(f(_t)}l) : G=1)
At )1 i~1 _
Py =erola—er (pT'ﬁli)T e (z'A_ 0! ’ i!A),}(i,i_Z_l)
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Clearly the probability B,(¢) of & births in time ¢ is of the Poisson form
B, (t) = exp{ — f;le“’dr}{f;le“’dr}"/k!
=e?Op()}F[k! (A 20),

the mean number of births in time ¢ being p(¢). From (2.10), the probabilities
Sa(t) of m survivals after time ¢ are

Solt) = (1 — emeo

(3.2)

3.3 Am-1 Am
3 Sa(t) = e4® !5"’“m + (1 —e#) 7,,7} (m = 1)

It should be noted that the mean number of survivals after time ¢ for this
process is

0
(3.4) a_u¢(l’ 1,%) = %,

exactly as for the standard birth-death process, while its variance
e*'(1 —e~A+mt) is less than the variance (A4 u)(A—pu)le**(e**—1) of
the standard process. Similarly from (2.11) the probabilities D,(f) of r
deaths in time ¢ are

Dy(t) = e—pi—pii+an

(3:5) D, (t) = e—'{f’“’—"“’}{e—l“t;'i)r + (1 — ¢4t (P(T__i%r—'_l= (r=1),

and the mean number of deaths in time ¢ is
d )
(3.6) —$(1,1,8) =1 — e 4 p(t) =5 (e** — 1).
ov o
Suppose the process now stops at the r-th death, the probability distribution

of this death (or maturing of the r-th phage), which is improper since there
is a non-zero probability that the process ends before, is given by

8t = 3Py, (iudt

0
=T iny™™1 of —¢(1 dt
{ ermt in v 0 auqS( , U, t)},u

(3.7) = {Term in v"1 of [e=#(1 + A) + Av(1 — e=rt)Je= P D=0
o=ty | —ut (p— A)1 (o — At
= A’{e #(1 +A)W+A(l—e ")—“—(’ — 2'_)! }/ldt

We have thus constructed a birth-death process approximating to the
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original one, but for which each of the probabilities of births, deaths and
survivals is explicitly known.

If the number of bacteria NV is taken to be infinite, an equation for the
distribution of the number infected up to time ¢ (or the number of mature
phages released up to ¢) can be obtained from Bellman and Harris’ [6]
theory of branching processes. If Q,(t) is the probability of n infected
bacteria, and y(s, ) = 32, Q,(¢)s™ the p.g.f. of this distribution, this satis-
fies the integral equation

(3.8) vls, t) = s(1 — G@) + [ (s, t — 7)Y g(e)ds

where g(t)dt is the improper probability distribution (3.7) and G(¢) the
function G(¢) = [¢g(v)dr. There seems to be no simple way of solving this
equation.
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