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Abstract

The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of
the moduli values of certain isolated points picked out by Hodge-theoretic conditions.
Using tools from transcendence theory, we provide a family of counterexamples to the
attractor conjecture in almost all odd dimensions conditional on a specific case of the
Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were
first studied by Dolgachev. We also give constructions of new families of Calabi–Yau
varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal
to one, which would also give counterexamples to the attractor conjecture.

1. Introduction

1.1 Statement of results
In this paper, we study the following remarkable conjecture due to string theorists.

Conjecture 1.1.1 (Moore). If X is an attractor Calabi–Yau 3-fold, then it is defined over Q̄.

We recall the definition of an attractor Calabi–Yau variety.

Definition 1.1.2. For X a Calabi–Yau d-fold, we say that it is an attractor variety if there is
a nonzero integral cohomology class γ ∈ Hd(X,Z) satisfying

γ ⊥ Hd−1,1,

where Hd−1,1 ⊂ Hd(X,C) denotes the (d − 1, 1) piece of the Hodge decomposition.

These varieties were originally introduced and studied by Ferrara, Kallosh and Strominger for
Calabi–Yau 3-folds [FKS95] as the case most directly of interest in string theory; Calabi–Yau 4-
folds were also considered shortly thereafter [Moo07, Section 3.8]. The above definition in general
dimension was then given in [BR11], as we discuss further in § 2. To build intuition, note that the
above condition should impose hd−1,1 conditions, where we denote by hd−1,1 = dim H1(X, TX)
the dimension of Calabi–Yau moduli space; as such, one typically expects attractor Calabi–Yaus
(for some fixed γ) to be isolated in moduli space, which is indeed the case for the exam-
ples we consider below. Hence, it is certainly of interest, irrespective of the physical origin
of the question, to investigate the arithmetic structure of the points picked out by this nat-
ural Hodge-theoretic condition. Finally, other than for reasons coming from string theory, we
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see no particular reason for restricting the statement of the attractor conjecture to the case
of 3-folds.

Our main result, then, is the following theorem.

Theorem 1.1.3. Under the Zilber–Pink conjecture, the analogue of Conjecture 1.1.1 for
Calabi–Yau varieties of arbitrary dimension is false. More precisely, there exist attractor
Calabi–Yau varieties in all odd dimensions except 1, 3, 5 and 9 which are not defined
over Q̄.

Although the Zilber–Pink conjecture (ZPC), whose statement we recall in § 5, is currently
far from proven, it is widely believed to hold,1 and is, moreover, a conjecture of a rather different
flavor than the attractor conjecture; we therefore believe that our result constitutes significant
progress on the latter. Moreover, we only require a very special case of the ZPC where much
more is known [Orr20], in that we are intersecting the moduli space of Calabi–Yau varieties with
Hecke translates of finitely many Shimura subvarieties, rather than simply arbitrary Shimura
subvarieties. This seems to be one of the simplest cases of the conjecture beyond the André–Oort
conjecture. Finally, assuming that our construction in § 6 works, we can even reduce the problem
to a case where the moduli space of Calabi–Yau varieties is a curve, bringing us even closer to
the main result of [Orr20].2

Indeed, for the family of counterexamples we consider, we show the much stronger statement
that the set of attractor points defined over Q̄ must be non-Zariski dense in the Calabi–Yau
moduli space. As we will check that the set of attractor points is indeed dense (even in the
analytic topology), these families give extremely strong counterexamples in the sense that almost
all attractor points fail to be defined over Q̄.

Amusingly, the Calabi–Yau examples we consider are decidedly not counterexamples in
dimensions 1, 3, 5 or 9. These examples have already been well-understood in the context of
flat surfaces (in the theory of Teichmüller dynamics). Indeed, in these cases the attractors are
indeed algebraic and are, moreover, examples of complex multiplication (CM) points on Shimura
varieties.

While we give the specific counterexamples above due to the particular techniques we bring
to bear, we expect a much more general transcendence property for these attractor points.

Conjecture 1.1.4. The algebraic attractor points in the moduli space of a Calabi–Yau X are
Zariski dense if and only if the said moduli space is a Shimura variety.

We pause to explain the nomenclature and history of our examples, as well as to point to
some related examples. The Calabi–Yau construction we use is that of a crepant resolution of an
n-fold cyclic cover of P2n−3 branched at a suitable hyperplane collection, following [SXZ13]. We
follow these authors in citing Dolgachev for his study of the moduli spaces thereof (as attempting
to answer the famous question of B. Gross on realizing ball quotients as geometric moduli spaces)
as in [DGK05, DK07], terming these Dolgachev Calabi–Yaus.

In particular, one could certainly consider variants of the construction we investigate here,
such as a family of double covers of projective space now branched at some other suitable
hyperplane arrangement. The latter family contains a Calabi–Yau 3-fold example with non-
Shimura moduli [SXZ15]. Following our conjecture above, we therefore suggest the following
case as a particularly attractive next area for investigation.

1 See for example [DR18] where it is deduced from certain arithmetic conjectures about point-counting.
2 Indeed, Orr [Orr20] proves this special case of ZPC that is required for our argument conditional on some
arithmetic conjectures.
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Question 1.1.5. Does the attractor conjecture hold for the family of double-cover Dolgachev
Calabi–Yau 3-folds?

1.2 History of the problem and related works
Attractor varieties in the context of Calabi–Yau 3-folds were originally discovered by
Ferrara, Kallosh and Strominger in the context of Calabi–Yau 3-fold compactifications of string
theory. They have been the subject of focused study since; mathematically, for example, they are
conjectured to govern the behavior of the enumerative geometry of Calabi–Yau 3-folds [KS14].
Moore in [Moo98] performed an in-depth study and made various conjectures about their pos-
sible arithmetic properties, including Conjecture 1.1.1 above. In particular, Moore investigated
various examples such as S × E for S a K3 surface and E an elliptic curve, a quotient thereof
known as the FHSV model, and abelian 3-folds. In all these cases, the attractor points are defined
over Q; however, note that all these examples have Shimura moduli (and indeed, the attractor
points are special points in the said Shimura variety). In particular, Moore in his lectures [Moo07]
notes a distinction in the plausibility of these conjectures for the rank-one and rank-two cases,
where the rank refers to the rank of the integral sublattice of H3 that lies within the subspace
H3,0 ⊕ H0,3. Indeed, in the latter case where one has an ensuing splitting of Hodge structures,
the standard conjectures predict that H3,0 ⊕ H0,3 splits off as a motive and the arithmeticity of
such loci would immediately follow. See [KOU20] for recent spectacular work in this direction
unconditional on any conjectures, although the specific case at hand is not covered in their paper.
By contrast, as essentially remarked above, one should expect arithmeticity almost never to hold
in the former case, in the technical sense of (Zariski) nondensity.

These attractor points have many other becoming properties analogous to those of special
points of Shimura varieties. Douglas and his coauthors studied the distribution of these points
in their moduli space in [Dou03, DD04, DSZ04, DSZ06a, DSZ06b]; the last series of papers
by Douglas, Shiffman and Zelditch in particular developed strong heuristics to suggest that
attractor points equidistribute in moduli space with its natural Weil–Petersson metric (together
with strong numerical evidence in myriad cases to support the said claim). We in fact use such
distributional results in our proof of Theorem 1.1.3, although we only need the much weaker
statement that attractor points are Zariski dense, which we can verify directly in § 3.5.

1.2.1 Quantum corrections. It turns out that the class of Calabi–Yau 3-folds with mod-
uli space a Shimura variety arises naturally in another context: they are precisely those with
no quantum correction [LY14], which is equivalent to saying that their mirrors have vanishing
Gromov-Witten invariants. Since we expect that such Calabi–Yau varieties are precisely those
for which the attractor conjecture holds, one could speculate that in the general situation there is
some ‘quantum correction’ to the attractor condition which picks out arithmetically interesting
points.

1.2.2 Flux vacua. Since the beginning of the mathematical study of attractor points, the
underlying theme has been whether Hodge-theoretic conditions other than the existence of extra
Hodge classes can lead to loci analogous to Hodge loci. On the other hand, there are other natural
loci arising from string theory which are closely related to attractor points, known as flux vacua,
in the moduli of Calabi–Yau manifolds; in this setup one again fixes some integral cohomology
classes known as the flux background and seeks to minimize a function over the moduli space.
For details of these loci we refer the reader to [DD04] and the references therein. It turns out
that this again picks out loci where the fixed cohomology classes satisfies some Hodge-theoretic
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condition but which, crucially, is not equivalent to having extra Hodge classes. Nevertheless,
such loci seem to share similarity with Hodge loci: for example, very recent work by Bakker,
Grimm, Schnell and Tsimerman [BGST21] proves the surprising analogue of Cattani, Deligne
and Kaplan for such loci.

1.2.3 Donaldson–Thomas invariants. We would like to briefly point out another appearance
of the attractor mechanism. In the case of 3-folds, Kontsevich and Soibelman have used attractor
points and attractor flows to define Donaldson–Thomas invariants,3 which are expected to agree
with counts of special Lagrangian manifolds and satisfy the Kontsevich–Soibelman wall-crossing
formula. The arithmeticity of such points plays no role in this theory. Nevertheless, in the case of
the Dolgachev 3-folds studied in this paper where the attractor points are CM points, one could
hope that such explicit control of the attractor points would help in the study of DT invariants,
which are still very mysterious in the case of compact Calabi–Yau 3-folds.

1.3 Outline of proof of Theorem 1.1.3
We sketch the proof of Theorem 1.1.3. We proceed by contradiction, so we assume that
all attractor Calabi–Yau varieties are in fact defined over Q̄. We consider the Dolgachev
Calabi–Yau varieties as constructed in § 3.1; these give examples of Calabi–Yau varieties defined
in all odd dimensions and will provide our counterexamples in almost all cases. These Dolgachev
Calabi–Yau varieties X are constructed from an associated curve C, and the middle Hodge
structures of X and C are closely related as reviewed in § 3.1. Next, it is not difficult to check
that the attractors are Zariski (in fact, even analytically) dense in the moduli space M. Then
we show that, for X a Dolgachev Calabi–Yau variety, if it is an attractor and defined over Q̄,
then its Jacobian Jac(C) splits in the isogeny category as A1 × A2 where the abelian variety A1

has complex multiplication (CM) by a fixed cyclotomic field. The crucial ingredient here is a
theorem of Shiga and Wolfart (following Wüstholtz) in transcendence theory, which, informally,
implies that an abelian variety defined over Q̄ is CM as soon as it has sufficiently many algebraic
period ratios, which in our case follows from the attractor condition and prior Hodge-theoretic
analysis.

This splitting of Jac(C) up to isogeny then may now be thought of as a problem in the
intersection theory of Shimura varieties: a priori, Jac(C) naturally defines a point of an ambient
Shimura variety Sh and the isogeny splitting condition above implies that M intersects the
Hecke translates of a sub-Shimura variety ShA of Sh in a dense set of points. The attractor
condition has thus reduced to a problem in unlikely intersection theory. In particular, when
the codimensions of M and ShA in Sh sum to less than the dimension of Sh, the ZPC implies
that M is contained in some proper Shimura subvariety. This is the point where the argument
fails for small values of the dimension of the Calabi–Yau varieties; in fact, in these cases the
moduli space M turns out to be a Shimura variety, the attractor points are CM points, and
therefore the attractor conjecture holds. In the general case, we instead use a result of Deligne
and Mostow on the monodromy groups of these varieties to show that, for almost all dimensions,
M is not contained in any proper Shimura subvariety of Sh, and hence we have a contradiction as
desired.

1.4 Conjectural one-modulus families of Calabi–Yau varieties
In general, the ZPC is wide open; however, it does simplify greatly when the subvariety in
question is a curve. In this case, it is known to hold conditional only on certain arithmetic

3 For noncompact Calabi–Yaus the attractor flow and attractor points suffice to determine the Donaldson–Thomas
invariants, whereas for compact Calabi–Yaus one seems to need some extra input data.
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statements by work of Orr [Orr20]. Motivated by this, we construct one-modulus families of
Calabi–Yau varieties for which our proof would go through without change; more precisely,
we construct one-parameter families of singular Calabi–Yau varieties, and conjecture that they
admit crepant resolutions. We believe these families are interesting in their own right as they are
analogous to the construction of the mirror quintic4 family: for example, they are again attached
to curves, and have all middle Hodge numbers equal to one.

1.5 Outline of the rest of the paper
In § 2 we introduce the attractor condition on a Calabi–Yau variety as well as the attractor
conjecture, along with providing somewhat more context for the interested reader. Section 3
continues with the main thrust of the proof above by defining the Dolgachev Calabi–Yaus
X along with their associated curves C before establishing the relation between the Hodge
structures thereof. Section 4 applies the theorem of Shiga and Wolfart to reduce to a
problem in Shimura theory before setting up the formalism of the ambient Shimura vari-
ety Sh and its special Shimura subvariety ShA. We conclude the proof of our main result
in § 5 with a discussion on the unlikely intersection theory of this Shimura variety prob-
lem. Finally, in Section 6 we give the conjectural construction of one-parameter families of
Calabi–Yau varieties which would give counterexamples to the attractor conjecture, where
the ZPC is more accessible: indeed, there has been significant progress [Orr20] in the case
when one considers unlikely intersections between a curve and Hecke translates of a Shimura
subvariety.

1.6 Notations and conventions
We now set a few conventions. We work throughout with the Hermitian intersection pairing
on the middle-degree complex cohomology of a manifold; under this pairing, distinct Hodge
summands are orthogonal. For a vector space V defined over some field K and a field extension
K ⊂ L, we often denote by VL the extension of scalars V ⊗K L. For an algebraic variety X over
C, we will sometimes say that X is algebraic, meaning that it is defined over Q̄. For a curve
C, we denote by Jac(C) its Jacobian. Starting from § 3.1, we will fix an integer n, such that
the Calabi–Yaus we consider have dimension 2n − 3, and we will use the notation ζ = e2πi/n

throughout.

2. The attractor conjecture

We now recall the attractor condition for (higher-dimensional) Calabi–Yaus precisely. Note that,
in general, we take a Calabi–Yau variety to be a smooth, projective variety X with trivial canon-
ical bundle and (a priori) defined over the complex numbers C. We will always assume that X
belongs to a family which is versal: that is to say, there is a family of smooth Calabi–Yau varieties
X → M such that for each s ∈ S, the Kodaira–Spencer map5 Ts → Hom(Hd,0(Xs), Hd−1,1(Xs)) is
an isomorphism. The existence of M follows from Bogomolov [Bog78], Tian [Tia87] and Todorov
[Tod89]. In practice, however, we will work with a specific family defined in § 3.1.

Definition 2.0.1. Given a Calabi–Yau d-fold X, then for each nonzero class γ ∈ Hd(X,Z), X
is said to be an attractor for the class γ if the condition

γ ⊥ H1,d−1(X)

4 As well as their higher-dimensional analogues – mirror septic, etc.
5 Here Xs denotes the fiber of X at s.
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holds. We will say that X is an isolated attractor point if X is an attractor and there is no
nontrivial real analytic6 one-parameter family through X consisting of attractors for the class γ.

Remark 2.0.2. Our reason for emphasizing the isolated condition is that in general it is possible
to have nonisolated attractors (i.e., positive-dimensional families); it is indeed straightforward
to construct examples where this happens, such as the very families of Dolgachev Calabi–Yau’s
considered in this paper when n is not prime. As such, the higher-dimensional attractor conjecture
would be trivially false for such attractor points.

In fact, this attractor condition in high dimensions is essentially due to Brunner and
Roggenkamp [BR11, § 4], although they state their condition in a slightly different form. Consider
the function |Zγ |2, where Zγ is the central charge function

Zγ :=
〈γ, Ω〉√
id〈Ω, Ω̄〉 .

Proposition 2.0.3. Suppose X → M is a versal family of smooth Calabi–Yau d-folds. If X is
an attractor point, then it is a critical point of |Zγ |2. Conversely, if X corresponds to a critical
point of |Zγ |2, and also γd,0 
= 0,7 then it is an attractor point in the sense of Definition 2.0.1.

Proof. The proof is identical to that of [Moo98, Theorem 2.5.1], though we give the details of
the computation here for completeness.

Suppose X corresponds to the point x ∈ M, and take local holomorphic coordinates zi which
are well defined on an open neighborhood U of x, as well as a holomorphic family of holomorphic
volume forms Ω(s) on Xs for s ∈ U ⊂ M.

Write ∂ziΩ(s) = λ(s)Ω(s) + χi for some function λ defined on U , and χi ∈ Hd−1,1(Xs). Then
we have

∂zi |Zγ |2 =
id〈Ω, Ω̄〉〈γ, ∂ziΩ〉〈γ, Ω̄〉 − 〈γ, Ω〉〈γ, Ω̄〉id〈∂ziΩ, Ω̄〉

(−1)d〈Ω, Ω̄〉2

= id
〈Ω, Ω̄〉〈γ, λΩ + χi〉〈γ, Ω̄〉 − 〈γ, Ω〉〈γ, Ω̄〉〈λΩ + χi, Ω̄〉

(−1)d〈Ω, Ω̄〉2

= 〈γ, χi〉 Z̄γ

(id〈Ω, Ω̄〉)1/2
.

Now if X corresponds to an attractor point, then 〈γ, χi〉 = 0 for all i, and hence ∂zi |Zγ |2 = 0
for all i, so that X corresponds to a critical point. Conversely, if X corresponds to a critical
point, and γd,0 
= 0, then Z̄γ 
= 0, and therefore 〈γ, χi〉 = 0 for all i. Since the χi span Hd−1,1, X
corresponds to an attractor point, as required. �
Remark 2.0.4. We expect that, generically, attractor points are isolated as they arise as critical
points of the real analytic function |Zγ |2. We believe this is a reasonable generalization of the
notion of attractor points from the case of 3-folds, because of the uniform description as critical
points of |Zγ |2. Finally, we point out that, for the Calabi–Yau varieties we consider, attractor
points are isolated and dense in moduli space can be proved directly: see § 3.5.

6 That is, a real analytic map f : [0, 1] → M, such that f(t) is an attractor point for all t ∈ [0, 1] and f(1/2)
corresponds to X. We have used the real analytic version since we see no reason for the locus of attractor points
to be complex analytic in general.
7 Recall that γd,0 ∈ Hd,0(X) is the (d, 0) piece of γ according to the Hodge decomposition on X.
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Conjecture 2.0.5 ([Moo98, Conjecture 8.2.2] for the case of 3-folds). If X is an attractor
variety for a nonzero class γ ∈ Hd(X,Q), which is, moreover, isolated in its moduli space in the
sense of Definition 2.0.1, then it has a model over Q̄.

The above conjecture would suggest that these points picked out by the Hodge-theoretic
attractor condition are a class of special points analogous in myriad aspects to special points of
Shimura varieties. (Indeed, Moore also makes a counterpart conjecture that the periods of these
points are algebraic.) And while Moore originally makes the conjecture for Calabi–Yau 3-folds,
Brunner and Roggenkamp [BR11, § 4] show that the same considerations apply in all respects
to higher-dimensional Calabi–Yaus, and so we find it equally interesting to study the veracity of
this conjecture in higher dimensions.

As remarked above, Moore also conjectures [Moo98, Conjecture 8.2.1] not just algebraicity
of the attractor points but also algebraicity of certain period ratios (assuming there is a point of
maximal unipotent monodromy). This holds in the case of Shimura moduli simply because all
period ratios are algebraic, but in the general case would imply very surprising relations between
periods. For example, in the recent work [COES19], Candelas, de la Ossa, Elmi and van Straten
verified numerically that, in the case of a rank-two attractor point, the periods in question
are ratios of special L-values. Note that, morally speaking, the conjecture on algebraicity of
attractors is a mirror to the conjecture on algebraicity of periods, and hence our main theorem
can be thought of as mirror to a transcendence result on special values of L-functions.

3. Dolgachev Calabi–Yau varieties

3.1 Defining the Calabi–Yaus
We will consider a family of Calabi–Yau varieties constructed as crepant resolutions of n-fold
cyclic covers of projective space, due to Dolgachev and to Sheng, Xu and Zuo [SXZ13]. Most of
the discussion holds for any n ≥ 2, although the case n = 2 is completely classical and returns
the Legendre family of elliptic curves; we therefore restrict to n ≥ 3 simply for convenience. At
a crucial point, we find that the cases n = 3, 4, 6 are distinguished, giving rise to ‘arithmetic’
families of Calabi–Yau varieties (e.g., these are exactly the cases for which the resulting MCY is
Shimura); all three of these therefore display qualitatively different behavior and we note at the
appropriate point where the condition n 
= 3, 4, 6 is crucial for the ‘nonarithmeticity’ phenomenon
of the statement of our main Theorem 1.1.3.

The definition of the Calabi–Yau varieties goes through that of a curve; this construction
has been studied by many authors, and we refer the reader to [Loo07, § 4.1]8 for a more general
version.

We first consider 2n points x1, . . . , x2n in P1, and the curve C given by the n-fold cyclic
cover of P1 branched at those 2n points; more precisely, we mean the cover determined by the
same n-cycle monodromy about each branch point in the base, or simply the smooth, projective
curve C whose affine model is given by

C◦ =
{

yn =
2n∏
i=1

(x − xi)
}

. (1)

By construction, H1(C,Q) has both a Hodge splitting and a Z/n-action. More precisely, if we
let ζ = e2πi/n, then H1(C,Q(ζ)) splits into eigenspaces for the Z/n-action. Let μ ∈ Z/n be the
generator which acts on C by y �→ ζy in (1).

8 For the convenience of the reader, one should take n in the notation of [Loo07, § 4.1] to be our 2n − 2, and the
μk for each k to be our 1/n.
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Definition 3.1.1. Let H1(C)[i] ⊂ H1(C;Q(ζ)) be the sub-Q(ζ)-vector space such that μ acts
by ζi.

Then H1(C)[i] is a Q(ζ)-sub-Hodge structure of H1(C,Q(ζ)) in the sense that we have the
decomposition

H1(C)[i] ⊗
Q(ζ)

C 
 H1,0(C)[i] ⊕ H0,1(C)[i]

given by the Hodge splitting of H1(C;C).

Proposition 3.1.2. The Hodge numbers of H1(C)[i] are given by (2i − 1, 2(n − i) − 1), for
1 ≤ i ≤ n − 1; that is,

dimC H1,0(C)[i] = 2i − 1, dimC H0,1(C)[i] = 2(n − i) − 1.

We refer the reader to [Loo07, Lemma 4.2] for this computation. Note that the i = 0
eigenspace is trivial as any cohomology class in this space comes from H1(P1) 
 0 via pullback.

Construction 3.1.3. It remains to introduce the Calabi–Yau (2n − 3)-folds X. Here we follow
the treatment in [SXZ13, Sections 2, 3]. For a collection of 2n hyperplanes (H1, . . . , H2n) of
P2n−3, we say that they are in general position if no 2n − 2 of them intersect at any point; that
is, there are no unexpected intersections between the Hi. Then we may define an n-fold cyclic
cover X ′ of P2n−3 branched along these hyperplanes.

We give the rigorous construction here. For a line bundle L on an arbitrary variety Y and a
positive integer n, consider the rank-n vector bundle

E := O ⊕ L∨ ⊕ · · · ⊕ (L∨)⊗n−1

on Y ; here L∨ denotes the dual of L. Now given a section of L⊗n, or equivalently a map

(L∨)⊗n → O,

we may define an algebra structure on E in the obvious way, and therefore we may form the
variety

X := Spec(E),

and by construction X admits a map to Y ; in fact, this is a cyclic n-fold covering. In other words,
a section σ ∈ Γ(L⊗n) defines a cyclic n-fold cover X → Y.

Definition 3.1.4. For a collection of 2n points p1, . . . p2n on P1, we may consider 2n hyperplanes
on P2n−3 as follows: recall that there is an isomorphism

Sym2n−3P1 ∼= P2n−3, (2)

and also that, for each i = 1, . . . , 2n, the set of points of the form {pi} × P1 × · · · × P1 on the left-
hand side of (2) gives a hyperplane on the right-hand side. Therefore, we obtain 2n hyperplanes
H1, . . . , H2n on P2n−3, in general position.

We now apply the above construction to Y = P2n−3, L = O(2) and σ ∈ Γ(O(2n)) such that
the zero locus of σ is precisely

D :=
2n∑
i=1

Hi ⊂ P2n−3

to obtain a cyclic n-fold covering of P2n−3, which we denote by X ′.
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Note that a pleasant computation shows that the canonical bundle of the cyclic cover X ′

defined above is trivial: indeed, using the formula KX = π∗KY + R for a covering map π : X →
Y , where R ⊂ X is the ramification divisor, we deduce that

KX′ = π∗((2 − 2n)H) + (2n)(n − 1)H ′

= (n(2 − 2n) + 2n(n − 1))H ′

= 0,

and so the canonical class of X ′ is trivial; here H denotes a hyperplane class in P2n−3 and H ′ is
the class of one of the n components of the pullback of H.

Denote the moduli space of collections (H1, . . . , H2n) of hyperplanes of P2n−3 in gen-
eral position by Hn. The following theorem was proved by Sheng, Xu and Zuo [SXZ13,
Corollary 2.6].

Theorem 3.1.5. Denote by f ′ : X ′ → Hn the family of (2n − 3)-folds over the moduli of
hyperplane arrangements constructed above. Then the following statements hold.

(i) There is a family of smooth Calabi–Yau (2n − 3)-folds

f : X → Hn

as well as a commutative diagram

(3)

where σ is a simultaneous crepant resolution.
(ii) The middle-degree Hodge structures of the families X ′ and X agree:

R2n−3f ′
∗Q ∼= R2n−3f∗Q.

(iii) Furthermore, the family f is maximal in the sense that the Kodaira–Spencer map is an
isomorphism at each point p ∈ Hn.

Definition 3.1.6. We refer to the varieties constructed in Theorem 3.1.5 as the Dolgachev
Calabi–Yau varieties. For X ′ = f ′−1(p) the (2n − 3)-fold parametrized by some p ∈ Hn, we
denote by X := f−1(p) the corresponding crepant resolution.

Remark 3.1.7. This is a slight abuse of terminology since the crepant resolution σ : X → X ′ is
not unique; on the other hand, any two resolutions are of course birational to each other.

3.2 Hodge structures of Dolgachev Calabi–Yaus
Now we relate the curves constructed earlier as branched covers of P1 to the Calabi–Yau varieties
constructed as covers of P2n−3. Recall from Theorem 3.1.5 that the cyclic cover X ′ has a crepant
resolution X which is Calabi–Yau, and we have an isomorphism

H2n−3(X;Q) 
 H2n−3(X ′;Q).

The right-hand side has a natural Z/n-action since it arises as a cyclic cover, and therefore the
left-hand side does as well. We may, therefore, decompose H2n−3(X) into eigenspaces as follows.
As in § 3.1 we fix a generator μ ∈ Z/n.
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Definition 3.2.1. We define

H2n−3(X)[i] ⊂ H2n−3(X;Q(ζ))

as the sub-vector space over Q(ζ) on which μ acts by ζi.

Then we have the crucial relationship between the Hodge structures of C and X.

Lemma 3.2.2 [SXZ13, Proposition 3.7]. We have the following isomorphism of Hodge
structures:

H2n−3(X)[i] 

∧

2n−3H1(C)[i].

Remark 3.2.3. Perhaps a more intrinsic way of phrasing the above lemma is that there is an
isomorphism of Q-Hodge structures with A := Q[X]/(Xn − 1)-action

H2n−3(X,Q) ∼=
∧
A

2n−3H1(C,Q).

In other words, we view H1(C,Q) as an A-module, where the generator X ∈ A acts through
μ ∈ Z/n, and then we take its (2n − 3)th wedge power over A.

We have the following statement.

Corollary 3.2.4. The Hodge structure H2n−3(X,Q) ⊗ Q(ζ) decomposes as a sum

H2n−3(X,Q) ⊗ Q(ζ) ∼=
n−1⊕
i=1

Vi

where Vi is a Q(ζ)-Hodge structure, concentrated only in Hodge degrees

(p, q) = (2i − 2, 2n − 2i − 1) and (2i − 1, 2n − 2i − 2);

furthermore, the dimensions of these pieces of the Hodge decomposition are

2i − 1 and 2n − 2i − 1,

respectively.

Proof. Indeed, we define the Hodge structures Vi to be
∧2n−3 H1(C)[i] from Lemma 3.2.2. By

Proposition 3.1.2 we may write the Hodge decomposition of H1(C)[i] as

H1(C)[i] ⊗ C ∼= H1,0 ⊕ H0,1,

where we have omitted the dependence on i on the right-hand side, and

dim H1,0 = 2i − 1, dim H0,1 = 2(n − i) − 1.

For convenience let us pick a basis {ei} (respectively, {fj}) for H1,0 (respectively, H0,1). Since
the dimension of H1(C)[i] is 2n − 2, upon taking the (2n − 3)th wedge power, the only nonzero
elements obtained by wedging together the ei and fj must omit precisely one ei or one fj .
Therefore, the Hodge degrees of such an element are either

(p, q) = (2i − 2, 2(n − i) − 1) or (2i − 1, 2(n − i) − 2);

furthermore, there are 2i − 1 (respectively, 2(n − i) − 1) choices of an ei (respectively, fj) to
omit, and therefore the Hodge numbers are 2i − 1 (respectively, 2n − 2i − 1), as claimed. �
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Notation 3.2.5. We will sometimes use the following notation for bookkeeping when dealing
with these Hodge numbers. We record the dimensions in a (n − 1) × 2 matrix⎛

⎜⎜⎜⎝
dim H1,0(C)[1] dimH0,1(C)[1]
dim H1,0(C)[2] dimH0,1(C)[2]

...
...

dim H1,0(C)[n − 1] dimH0,1(C)[n − 1]

⎞
⎟⎟⎟⎠ .

For example, in the case n = 5, it follows from Proposition 3.1.2 that the above matrix is⎛
⎜⎜⎝

1 7
3 5
5 3
7 1

⎞
⎟⎟⎠ .

Remark 3.2.6. We therefore verify from the case of i = n − 1 that h2n−3,0 = 1, as expected for
a Calabi–Yau variety of dimension 2n − 3; moreover, we find the dimension of the deformation
space of a Dolgachev Calabi–Yau is h2n−4,1 = 2n − 3, which is notably the same as the dimension
of the M0,2n, the moduli of 2n points in P1. This implies that the construction exactly accounts
for the full moduli space of Calabi–Yau varieties so constructed, that is, the family X → M0.2n

is versal. We sometimes write MCY for either the space M0,2n or Hn to emphasize it as a moduli
space of Calabi–Yau varieties.

As a consistency check let us see that the dimensions of M0,2n and Hn agree. Indeed, each
moduli space parametrizes hyperplanes inside a projective space modulo the action of a projective
linear group, and the coincidence of the dimensions is the equality

(2n) − (3) = (2n − 3)(2n) − ((2n − 2)2 − 1);

here the first term on each side of the equation is the number of moduli for the hyperplanes,
while the second term is the dimension of the projective linear group.

Remark 3.2.7. Note that in the case where n is not a prime, for any Dolgachev Calabi–Yau
variety X there exist classes γ ∈ H2n−3(X,Q) with no component in H2n−3(X)[1]: indeed, just
take any element in H2n−3(X,Q(ζ))[i] for some i not coprime to n, and take the sum of all of its
Galois conjugates. The parallel transport of such a class γ will continue to have no component in
H2n−3(X)[1] for any X. This gives examples of nonisolated attractor points: indeed, every X is
an attractor for such a class γ, and we therefore need the isolated condition in Conjecture 2.0.5.

3.3 The attractor condition for Dolgachev Calabi–Yau varieties
We are now finally in a position to study the attractor condition for Calabi–Yau varieties X
constructed as above. We first show that the attractor condition is equivalent to a condition on
the periods of the associated curve C as follows.

Lemma 3.3.1. The variety X satisfies the attractor condition if and only if there exists a nonzero
ω ∈ H1,0(C)[1] ∩ H1(C)[1].

Note in the above that H1,0(C)[1] is defined as a subspace of H1(C,C) while H1(C)[1] is
defined as a subspace of H1(C,Q(ζ)). In particular, as dimC H1,0(C)[1] = 1, the above attractor
condition is also equivalent to the subspace H1,0(C)[1] ⊂ H1(C) ⊗ C being defined over Q(ζ).

Proof. Suppose X satisfies the attractor condition. Then there exists γ ∈ H2n−3(X;Z) orthogo-
nal to H2n−4,1(X); equivalently, γ is orthogonal to H1,2n−4(X). Recall from the discussion above
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that H1,2n−4(X) is contained within the H2n−3(X)[1] eigenspace. The distinct μ-eigenspaces are
certainly orthogonal under the intersection pairing, and if γi ∈ H2n−3(X)[i] denotes the sum-
mand of γ under the decomposition of H2n−3(X;Q(ζ)), the above condition is equivalent to γ1

orthogonal to H1,2n−4(X). As the Hermitian pairing is perfect on H1,2n−4(X), γ cannot have
any support within the said Hodge summand of

H2n−3(X)[1]C 
 H1,2n−4(X) ⊕ H0,2n−3(X),

and so we must have γ1 ∈ H0,2n−3(X). But γ1 was defined as an element of the vector space
H2n−3(X)[1], a vector space defined over Q(ζ), and so both H0,2n−3(X) and H1,2n−4(X), as the
orthogonal complement of H0,2n−3(X) under the intersection pairing restricted to H2n−3(X)[1],
are defined over Q(ζ). But then

H1,2n−4(X) 

∧

2n−2H0,1(C)[1] ⊗ H1,0(C)[1]


 (H0,1(C)[1])∨ ⊗ (det H0,1(C)[1]) ⊗ H1,0(C)[1]


 (H0,1(C)[1])∨ ⊗ det H1(C)[1]

as a subspace of

H2n−3(X)[1] 

∧

2n−3H1(C)[1] 
 (H1(C)[1])∨ ⊗ det H1(C)[1].

Above, we use the notation detV =
∧dim V V and the isomorphism∧
dim V −1V 
 V ∨ ⊗ det V.

In any case, we have that the decomposition

H2n−3(X)[1]C 
 H1,2n−4(X) ⊕ H0,2n−3(X)

is isomorphic to the decomposition

((H1(C)[1])∨ ⊗ det H1(C)[1])C


 ((H0,1(C)[1])∨ ⊗ det H1(C)[1]) ⊕ ((H1,0(C)[1])∨ ⊗ det H1(C)[1])

induced from the Hodge splitting of H1(C)[1]C. As H1(C)[1] and hence detH1(C)[1] are defined
over Q(ζ), however, the condition that the first decomposition be defined over Q(ζ) is equivalent
to the condition that the second decomposition be defined over Q(ζ), which in particular implies
that there exists some ω ∈ H1,0(C)[1] ∩ H1(C)[1].

Conversely, given such an ω, we have that the subspace H1,0(C)[1] ⊂ H1(C)[1]C is in fact
defined over Q(ζ) and hence so is H0,1(C)[1] as its orthogonal complement; as above, the decom-
position H2n−3(X)[1]C 
 H1,2n−4(X) ⊕ H0,2n−3(X) is then also defined over Q(ζ). Then take
some γ1 ∈ H0,2n−3(X) defined over Q(ζ) so that, by construction, γ1 is orthogonal to H1,2n−4(X),
and consider the Galois conjugates γi under the action of Gal(Q(ζ)/Q) on H2n−3(X;Q(ζ)).
These Galois conjugates will lie within the H2n−3(X)[i] eigenspaces for values of i coprime
to n and thus be concentrated in Hodge summands away from the (1, 2n − 4) and (0, 2n − 3)
summands, so that if we now define γ =

∑
i γi, the Galois-theoretic construction will give us

γ ∈ H2n−3(X;Q) while its summand in the H2n−3(X)[1] eigenspace is still the original γ1 we
started with. As such, scaling γ as necessary so it in fact lies in H2n−3(X,Z), we have pro-
duced some integral cohomology class orthogonal to H1,2n−4(X), or equivalently H2n−4,1(X), as
desired. �
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3.4 Algebraicity of the associated curve
In this section we show that the algebraicity of the Dolagchev Calabi–Yau variety implies that
of the curve associated to it. Therefore, to show that Dolgachev Calabi–Yau varieties provide
counterexamples to the attractor conjecture it suffices to show that for the attractor varieties,
the associated curves are not defined over Q̄.

Proposition 3.4.1. X is defined over Q̄ if and only if C is defined over Q̄.

Proof. We first deal with the easier direction, so suppose C is defined over Q̄. Let μ : C → C
denote a generator of the Z/n action, which must also be defined over Q̄; we spell out this
argument here as we will use its basic idea, namely that of spreading out frequently. So, consider
μ as a point of the quasiprojective Q̄-scheme Aut(C). If the field of definition K of μ is larger
than Q̄, and in particular contains some pure transcendental extension thereof, we may freely
specialize that transcendental variable to produce a family of automorphisms of C, but any
curve has only finitely many automorphisms. Hence, μ must have been defined over Q̄. But
now the morphism C → C/μ 
 P1 is defined over Q̄, and so the 2n points x1, . . . , x2n ∈ P1 of
ramification are defined over Q̄ (after an appropriate automorphism of P1). Now the crepant
resolution X constructed by Sheng, Xu and Zuo is obtained by blowing up9 the cyclic cover X ′

(with notation as in Definition 3.1.6) along intersections of hyperplanes obtained from the xi,
and their intersections, and so on. It is clear that X ′ and all the blow-up centers within X ′ are
defined over Q̄, and hence so is X.

The more interesting direction is the reverse argument, where we begin by supposing that X
is defined over Q̄. The morphism X → P2n−3 corresponds to some line bundle L ∈ PicX given
by the pullback of O(1), but note that PicX 
 H2(X;Z) is simply a discrete set of points as a
scheme over Q̄, and hence all points must be defined over Q̄.

Claim 3.4.2. The complete linear system of L defines precisely the morphism X → P2n−3.

Proof. It suffices to show that the pullback map induces an isomorphism

Γ(X,L) ∼= Γ(P2n−3,O(1)).

Recall that we have the factorization

X
σ−→ X ′ α−→ P2n−3,

where σ is the crepant resolution from Theorem 3.1.5, and

α : X ′ → P2n−3

denotes the n-fold covering of P2n−3 from Definition 3.1.4. We first show that

Γ(X ′,L′) ∼= Γ(P2n−3,O(1)),

where L′ := α∗O(1). By construction of X ′ (see Definition 3.1.4 and the paragraph preceding
it),

α∗OX′ ∼= OP2n−3 ⊕ L∨ ⊕ · · · ⊕ (L∨)⊗n−1,

where L∨ ∼= O(−2). Therefore,

α∗L ∼= OP2n−3(1) ⊕OP2n−3(−1) ⊕ · · · ⊕ OP2n−3(−2n + 3),

and hence Γ(X ′,L′) = Γ(P2n−3,O(1)) as required. On the other hand, X is obtained from X ′

by blowing up along subvarieties of codimension at least two, and we claim

Γ(X,L) ∼= Γ(X ′,L′)

9 We refer the reader to [SXZ13, Section 2.2] for the details of the blow-up procedure.

1085

https://doi.org/10.1112/S0010437X24007036 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007036


Y. H. J. Lam and A. Tripathy

as well. Indeed, as X and X ′ fail to be isomorphic only in codimension two, this statement
would follow from (algebraic) Hartogs’ lemma provided X and X ′ are both normal. That X is
normal follows from its smoothness, while X ′ is normal as it is both R1 and S2 [Sta23]. Indeed,
its singular set has codimension two, while it is S2 given its construction as a hypersurface in a
smooth ambient variety (the total space of a line bundle over P2n−3). �

Hence, L and its linear system X → P2n−3 are defined over Q̄, and so we learn that the
ramification locus with irreducible components the 2n hyperplanes H1, . . . , H2n may be taken to
be defined over Q̄ – that is, are defined over Q̄ after, possibly, an application of some PGL2n−2

projective transformation to their original definition as corresponding to the points xi. However,
this condition is precisely the same as that the original 2n points may be taken to be defined over
Q̄, that is, possibly after some PGL2 transform, or equivalently that all their cross-ratios are in
Q̄, and so it is then easy to reconstruct C over Q̄. Indeed, the map from the 2n points to the 2n
hyperplanes (or 2n points in a dual projective space) may be regarded as a morphism between
(open loci of) Sym2n−3P1/S3 → P2n−3/S2n−2 (by using the simple 3- or (2n − 1)-transitivity of
the PGL2- and PGL2n−2-actions, respectively) which is explicitly defined over Q̄. Indeed, one
may write down this map in explicit coordinates; we refer the reader to [SXZ13, Claim 3.6]. �

3.5 Attractors are dense
In this section we show that the attractor points are Zariski dense in moduli space. This fact
will be used when we apply the ZPC.

We define the auxiliary space

M′
0,2n := {(s, ω) | s ∈ M0,2n, ω ∈ H1,0(Cs)[1], ω 
= 0}

where we have denoted by Cs the n-fold cover of P1 branched at the configuration of 2n points
given by s ∈ M0,2n. Recall that H1,0(Cs)[1] is a one-dimensional C-vector space and hence M′

0,2n

is a Gm-bundle over moduli space. Also let M̃′
0,2n denote the universal cover of M′

0,2n; on this
universal cover we have a well-defined basis of the cohomology group H1(C,Q(ζn))[−1] which
we denote by γ1, . . . , γ2n−2.

We may now consider the so-called Schwarz map defined as follows:

π : M̃0,2n → C2n−2

(s, ω) �→
( ∫

γ1

ω, . . . ,

∫
γ2n−2

ω

)
.

By Lemma 3.3.1 we have that a point (s, ω) ∈ M̃0,2n is an attractor point (more precisely, the
point s gives rise to an attractor Calabi–Yau and ω witnesses this) if and only if π((s, ω)) has
coordinates in Q(ζ) ⊂ C. Note that π is a holomorphic local isomorphism; see, for example,
[Loo07, Corollary 1.7]. So the image π(M̃0,2n) contains some open ball inside C2n−2. Since
Q(ζn) ⊂ C is dense, we have that the attractors are topologically dense, and hence Zariski dense
as well. Note, moreover, that these attractor points are isolated, as each point of Q(ζ) in C is
isolated, and therefore we have the following proposition.

Proposition 3.5.1. The isolated attractor points are Zariski dense in the moduli space
MCY.
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4. Reduction to Shimura theory

4.1 Algebraic attractors split off CM abelian varieties
In this section we show that if an attractor is algebraic, then the Jacobian of the corresponding
curve C must split off CM factors.

We make use of the following theorem of Shiga and Wolfart [SW95, Proposition 3], a
consequence of the analytic subgroup theorem of Wüstholz.

Theorem 4.1.1 (Shiga and Wolfart). Let A be a simple abelian variety defined over Q̄ endowed
with a nonzero differential Ω ∈ Γ(A, Ω1

A) which is also defined over Q̄. For γ 
= 0, the period 〈Ω, γ〉
is nonzero. Suppose that for any two classes γ1, γ2 ∈ H1(A;Z), the period ratios are algebraic:

〈Ω, γ1〉
〈Ω, γ2〉 ∈ Q̄. (4)

Then A has complex multiplication. Moreover, if K is the number field generated by the period
ratios above then the CM field of A is precisely K.

Proof. For such Ω and γ 
= 0, 〈Ω, γ〉 is nonzero by an application of Wüstholz’s theorem. More
precisely, if 〈Ω, γ〉 = 0, then we apply the theorem in the form stated in [SW95, Lemma 1] to
the subspace H defined to be the space of tangent vectors which pair to zero with Ω, to deduce
that A has a proper algebraic subgroup, contradicting that A is simple.

The claim that A has CM is precisely the statement of [SW95, Proposition 3]. For the final
claim about the CM field, the proof in [SW95] includes the claim that K, the field generated by
the period ratios in (4), has degree 2 dim(A), and is, moreover, isomorphic to a subalgebra C of
End0(A) := End(A) ⊗ Q. It follows that K ∼= End0(A) is the CM field of A. �

We now apply Theorem 4.1.1 to the case we are interested in. Let X be a Dolgachev
Calabi–Yau (2n − 3)-fold as defined in § 3.1, and recall that X is constructed from a curve C,
which is a cyclic cover of P1 and is equipped with an automorphism μ; the latter induces an
action on Jac(C) which we denote by the same symbol.

Proposition 4.1.2. Suppose X as above satisfies the attractor condition and is defined over Q̄,
and let ω ∈ H1,0(C) ∩ H1(C)[1]10 be the nonzero class given by Lemma 3.3.1. Then Jac C has
a summand A1 in the isogeny category such that the following conditions hold.

(i) ω is supported on A1, that is, for any isogeny of the form A1 × B → Jac C, for some other
abelian variety B, then ω pulls back to zero on B.

(ii) A1 has complex multiplication; more precisely, each simple isogeny factor of A1 has CM by
a subfield of Q(ζ).

Proof. First, note that if X is defined over Q̄, then by Proposition 3.4.1 the same is true of C,
and therefore of its Jacobian; let CQ̄ be a model of C over Q̄, namely, it is a curve over Q̄ such
that CQ̄ ⊗Q̄ C 
 C, for some embedding Q̄ ↪−→ C. For brevity we write A for the abelian variety
Jac C.

Now let A1 denote the abelian variety, which is a summand of A in the isogeny category,
on which ω is supported; more precisely, we write A ∼ B1 × B2 × · · · × Br, and take A1 to be
the product of all the factors Bi to which ω pulls back nontrivially. Note that since ω satisfies
μ∗ω = ζω, μ preserves A1.

On the other hand, since ω ∈ H1(C,Q(ζ)), all the periods

〈ω, γ〉, for γ ∈ H1(A1,Q),

10 Recall that H1(C)[1] is the subspace of H1(C,Q(ζ)) on which μ acts via ζ.
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are contained in Q(ζ). Since dimC H1,0(C)[1] = 1 by Proposition 3.1.2, and H1,0(C)[1] 

Γ(CQ̄, Ω1

CQ̄
)[1] ⊗Q̄ C, there is a nonzero complex number λ such that Ω := λω11 is defined over

Q̄ when considered as a differential on C (or equivalently, A). Applying Theorem 4.1.1 to each
simple isogeny factor of A′

1 of A1, and the pullback of Ω to A′
1, we deduce that A′

1 has complex
multiplication by a subfield of Q(ζ), as required. �

We summarize this section with the following theorem.

Theorem 4.1.3. Assume the attractor conjecture holds. Then the attractor points for the
Dolgachev family of Calabi–Yaus considered here lie on the intersection of MCY 
 M0,2n with
certain Shimura subvarieties of A(n−1)2 under M0,2n → M(n−1)2 → A(n−1)2 . More precisely, the
attractor points correspond to points of A(n−1)2 admitting an isogeny factor with CM, all of
whose simple factors have CM by a subfield of Q(ζ).

4.2 Prym varieties
In fact, while M0,2n does naturally map to the Shimura variety parametrizing (n − 1)2-
dimensional (principally polarized) abelian varieties as above, for the application of the ZPC
it is necessary to refine this map slightly, especially when n is not a prime. The end result will
be a map to a PEL-type Shimura variety instead of simply A(n−1)2 . Therefore, in this section
we study the construction of Prym varieties, which are a certain quotient of the Jacobian.

Recall that, for n ≥ 2, C → P1 denotes the cyclic n-fold covering of P1 branched at 2n points,
whose affine model is given in (1); moreover, there is an action of Z/n on C. Now suppose we
have a divisor n′ of n, and let Z/n′ ⊂ Z/n denote the unique order- n′ subgroup of Z/n; we fix a
generator μ ∈ Z/n as before, and further denote μ′ := (n/n′)μ, which is a generator of this Z/n′

subgroup.

Definition 4.2.1. For each n′ dividing n, define

C ′ := C/(Z/n′),

where Z/n′ acts on C via the inclusion Z/n′ ⊂ Z/n. Also let

πn′ : C → C ′

denote the natural quotient map. By further quotienting by a Z/(n/n′), we also have a map
C ′ → P1, which is a cyclic n/n′-fold covering.

Proposition 4.2.2. Let Jn′ denote the cokernel of the pullback map

π∗
n′ : Jac(C ′) → Jac(C).

Then its cohomology is given by

H1(Jn′ ,Q(ζ)) ∼=
⊕

i

H1(C,Q(ζ))[in′];

equivalently, the above is the sum of all H1(C,Q(ζ))[j] where j satisfies

ζjn/n′
= 1.

Remark 4.2.3. As a consistency check, we see that the above sum is over i = n′, . . . , (n/n′ − 1)n′,
and so there are (n/n′ − 1) nontrivial summands, as expected, since

C ′ → P1

is now an n/n′-fold cyclic cover.

11 In fact, one can write down Ω explicitly in terms of x ∈ M0,2n; see, for example, [Loo07, § 1.1, Lemma 4.2] with
r in that paper set to 1.
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Proof. Applying the Riemann–Hurwitz formula to the covering map C ′ → P1, we have

2 − 2g(C ′) =
n

n′ (2) − 2n

(
n

n′ − 1
)

,

and hence

g(C ′) = (n − 1)
(

n

n′ − 1
)

.

Here g(C ′) denotes the genus of C ′. On the other hand, recall that the points of the Jacobian of
a curve are the degree-zero divisors modulo rational equivalence, and therefore the image of the
pullback map

π∗
n′ : Jac(C ′) → Jac(C)

is invariant under the Z/n′-action. On the other hand, π∗
n′ is injective, since if D is a degree-zero

divisor on C ′ such that
π∗

n′(D) = (f)

for some rational function f on C, then f is invariant under the Galois group Z/n′ of the
covering map C → C ′, and therefore f descends to C. Therefore, the map on homology induced
by π∗

n′ is also injective, and lands inside the invariant subspace H1(Jac(C),Q(ζ))Z/n′
(using

Q(ζ)-coefficients). By the genus computation above, this gives an isomorphism

H1(Jac(C ′),Q(ζ)) ∼= H1(Jac(C),Q(ζ))Z/n′
.

Dualizing, we have H1(Jac(C ′),Q(ζ)) being the coinvariants of the Z/n′-action on
H1(Jac(C),Q(ζ)), which gives the desired result; indeed, since the action of a generator
μ′ := (n/n′)μ ∈ Z/n′ on H1(Jac(C),Q(ζ))[j] is given by ζnj/n′

, the coinvariants are given by
n−1⊕
i=1

H1(Jac(C),Q(ζ))[i]/(ζni/n′ − 1)H1(Jac(C),Q(ζ))[i],

and we see that the nontrivial summands are indexed by i such that ζin/n′
= 1, as claimed. �

We immediately deduce the following simple corollary.

Corollary 4.2.4. We denote by π∗
n′ the map on cohomologies induced by π∗

n′ . Then the quotient
of H1(C,Q(ζ)) by the images of π∗

n′ for all proper divisors n′ (i.e. n′ 
= 1, n) is precisely the sum⊕
i∈(Z/n)×

H1(C,Q(ζ))[i].

The above direct sum decomposition can be refined integrally, or equivalently as a statement
about abelian varieties.

Definition 4.2.5. We now define the abelian variety

Prym := Jac(C)/
∑
n′

Im(π∗
n′),

and refer to it as the Prym variety. Here the sum is over proper divisors n′ as above.

Corollary 4.2.6. The abelian variety Prym has endomorphisms by Q(ζ), and its Q(ζ)-Hodge
structure is given by ⊕

i∈(Z/n)×
H1(C,Q(ζ))[i].

As such, it has dimension (n − 1)φ(n).
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4.3 PEL Shimura varieties
Now that we have the necessary statements on the Prym construction from § 4.2, we can define
the refined period map, whose target is a certain PEL-type Shimura variety. Denote by V the
Q subspace of H1(C,Q) such that

V ⊗ Q(ζ) =
⊕

r∈(Z/n)×
V [r],

where V [r] ⊂ H1(C,Q(ζ)) denotes the ζr eigenspace for the action of μ ∈ Z/n; as before, V has
an action of Q(ζ). By Corollary 4.2.6, we may identify V with H1(Prym,Q).

Definition 4.3.1. The abelian variety Prym from § 4.2 furnishes us with an integral lattice

VZ := H1(Prym,Z) ⊂ H1(Prym,Q) = V,

equipped with a symplectic form Ψ. Let

S := ResC/RGm

denote the Deligne torus, and let H denote the space of homomorphisms

h : S → GSp(VR, Ψ),

which in turn define Hodge structures of type (−1, 0) + (0,−1) on VZ. The space H is isomorphic
to the Siegel upper half space of dimension

(n − 1)φ(n)((n − 1)φ(n) + 1)
2

,

since it parametrizes abelian varieties of dimension (n − 1)φ(n).

The Shimura datum (GSp(V, Ψ), H) certainly defines a Shimura variety to which M0,2n maps;
we can describe its C-points as follows. The integral structure on V defines a maximal compact
subgroup K ⊂ GSp(V, Ψ)(A), and then we have

Sh(GSp(V, Ψ), H)(C) = GSp(V, Ψ)(Q)\H × GSp(V, Ψ)(Af )/K;

here A (respectively, Af ) denotes the ring of (respectively, finite) adeles. However, as we shall
presently see, M0,2n lands inside a smaller Shimura subvariety. In the following we essentially
follow the treatment of [Moo10, Section 3.3], the only difference being that we work with the
Prym whereas Moonen considers the entire Jacobian.

Definition 4.3.2.

(i) For a Q-algebraic subgroup H ⊂ GSp(V, Ψ), define

HH := {h : S → GSp(VR, Ψ)|h factors through HR}.
A special subvariety associated to the group H is the image of H+

H × ηK under the
uniformization map

H × G(Af )/K → GSp(V )(Q)\H × G(Af )/K,

where H+
H is a connected component of HH .

(ii) Recall that there is a Q(ζ)-action on V . Define the Q-algebraic group

G := GLQ(ζ)(V ) ∩ GSp(V, Ψ);

here GLQ(ζ)(V ) denotes the elements of GL(V ) commuting with the action of Q(ζ) on V .
(iii) By construction, P (M0,2n) lies in such a special subvariety, which we denote by Sh.
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We introduce notation to describe the real points of G following Moonen. For each r ∈
(Z/n)×, V [r] ⊗Q(ζ) C ⊕ V [−r] ⊗Q(ζ) C is canonically defined over R, and we write VR,(±r) for
its descent to R: namely, VR,(±r) is the R-vector space such that VR,(±r) ⊗ C 
 V [r] ⊗Q(ζ) C ⊕
V [−r] ⊗Q(ζ) C. The polarization defines a skew-hermitian form β(±r) on VR,(±r). We refer the
reader to [Moo10, § 4.5] and the references therein for more details.

Proposition 4.3.3.

(i) The real points of the group G are given by

G(R) ∼=
∏

r∈(Z/n)×/±
U(VR,(±r), β±r).

For example, the r = 1 factor of the above product is isomorphic to U(1, 2n − 3), since, by
Corollary 3.2.4, (1, 2n − 3) are the dimensions of the pieces of the Hodge decomposition of
V [1], and therefore give the signature of the hermitian form.

(ii) The dimension of Sh is
1
2

∑
r∈(Z/n)×

(2r − 1)(2n − 1 − 2r). (5)

Here the sum is over representatives between 1 and n of the elements of (Z/n)×.

Proof. The first part follows from [Moo10, Remark 4.6]. For the second part, it suffices to find the
signature of the pairing on each of the subspaces V [r], since the hermitian symmetric domain for
the unitary group U(a, b) has dimension ab. The signatures, or equivalently the Hodge numbers,
are given by Proposition 3.1.2, and (5) follows immediately. �

The Prym construction therefore gives us a map

P : M0,2n → Sh.

We have the following result, which is analogous to the classical result that the Torelli map is
an embedding, although we only require an infinitesimal version of this.

Lemma 4.3.4. The derivative of P is injective.

Proof. We will show equivalently that, for each x ∈ M0,2n, the codifferential map

P ∗ : T ∗
P (x)Sh → T ∗

xM0,2n

is surjective. Here for a variety X and a point x ∈ X we denote by T ∗
xX the cotangent space

to X at x. First we identify the source and target of P ∗ in terms of the geometric structures at
hand.

Claim 4.3.5. We have the following identifications of the cotangent spaces:

T ∗
P (x)Sh ∼=

⊕
r∈(Z/n)×

r<n/2

H0(C, Ω1
C)[r] ⊗ H0(C, Ω1

C)[n − r], (6)

T ∗
xM0,2n

∼= H0(C, (Ω1
C)⊗2)inv. (7)

Here H0(C, Ω1
C)[r] denotes the ζr eigenspace of H0(C, Ω1

C), and the subscript inv in (7) denotes
the invariant part of the Z/n-action.

Furthermore, under these identifications, the restriction of P ∗ on each of the factors is given
in (6) by the cup product map

∪ : H0(C, Ω1
C)[r] ⊗ H0(C, Ω1

C)[n − r] → H0(C, (Ω1
C)⊗2)inv
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Let us first see how to conclude the proof of this lemma, assuming this claim. Note that the
dimension of H0(C, (Ω1

C)⊗2)inv is 2n − 3, since it has to be the dimension of M0,2n. We will now
show that the restriction (which we continue to denote by P ∗)

P ∗ : H0(C, Ω1
C)[1] ⊗ H0(C, Ω1

C)[n − 1] → H0(C, (Ω1
C)⊗2)inv (8)

is in fact an isomorphism; certainly the dimensions of the source and target agree, and so it
suffices to show this map is injective. But this is clear since the space H0(C, Ω1

C)[1] is one-
dimensional and spanned by ω, say, and so anything in the kernel of the map (8) takes the form
ω ⊗ η for some η ∈ H0(C, Ω1

C)[n − 1]. On the other hand, ω and η are nonzero 1-forms on C,
and the quadratic differential obtained by multiplying them together is certainly nonzero. This
shows that the map (8) is injective, and therefore it is an isomorphism, as required. Therefore,
it suffices to prove Claim 4.3.5.

Proof of Claim. By construction, we have an embedding

Sh → Sh(GSp(V, Ψ), H),

where the right-hand side denotes the Shimura variety attached to the Shimura datum
(GSp(V, Ψ), H). The latter is the moduli space of abelian varieties of dimension (n − 1)φ(n)
equipped with a polarization of the fixed type specified by the polarization on the Prym variety.
Therefore, the tangent space to Sh(GSp(V, Ψ), H) at P (x) is given by

Sym2(tPrym) ⊂ tPrym ⊗ tPrym∨ , (9)

where for an abelian variety A we denote by tA the tangent space at the origin, and by A∨ its
dual abelian variety. On the left-hand side of the above we have also made the identification

tPrym
∼= tPrym∨

using the polarization on Prym. Note that in (9) the right-hand side is the deformation space of
Prym with no reference to polarizations. By Corollary 4.2.6, we may make the identification

tPrym
∼=

⊕
i∈(Z/n)×

H1(C,OC)[i];

for convenience we denote the right-hand side of this identification by H1(C,OC)prim. Similarly,
we define H0(C, Ω1

C)prim to be the sum of the eigenspaces of H0(C, Ω1
C) with eigenvalues primitive

nth roots of unity.
On the other hand, as mentioned above, the right-hand side of (9) is the deformation

space of the abelian variety Prym (without reference to a polarization), and hence there is a
Kodaira–Spencer map

KS : tPrym ⊗ tPrym∨ → Hom(H0(C, Ω1
C)prim, H1(C,OC)prim), (10)

which is the natural isomorphism once we make the identifications

tPrym ⊗ tPrym∨ ∼= H1(C,OC)⊗2
prim
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and
H1(C,O)prim

∼= H0(C, Ω1
C)∨prim,

the latter of which is induced by Serre duality.
By definition, Sh is contained in the locus of Sh(GSp(V, Ψ), H) where the Hodge structure

H1 admits a Q(ζ)-action and a splitting

H1 ⊗Q Q(ζ) ∼=
⊕

r∈(Z/n)×
H1[r]

with prescribed Hodge numbers. Therefore, the Kodaira–Spencer map (10) restricted to Sh must
preserve the different eigenspaces. In other words, we have

KS|Sh : TP (x)Sh →
⊕

r∈(Z/n)×
Hom(H0(C, Ω1

C)[r], H1(C,OC)[r]); (11)

now since KS itself is an isomorphism, KS|Sh is injective at least. On the other hand,
deformations in Sh are also required to preserve the polarization: concretely this means
that each element in the image of KS|Sh is invariant under the involution which identi-
fies Hom(H0(C, Ω1

C)[r], H1(C,OC)[r]) and Hom(H0(C, Ω1
C)[n − r], H1(C,OC)[n − r]) for each

r ∈ (Z/n)×.12 Therefore, the projection

KS|Sh : TP (x)Sh →
⊕

r∈(Z/n)×
r<n/2

Hom(H0(C, Ω1
C)[r], H1(C,OC)[r]). (12)

is also injective. Since the dimensions of the two sides of (12) now agree, and the map is injective,
it must in fact be an isomorphism.

Again using Serre duality, for each r = 1, . . . , n, we have

H0(C, Ω1
C)[r] ∼= H1(C,OC)[n − r]∨,

and using the remark above we may rewrite (12) as

TP (x)Sh ∼=
⊕

r∈(Z/n)×
r<n/2

(H0(C, Ω1
C)[r])∨ ⊗ H1(C,OC)[r] (13)

∼=
⊕

r∈(Z/n)×
r<n/2

H1(C,OC)[n − r] ⊗ H1(C,OC)[r]. (14)

Dualizing, we therefore deduce

T ∗
P (x)Sh ∼=

⊕
r∈(Z/n)×

r<n/2

H0(C, Ω1
C)[r] ⊗ H0(C, Ω1

C)[n − r],

which proves (6), as claimed.
The identification (7) is well known; see, for example, [LO11, Proposition 4.1]. Furthermore,

[LO11, Proposition 4.1] also shows that the codifferential of the map

M0,2n → Sh(GSp(V, Ψ), H),

12 The identification is to first take the dual of an element of Hom(H0(C, Ω1
C)[r], H1(C,OC)[r]) and then apply

Serre duality.
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namely
P ∗ : Sym2(H0(C, Ω1

C)prim) → H0(C, (Ω1
C)⊗2)inv,

is the cup product map followed by projection onto the invariant factor, and therefore the same
is true for the codifferential of the map

M0,2n → Sh,

as claimed. This concludes the proofs of all the statements in Claim 4.3.5. �
This gives immediately the following corollary.

Corollary 4.3.6. The dimension of the image P (M0,2n) inside Sh is 2n − 3.

4.4 Special subvarieties
Now that we have defined the relevant PEL-type Shimura variety Sh to which M0,2n maps
naturally, we can rephrase Theorem 4.1.3 in terms of special subvarieties of Sh. In this section
we assume the validity of the attractor conjecture, so that the conclusion of Theorem 4.1.3 holds.

Let X be an attractor Dolgachev Calabi–Yau variety corresponding to x ∈ M0,2n, with cor-
responding curve Cx

13 which comes with an automorphism μ, as in § 3.1. Recall that from
Theorem 4.1.3, the attractor conjecture implies that Jac Cx has an isogeny factor Ãx,14 which
has CM and is invariant under the action μ, and such that the distinguished differential ω is
supported on Ãx. Let Ax denote the image of Ãx under the map Jac Cx → Prymx, where the
latter map is as in § 4.3. Since there are only finitely many choices of Ãx up to isogeny,15 the
same is true for Ax. Note that the quotient map Jac Cx → Prymx is compatible with the action
of μ, and hence Ax is also acted on by μ.

Let V (Ax) and Vx denote the first cohomology groups H1(Ax,Q) and H1(Prymx,Q),
respectively. We have a splitting of Q-Hodge structures of the form Vx = V (Ax) ⊕ V ′

x, corre-
sponding to the splitting up to isogeny of Prymx; here V ′

x denotes the Q-Hodge structure of the
quotient Prymx/Ax. Note that both V (Ax) and V ′

x have actions by Q(ζ) induced by the action
of μ, and the decomposition is compatible with these actions. Recall from Definition 4.3.2 that
G acts naturally on Vx.

Definition 4.4.1. Let Gx denote the Q-algebraic subgroup of G preserving the above
decomposition.

Recall that in Definition 4.3.2 we defined special subvarieties associated to subgroups of G
through which the homomorphism on the Deligne torus may factor. From Theorem 4.1.3 we
immediately deduce the following slight refinement.

Proposition 4.4.2. For each attractor point x in M0,2n, x lies on a special subvariety Shx,
associated to the subgroup Gx.

Remark 4.4.3. Every point of Shx corresponds to a point of Sh such that the associated abelian
variety admits an isogeny factor isomorphic to Ax.

Definition 4.4.4. For r ∈ (Z/n)×, let dr := dim H1,0(Ax)[r], d−r := dim H0,1(Ax)[r].16

Proposition 4.4.5. We have d1 = 1, and dr + d−r is independent of r.

13 In this section we include the subscript x on all relevant objects for clarity.
14 Note the slight change of notation from Proposition 4.1.2.
15 Since each simple factor has CM by a subfield of Q(ζ).
16 We have omitted the reference to x in the notation dr by a slight abuse of notation.
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Proof. That d1 ≥ 1 follows from Proposition 4.1.2, since the distinguished differential ω is sup-
ported on Ax; therefore, d1 = 1 since dim H1,0(Prymx)[1] = 1.17 The second statement follows
from the fact that the dimension of H1(Ax)[r] is independent of r, as these spaces are Galois
conjugate to each other. �
Proposition 4.4.6. We have

codimShShx ≥ 2n − 3, (15)

with equality if and only if φ(n) = 2.

Remark 4.4.7. In particular, whenever φ(n) 
= 2, any intersection between the subvarieties
P (M0,2n) and Shx of Sh is unlikely in the sense that dimP (M0,2n) + codimShShx < Sh. In
the next section we will recall the ZPC, which predicts that an abundance of such unlikely
intersections, as we have here, implies restrictions on P (M0,2n) itself.

Proof. The subvariety Shx is itself a unitary Shimura variety, whose dimension is governed by
the signatures of V ′

x; see below for an example demonstrating this. We have that

dim Shx =
∑

r∈(Z/n)×/±
(2r − 1 − dr)(2n − 1 − 2r − d−r).

Comparing to18

dim Sh =
∑

r∈(Z/n)×/±
(2r − 1)(2n − 1 − 2r),

we see that the difference between the r = 1 terms of the two above expressions is 2n − 3, which
gives us the desired inequality. Equality holds if and only if all the other terms in the two above
expressions agree, and since from Proposition 4.4.6 we have dr + d−r ≥ 1 for all r, this occurs if
and only if there are no other terms, that is, φ(n) = 2. �
Example 4.4.8. We give an example to illustrate the numerology that is at play here, for n = 5,
which is the smallest value for which the Dolgachev Calabi–Yau varieties give counterexamples
to the attractor conjecture. In this case, since 5 is a prime number, the Prym variety is simply
the Jacobian of C. For example, if we fix the numerical data d1 = d2 = 1, d3 = d4 = 0, then we
may write schematically the splitting of the Hodge structure as⎛

⎜⎜⎝
1 7
3 5
5 3
7 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0
1 0
0 1
0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 7
2 5
5 2
7 0

⎞
⎟⎟⎠ . (16)

In the equation above we follow Notation 3.2.5, and on the right-hand side we have written
the dimension matrices of the summands of this splitting: the last term is the signatures of
the summand V ′

x. In this case, the special subvariety Shx has dimension 10, while the ambient
Shimura variety Sh has dimension 22.

4.5 A brief digression: the arithmetic cases of n = 3, 4, 6 and connections to tilings
of the sphere
Here we observe that the attractor conjecture works remarkably well in the cases when the
Calabi–Yau moduli space does happen to be a Shimura variety, and point out a connection to
the tilings of the sphere by polygons due to Engel and Smillie [ES18].

17 Recall that H1,0(Prymx)[1] is the subspace of H1,0(Prymx) on which μ acts by ζ.
18 In the above formulas, the representatives for r ∈ (Z/n)× should be taken in {1, . . . , n − 1}.

1095

https://doi.org/10.1112/S0010437X24007036 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007036


Y. H. J. Lam and A. Tripathy

Proposition 4.5.1. For n = 3, 4, 6, there is a bijection between attractor points and tilings of
the sphere by triangles, squares and hexagons, respectively.

Proof. After quotienting by the appropriate arithmetic group, the Schwarz map π considered
in § 3.5 coincides precisely with the map denoted by D in [ES18, Proof of Proposition 2.5,
p.7]. Furthermore, the integral points in the image of D correspond to tilings of the sphere, as
required. �

In fact, we mention an intriguing question for the interested reader: Engel and Smillie in the
above paper study a very precise generating function of the attractor points in the arithmetic
n = 3, 4, 6 cases in terms of a mock modular form; it is reasonable to ask if there may be any
analogous (but presumably more complicated) behavior in the nonarithmetic cases.

5. Unlikely intersection

We now recall the ZPC.

Conjecture 5.0.1 [Pin05, Conjecture 1.3]. Given a subvariety Y ⊂ X of a Shimura variety and
a countable collection of special subvarieties {Xα} of codimension greater than dimY , if⋃

α

Y ∩ Xα ⊂ Y

is Zariski dense, then Y is contained within some proper special subvariety X ′ ⊂ X .

Here, the definition of a special subvariety is exactly as in part (i) of Definition 4.3.2. We
will now argue that M0,2n is not contained in any special Shimura subvariety of Sh. Once again,
these arguments hold for all n ≥ 2; the only place where the φ(n) > 2 condition enters is to force
the dimensional inequality.

As in § 3.1, we have a curve Cx attached to each x ∈ M0,2n, and we defined the Prym
Prymx in § 4.2. Recall that we denote by V the Q-subspace of H1(Prymx,Q), and we have a
decomposition

V ⊗ Q(ζ) =
⊕

r∈(Z/n)×
V [r].

Recall also from Definition 4.3.2 that the Shimura variety Sh is defined by the group G =
GLQ(ζ)(V ) ∩ GSp(V, Ψ), and that G(R) =

∏
r∈(Z/nZ)×/± U(VR,(±r), β±r) by Proposition 4.3.3.

Proposition 5.0.2. Fix a basepoint x ∈ M0,2n. Let G ⊂ G denote the Q-Zariski clo-
sure of the fundamental group of M0,2n acting on V = H1(Prymx). Then G(R) contains∏

r∈(Z/n)×/± SU(VR,(±r), β±r), where the latter is embedded in the natural way into G(R) =∏
r∈(Z/nZ)×/± U(VR,(±r), β±r).

Before turning to the argument for this proposition, we note that this requirement is exactly
the hypothesis necessary to apply the ZPC to conclude Theorem 1.1.3 in the φ(n) > 2 cases of
unlikely intersection. Indeed, the special Shimura subvarieties of Sh correspond to subgroups of
G, and being contained within some Shimura subvariety would imply a corresponding restriction
on the Zariski closure of the monodromy group, namely G; that is, we would have inclusions
G ⊂ H ⊂ G with H corresponding to some Shimura subvariety. However, the above proposition
implies that G(R) and G(R) have the same adjoint groups, and therefore H cannot correspond
to a proper Shimura subvariety of Sh.

To conclude the proof of Theorem 1.1.3, it hence remains to establish the above proposition.
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Proof. This is essentially due to Deligne and Mostow [DM86], but we will use the version stated
by Looijenga in [Loo07], as we now describe.19

First, as explained in [Loo07, Proof of Theorem 4.3], we have a decomposition

G ⊗ Q(ζ) =
∏

r∈(Z/n)×
Gr

with Gr defined over Q(ζ), and such that Gr ⊂ GL(V [r]) under the natural inclusion G ⊗ Q(ζ) ⊂
GL(V ⊗ Q(ζ)).

Furthermore, again according to [Loo07, Lemma 4.4],20 for each r ∈ (Z/nZ)×, Gr × G−r is
canonically defined over R, and the real points (Gr × G−r)(R) contain SU(VR,(±r), β±r). This
implies the proposition. �

We now put all the ingredients together to conclude the proof of our main result.

Proof of Theorem 1.1.3. Suppose that n 
= 3, 4, 6. We assume for the sake of contradiction that
attractor points are defined over Q̄. By § 3.5 the isolated attractor points are Zariski dense in
moduli space. Now recall that we have the Prym map

P : M0,2n → Sh,

where Sh denotes the Shimura variety from Definition 4.3.2, and consider its image P (M0,2n),
which has dimension 2n − 3, the same dimension as M0,2n, by Corollary 4.3.6.

On the other hand, by Proposition 4.4.2, each attractor point lies in a sub-Shimura
variety, whose codimension inside Sh is strictly greater than 2n − 3 by Proposition 4.4.6
Therefore, by the ZPC, the variety P (M0,2n) must be contained in some proper spe-
cial subvariety of Sh, which is impossible by Proposition 5.0.2, as explained before the
proof of this proposition. Therefore, the attractor points cannot be defined over Q̄, as
required. �

6. Conjectural one-parameter Calabi–Yau families

6.1 A conjectural construction
We first recall an alternative description of the Dolgachev Calabi–Yau varieties. Recall that we
have the curve C whose affine model is

C◦ =
{

yn =
2n∏
i=1

(x − xi)
}

.

Then (see [SXZ13]) the cyclic cover X ′ of P2n−3 in Definition 3.1.4 is given by

C2n−3/S2n−3 � N ′,

where N ′ is the kernel of the sum map

(μn)2n−3 → μn.

In the above, each μn factor acts via

x �→ x, y �→ ζy,

for ζ a primitive nth root of unity.

19 In the notation of [Loo07], one should take μ there to be our 1/n, and n there should be our 2n − 2, to match
with the cases considered here.
20 As well as the Galois conjugate statements; see, for example, [Loo07, Proof of Theorem 4.3].
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We now consider a special one-parameter family N ⊂ MCY given by

x1 = a, x2 = ζa, . . . , xn = ζn−1a, y1 = 1, . . . , yn = ζn−1,

for some parameter a. For each such curve C we can further quotient by the μn acting by

x �→ ζx, y �→ y;

let us denote this quotient by Z, and the total space of this family over N by Z.
Note that this new action commutes with the action of the group S2n−3 � N ′ above.

Lemma 6.1.1. Under the action of S2n−3 � N ′ × μ, the invariant part Hinv of the Hodge structure
on H2n−3(C2n−3,Q) has Hodge numbers all equal to one.

Proof. This is a straightforward calculation using [Loo07, Lemma 4.2]. �
Conjecture 6.1.2. The family Z over N admits a simultaneous crepant resolution, such that
the middle Hodge structure is isomorphic to Hinv. In particular, we have a one-modulus family
of Calabi–Yau varieties parametrized by N .

6.2 Zilber–Pink for one-parameter families
Assuming Conjecture 6.1.2, the same argument as in the case of the Dolgachev Calabi–Yau
varieties yields counterexamples to the attractor conjecture, again conjectural on the ZPC.
However, in the case of one-parameter families inside Shimura varieties, the ZPC is known
to hold conditional on certain purely arithmetic statements as a result of work of Orr [Orr20,
Theorem 3.4].

Corollary 6.2.1. Assuming certain arithmetic conjectures, namely Conjectures 3.2 and 3.3 of
[Orr20] in our setting, the families Z give counterexamples to the attractor conjecture.
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